

Edinburgh Research Explorer

Using Partial Evaluation in Distributed Query Evaluation

Citation for published version:
Buneman, P, Cong, G, Fan, W & Kementsietsidis, A 2006, Using Partial Evaluation in Distributed Query
Evaluation. in Proceedings of the 32nd International Conference on Very Large Data Bases. pp. 211-222.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 32nd International Conference on Very Large Data Bases

Publisher Rights Statement:
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
theVLDBcopyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/using-partial-evaluation-in-distributed-query-evaluation(37bfea81-04d0-4db4-9562-a6622fb9bfc6).html

Using Partial Evaluation in Distributed Query Evaluation

Peter Buneman Gao Cong
University of Edinburgh

Wenfei Fan ∗

University of Edinburgh &
Bell Laboratories

Anastasios Kementsietsidis
University of Edinburgh

{opb, gcong, wenfei, akements}@inf.ed.ac.uk

ABSTRACT
A basic idea in parallel query processing is that one is prepared to

do more computation than strictly necessary at individual sites in

order to reduce the elapsed time, the network traffic, or both in

the evaluation of the query. We develop this idea for the evalua-

tion of boolean XPath queries over a tree that is fragmented, both

horizontally and vertically over a number of sites. The key idea

is to send the whole query to each site which partially evaluates,

in parallel, the query and sends the results as compact boolean

functions to a coordinator which combines these to obtain the

result. This approach has several advantages. First, each site is

visited only once, even if several fragments of the tree are stored

at that site. Second, no prior constraints on how the tree is de-

composed are needed, nor is any structural information about the

tree required, such as a dtd. Third, there is a satisfactory bound

on the total computation performed on all sites and on the total

network traffic. We also develop a simple incremental mainte-

nance algorithm that requires communication only with the sites

at which changes have taken place; moreover the network traffic

depends neither on the data nor on the update. These results, we

believe, illustrate the usefulness and potential of partial evalua-

tion in distributed systems as well as centralized xml stores for

evaluating XPath queries and beyond.

1. INTRODUCTION
Partial evaluation (aka. program specialization [17]) has

been studied in the context of programming languages as a
general optimization technique. Intuitively, given a function
f(s, d) and part of its input s, partial evaluation is to spe-
cialize f(s, d) with respect to the known input s. That is, it
performs the part of f ’s computation that depends only on
s, and generates a partial answer, i.e., a (residual) function
f ′ that depends on the as yet unavailable input d.

Partial evaluation has been proven useful in a variety of
areas including compiler generation, code optimization and
dataflow evaluation (see [17] for a survey). The last of these

∗
Supported in part by EPSRC GR/S63205/01, GR/T27433/01 and

BBSRC BB/D006473/1.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

YRX Z
rx yzA B

(a)Tree T

p o r t o f o l i ob r o k e r b r o k e rm a r k e tn a m en a m eb u y m a r k e tn a m en a m e m a r k e tn a m e$ 3 3M e r i l lL y n c h B a c h eN A S D A Q N Y S E N A S D A Q
F 0F 1 F 3F 2s t o c k s t o c kc o d e c o d eG O O GY H O O s t o c kc o d eI B M s t o c kc o d e b u y$ 7 1A A P Lb u y$ 3 7 4 b u y$ 8 0 s t o c kc o d eG O O G b u y$ 3 7 0s e l l$ 7 8 s e l l$ 6 5s e l l$ 3 5 s e l l$ 3 7 3 s e l l$ 3 7 2

(b) A stock portfolio

Figure 1: Two fragmented xml trees

bears sufficient connections with distributed query evalua-
tion. This suggests that it is worth investigating its use in
parallel query processing. We focus here on the evaluation
of an important fragment of XPath, Boolean XPath queries,
which are commonly used, for example, in publish-subscribe
systems [2] and ldap directories [23].

As an example, consider the simple Boolean XPath query
Q = [//A ∧ //B] over the xml tree T depicted in Fig. 1(a).
We defer the discussion of the physical representation of T ,
but assume that T consists of four subtrees, or fragments,
R, X, Y and Z, and that nodes with tags A or B only occur
in fragments Z and Y as shown in Fig. 1(a). A sophisticated
algorithm would do a single depth-first traversal of T com-
puting [//A] and [//B] simultaneously [18], and visit each
node exactly once, something we cannot expect to improve
upon.

However, our recursive traversal visits fragments
R, X, Z, X, R,Y, R in that order; it makes three visits to frag-
ment R and two visits to fragment X. Could we devise an
algorithm that makes one visit to each fragment? Observe
that the evaluation of the query Q can be readily treated
as the Boolean function Q(R,X, Y, Z), i.e., one whose value
depends on all four fragments of the tree T . What does this
function look like? Suppose that rA, xA, yA and zA are vari-
ables denoting the results of [//A] respectively evaluated at
the roots r of fragment R, x of fragment X, y of fragment
Y and z of fragment Z, and that rB, xB, yB , zB are defined
similarly. Then, it is not hard to see that:
Q(R,X, Y, Z) = (rA ∨ xA ∨ yA ∨ zA) ∧ (rB ∨ xB ∨ yB ∨ zB)
We can compute the results of [//A] and [//B] (the val-
ues of the variables) independently, and in parallel, in each
fragment by accessing it only once. Each fragment returns
the values of the corresponding variables and each time we

211

receive such values we use them to compute a partial an-
swer for Q. Given that nodes with tags A and B only
occur in fragments Z and Y , the execution of Q returns
(zA, zB) = (1, 0) on fragment Z, (yA, yB) = (0, 1) on Y ,
(xA, xB) = (zA, zB) on X and (rA, rB) = (xA ∨yA, xB ∨xB)
on R. Note that the process makes no assumption about
the order in which it receives the values of the variables.
A partial answer is computed each time values are received
from some fragment. One order might compute the answer
faster than some others but except this, order is of no conse-
quence. Another remark is that some of the returned values
are truth values while others are Boolean expressions. Ir-
respectively of the order and type of returned values, the
process uses the returned values from all fragments to com-
pute the answer to Q which, in this case, is true. This is a
simple example of partial evaluation.

There are a number of database scenarios in which partial
evaluation could be an effective optimization technique. For
example, as in PDOM [15], suppose a large xml tree is
stored in secondary storage and it is split into fragments. In
this setting, the partial evaluation approach can save us the
cost of two swaps of fragment R and one swap of fragment
X. The benefit is already evident even though there is no
parallelism involved in this example.

A more interesting scenario involves fragmented xml trees
that are geographically or administratively distributed over
the Internet [4], a setting commonly found in, e.g., e-
commerce, Web services, or while managing large-scale net-
work directories [16]. More specifically, let us consider the
xml tree shown in Fig. 1(b), which represents a person’s
stock portfolio. The person trades stocks through various
brokers in possibly overlapping markets. For each stock,
the tree stores its code, the price paid by the person to buy
the stock, and the price at which the person can (currently)
sell the stock. The same stock might be traded through a
different broker at different periods of time and for a differ-
ent price. For example, the goog stock is purchased both
through Merill Lynch and through Bache. Although con-
ceptually this is a single xml tree, in reality it is inherently
distributed over the Internet. The figure uses dashed lines
to show one possible fragmentation. For example, fragment
F0 includes the root of the tree and all the stock data from
broker Bache in the nyse market. This fragment might be
stored locally in the persons’ desktop. Broker Merill Lynch
might require that all trade data are accessed through its
own servers and thus fragment F1 is stored there. In turn,
the nasdaq market might require that all its own data are
only remotely accessed and only through recognized brokers.
Therefore fragments F2 and F3 are both stored in its own
servers. The nyse market imposes no such restrictions and
so its trade data can be stored locally by Bache (and Mer-
ill Lynch, although not shown in the figure). Notice that
we make no assumptions about the size of fragments, their
storage location, and the number of fragments assigned to
each location. In a variety of applications, we have no con-

trol over these parameters and their values are imposed on
us by the environment.

Assume that the portfolio owner wants to know whether
the goog stock reaches a selling price of $376. To do so,
she must execute the boolean query Q = [//stock[code =
“goog

′′ ∧ sell = 376]]. There are two popular alternatives
to execute such a query. The first alternative requires for
the different sources to create a stream of data to the user

and the query is executed over the received stream. There
are two main concerns with this approach: (a) A large part
of the tree that is later deemed irrelevant to the query, in-
cluding the subtree for the nyse market and the information
for the yhoo and aapl stocks, needs to be sent to the user,
causing increased network traffic. The user might want to
execute the query and be notified on-the-go, using a mobile
device, like a cell phone. Streaming large data sets to the
cell phone is particularly unrealistic. (b) Business or per-
sonal data are typically kept local at trusted sites, and are
not shipped to other sites for security or privacy concerns.
In industry and research, similar concerns have generated
increasing interest, and a preemergent shift, towards ship-
ping the processing (queries) to the data, instead of shipping
(streaming) the data to the processing [11].

The second alternative is to use a publish-subscribe sys-
tem. Assuming that the tree in Fig. 1(b) is part of such
a system, the user needs to issue query Q over the system
and whenever the query predicate is satisfied, the user is
notified. Publish-subscribe systems are more in-line with
moving the processing to the data. However, any publish-
subscribe system implementing the optimal centralized algo-
rithm in XPath query processing [18] would require a single
depth-first traversal of the document tree visiting, in our
example, twice the nasdaq server.

In response to these, we propose partial evaluation as a
practical query processing technique since it ensures that
each remote site is visited only once. Moreover, while a
depth-first traversal serializes the processing of the different
fragments, partial evaluation can speed-up query process-
ing since fragments at different sites are processed in paral-

lel. Unlike streaming, partial evaluation executes the queries
where the data reside, thus minimizing network traffic and
facilitating the execution of (complex) queries over devices
with limited bandwidth.

Our first contribution consists of several algorithms for
evaluating Boolean XPath queries over a fragmented tree,
with the following performance guarantees. (a) Each site
holding a fragment is visited only once. (b) The total net-
work traffic is bounded by the size of the query and the
number of fragments, and is independent of the size of the

xml document. (c) The total amount of computation per-
formed at all sites holding a fragment is comparable to the
computation of the optimal centralized algorithm over the
whole tree. (d) The algorithm does not impose any condi-
tion on how the xml documents are fragmented, what the
sizes of these fragments are, or how they are assigned to
sites.

Our second contribution is a simple incremental mainte-
nance algorithm for Boolean XPath views. Cached views
and their incremental maintenance are important for effi-
cient query answering [13, 25]. Our algorithm has the
following features: (a) The computation is localized so that
only the site where the updates take place is visited, and
reevaluation is only conducted on the updated fragment; no
other sites or fragments are visited. (b) The total network
traffic depends on neither the data nor the update.

Our third contribution is an experimental study evaluat-
ing our algorithms versus optimal centralized approaches.
Our experimental results show that our technique outper-
forms, by a substantial factor in all practical cases, existing
centralized algorithms for evaluating XPath queries.

These yield the first Boolean XPath evaluation and incre-

212

mental maintenance algorithms with performance guarantee

in distributed systems. The technique generalizes to data
selection XPath queries, as be seen in Section 8; we con-
sider Boolean queries in this paper to focus on the main
idea of partial evaluation and to simplify the discussion. As
mentioned earlier, the partial evaluation technique is more
general than this application. In fact, other proposals for
distributed query evaluation can be seen as related to par-
tial evaluation. We shall discuss these in Section 7.
Organization. Section 2 discusses xml tree fragmentation
and reviews Boolean XPath. Section 3 presents our main
algorithms for processing Boolean XPath queries based on
partial evaluation. Variations of the basic algorithms are
given in Section 4. Section 5 develops our incremental main-
tenance algorithm for XPath views. An experimental study
is provided in Section 6, followed by related work in Sec-
tion 7 and conclusions in Section 8.

2. BACKGROUND
We next discuss the distribution of xml documents and

present the class of XPath queries studied in this paper.

2.1 XML Tree Fragmentation
We allow an xml tree T to be decomposed into a collection

F of disjoint trees, or fragments Fi, which are distributed to
and stored in different sites. A tree may be fragmented for
administrative reasons (e.g., different sites are inherently re-
sponsible for maintaining different parts of the tree), or for
efficiency [4] (e.g., the tree might be too big to store in a
single site). We do not impose any constraints on the frag-
mentation: we allow for an arbitrary “nesting” of fragments.
Each fragment can appear at any level of the tree, and differ-
ent fragments may have different sizes (in terms of number
of nodes). Furthermore, we do not impose any constraints

on how the fragments are distributed: this is determined by
the system. Hence our fragmentation setting is the most
generic possible, making our solutions applicable in almost
every conceivable setting. For instance, Fig. 2(a) shows the
decomposition of the tree in Fig. 1(b) in four fragments. To
the left of Fig. 2(b) we summarize this decomposition in a
structure called the fragment tree. Note that the fragment
F1 is itself fragmented.

Next, we define a few useful notation about fragments.
The fragment that contains the root of the tree T , i.e., the
fragment at the root of the fragment tree, is called the root

fragment. In Fig. 2, this is fragment F0. Given two frag-
ments Fj and Fk, we say that Fk is a sub-fragment of Fj

if Fk is a child of Fj in the fragment tree. If Fk is a sub-
fragment of Fj then there exists a node v ∈ Fj such that
the root node w of Fk is a child of v in the original tree T .
In Fig. 2(b), fragment F3 is a sub-fragment of F0 and in the
tree of Fig. 1(b) there is an edge between the broker node
of F0 and the root node market of F3.

We maintain the relationship between a fragment and its
sub-fragments to preserve the structure of the original tree
T . To do this, we add to the v node of fragment Fj a virtual

child node with label Fk. While traversing fragment Fj ,
we know that if we reach the virtual node Fk, we need to
“jump” to fragment Fk in order to continue the traversal.
In Fig. 2(a), fragment F0 has the virtual node F1 which in
turn has the virtual node F2. Finally, we refer to a fragment
that has no sub-fragments as a leaf fragment. In Fig. 2(b),
both fragments F2 and F3 are leaf fragments.

p o r t o f o l i o b r o k e rb r o k e r m a r k e tn a m e n a m em a r k e tn a m e t i t l e b u y$ 8 0 M e r i l lL y n c hB a c h e N A S D A QN Y S E s t o c kc o d eI B M
F 1 F 2F 3 F r a g m e n t F 2F r a g m e n t F 0 F r a g m e n t F 1 F r a g m e n t F 3

s e l l$ 7 8 b u y$ 3 3s t o c kc o d eY H O O s e l l$ 3 5 b u y$ 3 7 4s t o c kc o d eG O O G s e l l$ 3 7 3 m a r k e tn a m eN A S D A Q b u y$ 7 1s t o c kc o d eA A P L s e l l$ 6 5 b u y$ 3 7 0s t o c kc o d eG O O G s e l l$ 3 7 2
(a) Four fragmentsF 0F 1F 2 F 3 S 0S 1S 2 S 2F r a g m e n t T r e e S o u r c e T r e eh (F 0)h (F 3)h (F 1)h (F 2)

(b) The Fragment tree and the source tree

Figure 2: Tree fragmentation

As fragments are distributed among sites, it is important
to keep track of where the different fragments reside. We
assume that there is a mapping function h, which encodes
the assignment of fragments to sites (sources). To the right
of Fig. 2(b) we show a structure called the source tree, which
is induced from the fragment tree and the function h. The
source tree of a tree T , denoted by ST , shows the names of
sites where the fragments of T are stored. From the source
tree we can see that both fragments F2 and F3 are stored in
the same site S2, the nasdaq site.

The source tree ST is the only structure that our XPath
evaluation and incremental maintenance algorithms require.
No other information about either the fragmentation or the
distribution of the xml tree is needed. The fragment tree
was introduced to illustrate fragmentation, and is neither
maintained nor used by our system.

2.2 Boolean XPath
We consider a class of Boolean XPath queries, denoted by

XBL. A query [q] in XBL is syntactically defined as follows:

q := p | p/text() = str | label() = A | ¬q | q ∧ q | q ∨ q,

p := ǫ | A | ∗ | p//p | p/p | p[q],

where str is a string constant, A is a label (tag), ¬,∧,∨ are
the Boolean negation, conjunction and disjunction opera-
tors, respectively; p is a path expression defined in terms of
the empty path ǫ (self), label A, wildcard ∗, the descendant-

or-self-axis ‘//’, child ‘/’, and qualifier [q]. For //, we ab-
breviate p1/ // as p1// and // /p2 as //p2.

For example, [//broker[//stock/code/text() =“goog” ∧ ¬

(//stock/code/text() = “yhoo”)]] is a query in XBL.
Note that path expressions p in XBL subsume tree pattern

queries and beyond, which are commonly studied in the lit-
erature. As mentioned earlier, queries in XBL are widely
used in, e.g., xml data dissemination for content-based fil-
tering and routing of xml documents. Although we consider
Boolean queries, the technique generalizes to a larger class
of queries, which are discussed in the conclusions.

213

At a context node v in an xml tree T , the evaluation of a
query [q] yields a truth value, denoted by val(q, v), indicating
whether or not q is satisfied at v. Specifically, (a) when q
is a path p, val(q, v) is true iff there exists a node reachable
from v via p; (b) when q is p/text() = str, val(q, v) is true
iff there is a node u reached from v via p such that u carries
text value str; similarly when q is label() = A; (c) when q
is q1 ∧ q2, val(q, v) is true iff both val(q1, v) and val(q2, v) are
true; similarly when q is q1 ∨ q2 or ¬q1.

On a centralized xml tree T , i.e., when T is not de-
composed and distributed, val(q, r) can be computed in
O(|T | |q|) time [10], where r is the root of T .

To simplify the presentation we introduce two notation,
which will be used in our algorithms given in later sections.

First, we rewrite each path p in an XBL query [q] to a
normal form β1/ . . . /βn, where βi is one of ǫ, ∗, // or ǫ[q′].
This normalization can be achieved by using a linear-time
function normalize(q), given inductively as follows:

normalize(ǫ) = ǫ; similarly for ‘∗’, ‘//’ and label() = A;
normalize(A) = ∗/ǫ[label() = A];
normalize(p1/p2) = normalize(p1)/normalize(p2);
normalize(p[q′]) = normalize(p)/ǫ[normalize(q′)];
normalize(q1 ∧ q2) = normalize(q1) ∧ normalize(q2);

similarly for q1 ∨ q2 and ¬q1;
normalize(p/text() = ‘str’) = normalize(p)[text() = ‘str’];
normalize(ǫ[q1]/ . . . /ǫ[qn]) =

ǫ[normalize(q1) ∧ normalize(q2) ∧ . . . ∧ normalize(qn)];

where the last rule is to combine a sequence of ǫ’s into one.
In the sequel we consider XBL queries in the normal form.

Second, we use QList(q) to denote the list of all sub-queries
of q. Intuitively, q1 is a sub-query of q if the parse tree of q1

is a subtree of that of q. We sort QList(q) in a topological
order such that for any sub-queries q1, q2 of q, if q1 is a
sub-query of q2 then q1 precedes q2 in QList(q).

Example 2.1: Consider the XBL query [q], where q is
//stock[code/text() = “yhoo”], then

normalize([q]) = ǫ[//ǫ[label() = stock ∧
∗/ǫ[label() = code ∧ text() = “yhoo”]]],

QList([q]) = [q1, q2, q3, q4, q5, q6, q7, q8, q9, q10], where
q1 = label() = code, q2 = (text() = “yhoo”),
q3 = q1 ∧ q2, q4 = ǫ[q3],
q5 = ∗/ǫ[q4], q6 = (label() = stock),
q7 = q5 ∧ q6, q8 = ǫ[q7],
q9 = //ǫ[q8], q10 = ǫ[q9]

2

Remark. Observe that both normalize(q) and QList(q) can
be computed in O(|q|) time. As a result, the total size of
sub-queries in the list QList(q) is bounded by O(|q|). Fur-
thermore, for any XPath evaluation algorithm, to evaluate
q it is necessary to evaluate sub-queries in QList(q).

3. DISTRIBUTED QUERY EVALUATION
Consider an XBL query q submitted to a site S, hereafter

referred to as the coordinating site. The query is to be eval-
uated at the root of a fragmented and distributed xml tree
T . A näıve evaluation is to collect all the fragments of tree T
identified by the source tree ST at the coordinating site, and
use a centralized algorithm, e.g., the algorithm of [10]. We
refer to this approach as NaiveCentralized. This approach is
efficient once the coordinating site gets all the data. How-
ever, the price is that large fragments need to be sent over
the network, each time a query needs to be executed. In

addition, since the coordinating site must store these frag-
ments during the evaluation of q, the benefits gained by our
ability to distribute large xml trees over a network are allevi-
ated. Moreover, privacy and security concerns may prevent
certain sites from releasing their data to another site.

A better solution, referred to as NaiveDistributed, is to cus-
tomize a centralized evaluation algorithm so that it works in
a distributed fashion. We know that a boolean XPath query
can be evaluated on a single site via a single traversal of the
tree T . We can use the information from the source tree
ST to perform a distributed bottom-up traversal of tree T .
To do this, we need to pass certain information between the
sites in the source tree ST , as the distributed computation is
passed forth and back from a fragment Fi in site Sj to one
of its sub-fragments Fk in site Sl. For example, consider
the fragment and source trees in Fig. 2(b). As we compute
the query for fragment F0 in site S0, we need to pass the
control of computation to fragment F1 in site S1. At the
same time, site S0 has to wait for this computation to finish
before it continues with fragment F3 in site S2. While this
distributed algorithm does not require any transmission of
fragments, it has two shortcomings. First, for a site Si to fin-
ish processing its fragment Fj , it has to wait for all the other
sites that hold sub-fragments of Fj to finish. Therefore, the
distributed algorithm actually follows a sequential execution
and does not take advantage of parallelism. Second, a site is
visited as many times as the number of fragments stored in
it. In our example, site S2 needs to be visited twice, since it
holds fragments F2 and F3. For each of these visits, site S2

has to exchange a number of messages, resulting in increased
network traffic, and its processor has to switch context once
per fragment.

To overcome these limitations, we propose next the Par-
allel Boolean XPath (ParBoX) evaluation algorithm, based
on partial evaluation. The ParBoX Algorithm guarantees the
following: (1) Each site is visited only once, irrespectively
of the number of fragments stored in it. (2) Query process-
ing is performed in parallel, on all the participating sites.
(3) The total computation on all sites is comparable to what
is needed by the best-known centralized algorithm. (4) The
total network traffic, in any practical setting, is determined
by the size of the query rather than the xml tree.

3.1 The ParBoX Algorithm
The algorithm is initiated at the coordinating site which,

without loss of generality, we assume to be the site storing
the root fragment of the tree T over which the XBL query q
is evaluated. The algorithm consists of three stages:

Stage 1: Initially (lines 1-2 of Procedure ParBoX in
Fig. 3(a)), the coordinating site uses the source tree ST to
identify which other sites hold at least one fragment of tree
T . In our example, coordinating site S0 uses source tree in
Fig. 2(b) to identify sites S1 and S2.

Stage 2: The coordinating site along with all the sites iden-
tified in the first stage evaluate, in parallel, the same input

query q on all their assigned fragments (Procedure evalQual,
Fig. 3(b)). Since fragments are parts of the tree T , query
evaluation on each fragment returns a partial answer to the
query q.

Stage 3: Finally (lines 5-7 of Procedure ParBoX), the
coordinating site collects the partial answers from all the

214

participating sites and all the fragments; it then composes

them to compute the answer to query q.

We now describe the two crucial components of the algo-
rithm: (a) how to compute partial answers in parallel (the
second stage), and (b) how to assemble the partial answers
to obtain the answer to query q (the third stage).

Partial evaluation. There is a dependency relation be-
tween partial evaluation processes for the query q on dif-
ferent fragments of the xml tree T . To see this, consider
an efficient evaluation of q over T via a single bottom-up
traversal of T . During the traversal, at each node v we
compute the values at v of all the sub-queries QList(q) of
query q, where QList(q) is described in Section 2.2. This
computation requires the (already computed) values of the
QList(q) sub-queries at the children of v. At the end of the
traversal, the answer to query q is computed by the values
of the QList(q) queries at the root of the tree. Specifically,
the answer to q is the value of the last query in QList(q).

Consider now Fig. 2(a) which shows the fragments of the
xml tree in Fig. 1(b). These are the trees over which the
sites must compute the query q. Recall that in these frag-
ments some of the leaves are virtual nodes, i.e., they are
pointers to other fragments which reside in other sites. For
example, in fragment F1 there is a virtual leaf node marked
by F2, while fragment F0 has two virtual leaves, one for frag-
ment F1 and one for F3. In accordance to the strategy given
above, at each site S and for each fragment F , we need to
perform a bottom-up evaluation of query q. But how can
we compute, during the traversal, the values of the QList(q)
sub-queries at the virtual nodes? The values of the QList(q)
sub-queries are unknown for these nodes and, under normal
circumstances, until we learn these values from another site
we cannot proceed with the evaluation.

We propose a technique to decouple the dependencies be-
tween partial evaluation processes and thus avoid unnec-
essary waiting, by introducing Boolean variables, one for
each missing value of each QList(q) sub-query at each virtual
node. Using these variables, the bottom-up evaluation pro-
cedure is given in Fig. 3(b). Procedure bottomUp considers
the root of a fragment Fj and a list qL of sub-queries which
is essentially the QList(q) of the initial query q. Recursive
calls of the procedure are used to perform the bottom-up
traversal of the tree Fj (line 2). At each node v encoun-
tered, the procedure computes the “values” of qL at v and
stores the results of the computation in a vector Vv which
is of the same size as list qL. Note that these “values” are
actually Boolean formulas with those variables introduced
at the virtual nodes. The computation of the qL values at
v requires the values of qL computed in the children and
descendants of v. To cope with this, we save these val-
ues (lines 3-5) by maintaining only two additional vectors,
namely vectors CVv and DVv , that are of the same size as
vector Vv. Intuitively, for each sub-query q′ in qL, CVv(q′)
is true if and only if there exists some child u of v such that
Vu(q′) is true, and similarly, DVv(q′) is true if and only if
either Vv(q′) is true or there exists some descendant w of v
such that Vw(q′) is true.

Given a query qi ∈ qL at a node v, the computation of
the value of qi depends on the structure of qi. We consider
different cases (lines 6-17) of the structure based on the nor-
mal form given in Section 2.2. . For example, if query qi is
of the form text() = str (line 10), then its value is true if

Procedure ParBoX

Input: An XBL query q and a fragmented, distributed tree T
Output: The boolean value ans of q over T

1. qL := QList(q);
2. ST := retrieve the source tree of tree T ;
3. for each site Si in the source tree ST do

4. execute(Si, evalQual, qL);
5. for each fragment Fj stored in Si do

6. annotate ST with (VFj
, CVFj

, DVFj
);

7. ans := evalST(ST);

(a) ParBoX algorithm executed at coordinating site

Procedure evalQual

Input: A list qL of sorted (sub-)queries
Output: A vector F [Si][Fj] for each fragment Fj of site Si

1. for each subtree Fj assigned to Si do

2. (VFj
, CVFj

, DVFj
) = bottomUp(root(Fj), qL);

3. send (VFj
, CVFj

, DVFj
) to the coordinating site;

Procedure bottomUp

Input: A node v and a list qL of (sub-)queries
Output: Vectors Vv, CVv and DVv of formulas for node v

1. for each child w of v do

2. (Vw, CVw, DVw) := bottomUp(w, qL);
3. for each query qi in qL do

4. CV v(qi) := compFm(CV v(qi), Vw(qi), OR);
5. DV v(qi) := compFm(DV v(qi), DV w(qi), OR);
6. for each query qi in qL from left to right do

7. case qi of

8. (c0) ǫ: Vv(qi) := 1;
9. (c1) label() = l: Vv(qi) := compareString(label(), l);
10. (c2) text() = str: Vv(qi) := compareString(text(), str);
11. (c3) ∗/qj : Vv(qi) := CV v(qj);
12. (c4) ǫ[qj]/qk: Vv(qi) := compFm(Vv(qj), Vv(qk), AND);
13. (c5) //qj : Vv(qi) := DV v(qj);
14. (c6) qj ∨ qk: Vv(qi) := compFm(Vv(qj), Vv(qk), OR);
15. (c7) qj ∧ qk: Vv(qi) := compFm(Vv(qj), Vv(qk), AND);
16. (c8) ¬qj : Vv(qi) := compFm(Vv(qj), NULL, NEG);

17. DV v(qi) := compFm(Vv(qi), DV v(qi), OR);

Procedure compFm

Input: Two formulas f1 and f2 and an operator op
Output: The composed formula ans := f1 op f2

1. case (isFormula(f1)), isFormula(f2)) of

2. (c0) (0,0): if op = NEG then ans := ¬f1;
3. else ans := f1 op f2;
4. (c1) (0,1): if op = AND then

5. if f1 = true then ans := f2; else ans := false;
6. elseif op = OR then

7. if f1 = true then ans := true; else ans := f2;
8. (c2) (1,0): if op = NEG then ans := ¬f1;
9. elseif op = AND then

10. if f2 = true then ans := f1; else ans := false;
11. elseif op = OR then

12. if f2 = true then ans := true; else ans := f1;
13. (c3) (1,1): if op = NEG then ans := ¬f1;
14. elseif op = AND then ans := f1 ∧ f2;
15. elseif op = AND then ans := f1 ∨ f2;

(b) ParBoX algorithm executed at participating site

Figure 3: The ParBoX Algorithm

215

the text content of node v is equal to the string str, and is
false otherwise. More interesting is the case where qi is of
the form ∗/qj (line 11). Then, the value of qi at node v is
equal to the disjunction of the values of query qj at the child
nodes of v. As a consequence of recursive evaluation, this
value has already been accumulated in CVv(qj). Similarly,
when qi is //qj (line 13), the value of qi at node v is the
disjunction of Vv(qj) and DVw(qj)’s for the children w of
v, which have again been computed due to the bottom-up
processing order following the list qL of sub-queries. Finally,
when qi is of the form qj ∧ qk, the value of qi is the conjunc-
tion of the values of queries qj and qk. If queries qj and
qk had simple Boolean values as answers, then this com-
putation would be trivial. However, we note that a distin-
guishing characteristic of our procedure is that variables are
part of our evaluation. Therefore, we compose Boolean val-
ues with variables or compose Boolean variables with other
Boolean variables to create more complex formulas. Proce-
dure compFm is responsible for composing, for each query,
the truth values and/or formulas necessary to compute the
value of the query. Depending on the value of the operator
op it computes f1 op f2, which yields either a Boolean value

or a Boolean formula.

Example 3.1: Recall query q from Example 2.1. Evaluat-
ing the values of the (sub-)queries in qL = QList(q) (given
in Example 2.1) for the nodes in fragment F1 results in the
following Vv vectors:

• Vname =< 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 >
• VF2

=< x1, x2, x3 = x1 ∧ x2, x4 = x3, x5 = cx4,
x6, x7 = x5 ∧ x6, x8 = x7, x9 = dx8, x10 = x9 >

• Vbroker =< 0, 0, 0, 0, x4, 0, 0, 0, dx8, dx8 >

We use 0’s and 1’s to represent the false and true values
while xi’s, cxi’s and dxi’s represent distinct variables in the
VF2

, CVF2
and DVF2

vectors, respectively, of virtual node
F2. Note that for each (sub-)query of node F2 we introduce
a new variable. We use Procedure bottomUp to partially
compute the values of the introduced variables, creating a
system of Boolean equations. 2

Observe the following. First, processing at each site in-
vokes Procedure bottomUp for each fragment Fj stored at the
site (see Procedure evalQual). For each such fragment, Pro-
cedure bottomUp returns a single triplet (VFj , CVFj , DVFj)
of vectors that store the (sub-)query values for the root of
fragment Fj , for its children and its descendants, respec-
tively. Each site sends the computed triplet(s) to the co-
ordinating site and concludes its computation. Second, in
addition to the triplets associated with virtual nodes in a
fragment, bottomUp needs only two triplets in total in its
process: one for the current node (Vv, CVv, DVv) and one for
its children (Vw, CVw, DVw), rather than assigning a triplet
to each node.

Example 3.2: Consider the query from our previous ex-
ample. At the end of the second phase the following triplets
are available to the coordinating site S0:

• VF0
=< 0, 0, 0, 0, y4, 0, 0, 0, dy8 ∨ dz8, dy8 ∨ dz8 >

CVF0
=< y1, y2, y3, y4, y5 ∨ z4, y6, y7, y8,

y9 ∨ dz8, y10 ∨ dz8 >
DVF0

=< dy1 ∨ dz1, dy2 ∨ dz2, dy3 ∨ dz3, dy4 ∨ dz4,
dy5 ∨ dz5 ∨ z4 ∨ y4, 1, dy7 ∨ dz7, dy8 ∨ dz8,

dy8 ∨ dz8 ∨ dy9 ∨ dz9, dy8 ∨ dz8 ∨ dy10 ∨ dz10 >
• VF1

=< 0, 0, 0, 0, x4, 0, 0, 0, dx8, dx8 >
CVF1

=< 0, x2, x3, x4, x5, x6, x7, x8, x9, x10 >
DVF1

=< 0, dx2, dx3, dx4, x4 ∨ dx5, dx6, dx7, dx8,
dx8 ∨ dx9, dx8 ∨ dx10 >

• VF2
=< 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 >

CVF2
=< 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 >

DVF2
=< 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 >

• VF3
=< 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 >

CVF3
=< 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 >

DVF3
=< 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 >

In the triplets, variables xi, cxi and dxi for 1 ≤ i ≤ 10 are
used in fragment F1 to represent the values of the virtual
node F2, while variables yi, cyi, dyi and zi, czi, dzi are used
in fragment F0 to represent the values of the virtual nodes
F1 and F3, respectively. 2

Composition of partial answers. In the third phase of
Algorithm ParBoX, the coordinating site uses the computed
triplets from all the fragments to evaluate the answer to
query q. In a nutshell, the computed triplets form a linear
system of Boolean equations. Using the computed vectors
and the source tree, Procedure evalST (not shown due to the
space constraint) needs a single bottom-up traversal of the
source tree to solve the system of equations and find the
answer to query q. Note that the vectors of leaf fragments
in the source tree contain no variables. This is the case for
both fragments F2 and F3. During the bottom-up traversal
of ST , Procedure evalST uses the Boolean values of the leaf
fragments to unify the variables of the vectors that belong
to the parent fragments in ST . The procedure continues in
this fashion until it reaches the root of ST . The answer for
query q is the value of VFroot(qlast), where Froot is the root
fragment and qlast is the last query in the qL list.

Example 3.3: Consider the source tree in Fig. 2(b) and the
vectors of the fragments from our previous example. Then,
the answer to query q is the value of the last query in VF0

,
that is, q = dy8 ∨ dz8. A bottom-up evaluation of Proce-
dure evalST uses DVF2

to unify dx8 to 1; DVF1
to unify dy8

to dx8; and DVF3
to unify dz8 to 0. Therefore, q = 1 and

the query q evaluates to true. 2

3.2 Analysis
For the complexity of the Algorithm ParBoX, we consider

its communication cost as well as the total and parallel com-
putation costs for evaluating a query q on a fragmented and
distributed tree T . The total computation cost is the sum of
the computation performed at all the sites that participate
in the evaluation. In contrast, the parallel computation cost
is the time needed for evaluating the query at different sites
in parallel. Since a large part of the evaluation is performed
in parallel, the parallel computation cost more accurately
describes the performance of the algorithm.

We use the following notation: F denotes the set of all
fragments of the original tree T , and Fj ⊆ F denotes the
subset of fragments of T that are sub-fragments of fragment
Fj . We use card(X) to denote the cardinality of a set X .

Total network traffic. Observe that each site appearing
in the source tree ST of tree T is visited only once, when the
coordinating site sends the input query q to these sites in
the first stage. For each fragment Fj in site Sj the algorithm
generates three vectors, each with O(|q|) entries. Each en-
try may hold a formula computed by Procedure bottomUp,
and its size depends on the number of virtual nodes in frag-
ment Fj , i.e., card(Fj), due to the variables introduced by
these virtual nodes. In the worst case, the size of the entry
is in O(|Fj |). Therefore, the communication cost for each
fragment Fj is O(|q|card(Fj)) and the overall communica-

216

Algorithm Visits Computation Communication
NaiveCentralized 1 O(|q||T |) O(|T |)
NaiveDistributed card(FSi

) O(|q||T |) O(|q|card(F))
T O(|q|(|T | + card(F)))

ParBoX 1
P O(|q|(max

Si

(|FSi
|) + card(F))

O(|q|card(F))

Hybrid T O(|q||T |)
ParBoX

1
P O(|q|(max

Si

(|FSi
|) + card(F))

O(|T |)

T O(|q|(|T | + card(F)))
FullDistParBoX card(FSi

)
P O(|q|(max

Si

(|FSi
|) + card(F))

O(|q|card(F))

T O(|q|(|T | + card(F)))
LazyParBoX card(FSi

)
P O(|q|card(F) max

F
(|Fi|))

O(|q|card(F))

Figure 4: Summary of presented algorithms

tion cost of the algorithm is O(|q|Σ
card(F)
j=1 card(Fj)), that is,

O(|q|card(F)) (since fragments are disjoint).

Total computation. Site S traverses each fragment Fj

assigned to it only once (through Procedure bottomUp). At
each node v in a fragment, the procedure takes O(|q|) time
and therefore, the cost of the procedure on fragment Fj is
O(|q||Fj |). Adding these up for all fragments of tree T , the
total amount of computation in the second phase of the algo-
rithm is O(|q||T |). The third phase of the algorithm solves,
in linear time, a system of Boolean equations which is of size
O(|q|card(F)). Overall, the total amount of computation of
Algorithm ParBoX is O(|q|(|T | + card(F))).

Parallel computation. The cost of the second phase may
differ depending on the level of parallelism. Intuitively, as
sets of fragments are assigned to different sites, the cost of
the second phase is equal to the computation cost at the site
holding the set with the largest aggregated fragment size.
We use |FSi | to denote the sum of the sizes of the fragments
in site Si. Then, the time taken by the second phase is
O(|q|max

Si

(|FSi |)) and the parallel computation cost of the

algorithm is O(|q|(max
Si

(|FSi |) + card(F))).

In any reasonable setting, we expect that the number of
fragments to which a tree is decomposed will be small com-
pared to the size of the tree itself, i.e., card(F) << |T |.
Thus, given a decomposition of a tree T to a set of frag-
ments, our algorithm has the desirable property that the
communication cost of evaluating a query q over T is inde-

pendent of the size |T | of the tree and depends mainly on the
size |q| of the query. Similarly, the total computation cost
of our algorithm becomes O(|q||T |), comparable to that of
the best-known centralized algorithm [10, 18] for evaluating
an XPath query q over a tree T . Furthermore, the paral-
lel computation cost depends only on the size of the largest
aggregated fragment size assigned to a site.

4. VARIATIONS OF ALGORITHM ParBoX

We next adapt Algorithm ParBoX to various settings.

Hybrid ParBoX. Although very unlikely to occur, it is in-
structive to study the pathological case in which each node
v of our document tree T constitutes a separate fragment
F and it is assigned to a different site. Then, we have that
card(F) = |T |. Even in this pathological case, the computa-
tion cost of our algorithm is still optimal. However, the com-
munication cost becomes O(|q||T |), no longer independent
of the tree T . Consider now the algorithm NaiveCentralized

outlined in Section 3. The computation cost of the näıve al-

I n s e r t i n g a n e w s t o c k t o F 0 p o r t o f o l i ob r o k e rn a m eB a c h eF 1 F 3F 4S p l i t F 0 N e w f r a g m e n t F 4p o r t o f o l i ob r o k e rm a r k e tn a m e t i t l e b u y$ 8 0B a c h eN Y S E s t o c kc o d eI B M
F 1 F 3s e l l$ 7 8 b u y$ 3 0s t o c kc o d eH P Q s e l l$ 3 3

m a r k e tt i t l e b u y$ 8 0N Y S Es t o c kc o d eI B M s e l l$ 7 8 b u y$ 3 0s t o c kc o d eH P Q s e l l$ 3 3
Figure 5: Updates on data and fragments

gorithm is still O(|q||T |) but its communication cost is only
O(|T |). Therefore, for the pathological case considered, the
näıve algorithm has less communication overhead than Al-
gorithm ParBoX. This leads us to consider a hybrid algorithm
that, depending on the decomposition of the input tree T ,
it behaves like Algorithm ParBoX for most decompositions
but switches to the näıve algorithm for pathological decom-
positions. The tipping point in this switching of behaviour

is determined by comparing card(F) and |T |
|q|

. As long as

card(F) < |T |
|q|

, Algorithm ParBoX has less communication

overhead than the näıve algorithm. The total computation
cost of the hybrid algorithm is O(|q||T |) while its communi-
cation cost is O(|T |), in the worst case, and O(|q|card(F))
on average. The parallel computation cost of Hybrid ParBoX

is the same as that of Algorithm ParBoX.

Full distribution of computation. When a large number
of queries are submitted to the same coordinating site, the
coordinating site might turn out to be a system bottleneck.
As the coordinating site has to collect and process the par-
tial answers of participating sites, it might be overwhelmed
by both the amount of incoming traffic and the size of data
to be processed. We address this issue in a new algorithm
called FullDistParBoX by distributing the computation of the
third phase of Algorithm ParBoX among all the participat-
ing sites. The first two phases of Algorithm FullDistParBoX

are the same as those of ParBoX. During the third phase,
Algorithm FullDistParBoX calls procedure evalDistrST instead
of Procedure evalST.

In a nutshell, Procedure evalDistrST (omitted due to space
constraints) assumes that each participating site holds a
copy of the source tree ST . Given that the size of ST is

217

expected to be much smaller than the size of T , the as-
sumption adds minimum storage overhead per site. The
procedure proceeds in a bottom-up fashion in ST by consid-
ering initially the sites that appear as leaves in ST . Consider
such a site S and assume that it is responsible for a leaf frag-
ment F . Site S sends the triplet of vectors corresponding
to F to its parent site S′ in ST . A non-leaf site, like site
S′, considers each local fragment F ′ and, after receiving the
triplets of all sub-fragments of F ′, S′ executes locally Proce-
dure evalST using the received triplets along with the triplet
for F ′. Then, it sends the resulting triplet for F ′ to its par-
ent site in ST . Note that S′ and S still partially evaluate
their local fragments in parallel in the second stage of the
algorithm. Also note that no variables appear in the re-
sulting triplet of vectors of F ′. The process terminates when
it reaches the site at the root of ST . Procedure evalDistrST

has the same total/parallel computation and communication
costs as Procedure evalST. Thus Algorithm FullDistParBoX is
similar to Algorithm ParBoX. In practical terms we expect
that the communication cost of the former algorithm is lower
than that of the latter. Indeed, in the former, no variables
are sent between sites since they are always unified, before
any vector is sent. Although Algorithm FullDistParBoX re-
moves the need for a coordinating site it has the drawback
that a site might be visited multiple times, once for each
time it appears in ST .

Lazy computation: Algorithm ParBoX is eager in that it
requests all the sites to evaluate the queries in QList(q) over
all their fragments. This approach maximizes parallelism
but it does, in certain cases, result in unnecessary compu-
tation. To see why this is so, consider the following query,
which checks whether there exists in our collection any bro-
ker with the name “Merill Lynch”:

[/portofolio/broker/name = “Merill Lynch”]
Note that although we do not need to compute the query
on fragments F2 and F3, Algorithm ParBoX will do so. We
can save some of this unnecessary computation by using a
lazy strategy that evaluates the query in increasing depths
of the site tree ST until it obtains an answer to the query
that does not depend on any fragments further down the
source tree than the currently evaluated depth.

Algorithm LazyParBoX (also omitted) traverses the source
tree ST in pre-order. At the ith traversal step of the traver-
sal, the coordinating site identifies all the sites that hold
fragments at depth i from the root of the source tree. For
each of these sites, the coordinator requests the evaluation
of Procedure evalQual for the corresponding fragments. The
coordinating site collects the evaluated vectors for all these
fragments and, along with the vectors collected from previ-
ous traversal steps, it calls Procedure evalST to compute the
answer to the query. Only if no answer can be computed,
due to variables that cannot be unified, the algorithm per-
forms one more step. The total computation cost of Algo-
rithm LazyParBoX is the same as that of ParBoX. However, in
cases such as our last example, the algorithm behaves better
than ParBoX. In our example, LazyParBoX does not evaluate
the query over fragment F2, since after one step the given
query is evaluated to true. In terms of parallel computa-
tion, Algorithm LazyParBoX is worse than ParBoX since in
each traversal step only one fragment is evaluated per site,
and only fragments at the same level of the source tree are
computed in parallel. Thus the parallel computation cost of
the algorithm is O(|q||card(F) max

F
(|Fi|)), where max

F
(|Fi|)

denotes the size of the maximum fragment of tree T .
We summarize the discussion of these algorithms in Fig. 4,

in which we list the number of times each site is visited, the
total (T) and parallel (P) computation costs, and the com-
munication costs. Recall that the first two näıve algorithms
do not exploit parallelism and thus we only report their to-
tal computation costs. In Fig. 4 we use card(FSi) to denote
the number of fragments that reside in site Si.

5. INCREMENTAL VIEW MAINTENANCE
As remarked in Section 1, one often wants to cache the re-

sult of a query, treat it as a materialized view, and use it to
answer possible future queries (see, e.g., [13, 25]). When a
new query is issued, the materialized views are used to pro-
vide part of, or the whole of, the answer to the query. With
this comes the issue of view maintenance: when the source
data is updated, the materialized views must be maintained
so as to reflect the current source contents. An approach to
maintaining views is by means of an incremental technique:
given a query Q, a database I , a view V = Q(I) and up-
dates ∆I on the source I , we compute update ∆V on the
view such that V ⊕ ∆V = Q(I ⊕ ∆I). Incremental main-
tenance of views has proven effective in many applications
(see, e.g., [12, 26]), since small changes ∆I to the source of-
ten inflict only small changes ∆V to the view, and thus it is
often more efficient to compute ∆V rather than computing
the view Q(I ⊕ ∆I) starting from scratch.

We next present a mechanism to support incremental view
maintenance that is based on extensions of our XPath eval-
uation algorithms. Our incremental algorithms have the fol-
lowing salient features. (a) The cost of maintaining materi-
alized views depends neither on the size of the data nor on

the size of the update. (b) The recomputation is localized to
the fragments where the updates occur.

Materialized view. A materialized view M of a query q
over a tree T , denoted as M(q, T), is a pair (ST , ans), where
ST is the source tree of T and ans is the cached answer of
the query q over T . We refer to the pair (ST , ans) as the
state of view M . A view is materialized at a site if the site
maintains its state. Our maintenance algorithm imposes
minimum overhead on the site, since only the query, the
source tree and the answer need to be stored.

Update operations. We consider two classes of updates
that can alter the state of a materialized view: the first al-
ters the contents of the tree T and the second alters the
fragmentation of T . For each class, there are two primi-
tive operations, which are listed below. All operations are
defined with respect to a fragment Fj of tree T .

(1) insNode(A, v): inserts in Fj a node labeled A as a child
of node v. The operation returns the newly inserted node.

(2) delNode(v): deletes from Fj the node v.

(3) splitFragments(v): creates a new fragment Fk which is
the subtree rooted at node v. The new fragment Fk is a
sub-fragment of Fj and its subtree is replaced in Fj by a
virtual node whose label is Fk.

(4) mergeFragments(v): merges fragment Fj with the sub-
fragment that corresponds to the virtual node v. If v is not
virtual, no action is taken.

Example 5.1: Consider fragment F0 in Fig. 2(a). We can
use a series of insNode operations to insert a new stock in
the fragment, yielding the fragment in the left of Fig. 5. The

218

new subtree is indicated by dotted lines. We can continue
by applying operation splitFragments(market) to the new
fragment and get two fragments: a revised F0 and a new
fragment F4 shown in Fig. 5. Note that the subtree rooted at
the market node is replaced by a virtual node F4. Fragment
F4 can now be assigned to another site, say, S3. 2

Since the first two operations concern the contents of a
fragmented tree T , they only affect the ans part of the state
of a view M(q, T). Given a series of insertions and/or dele-
tions in a fragment Fj , we extend Algorithm ParBoX to in-
crementally update ans; extensions to the variations of the
Algorithm ParBoX are done similarly.

Algorithm outline. To incrementally update ans, it suf-
fices to augment the state of M(q, T) so that we also main-
tain the triplets (VFk , CVFk , DVFk), for each of the frag-
ments Fk of T . After the series of insertions and/or dele-
tions in fragment Fj , only the site storing Fj needs to call
Procedure bottomUp and only for fragment Fj . The resulting
triplet (V new

Fj
, CV new

Fj
, DV new

Fj
) is sent back to the site S stor-

ing the state of M(q, T). The triplet is then compared with
the one stored in S for the same fragment Fj . If they are
identical, incremental evaluation terminates without chang-
ing the value of ans. Otherwise site S uses the new triplet,
along with the triplets for the other fragments, in Proce-
dure evalST to compute the new value of ans.

The total (and parallel) computation cost of the incre-
mental algorithm is O(|q|(|Fj | + card(F))) while the com-
munication cost is O(|q|card(Fj)), where |Fj | is the size of
the fragment Fj while card(Fj) and card(F) are the number
of sub-fragments of Fj and T , respectively. Observe that the
communication cost is independent of both |T | and the size
of the updates. Furthermore, recomputation is localized to
fragment Fj , in which updates take place.

Now consider splitFragments(v), which splits a fragment
Fj into two fragments F new

j and Fk. Obviously, the splitting
does not affect the value of ans. However, both the source
tree ST and the corresponding fragment vector triplets must
be updated. This update is local to the site S storing the
state of M . The only other site involved in the process is
site S′ where fragment Fj used to reside. Site S′ needs to
send to site S two new vector triplets, one for F new

j and one
for Fk. It is not hard to see that the total (and parallel)
computation cost for these operations is O(|q||Fj |), while
the communication cost is O(|q|card(Fj)). The analysis for
mergeFragments(v) is similar and results are within the same
bounds, where Fj now denotes the fragment that is the re-
sult of merging.

6. EXPERIMENTAL STUDY
We have implemented the algorithms of Sections 3 and

4. Below we present four of the conducted experiments.
For our experiments we used 10 Linux machines (sites), dis-
tributed over a local LAN. We generated multiple XMark
“sites” and in each experiment we assigned (fragments of)
XMark “sites” to Linux machines. The reported times are
averaged over multiple runs of each experiment.

Experiment 1: The objective of this experiment is twofold.
First, we illustrate the effectiveness of Algorithm ParBoX

when compared with the NaiveCentralized algorithm. Sec-
ond, we study the effects of the query size (i.e., its number
of sub-queries |QList(q)|) on query evaluation time. The
fragment trees used in this experiment are similar to tree

F 1F r a g m e n t T r e e 1(F T 1)F 0F 2 F n. . . F r a g m e n t T r e e 2(F T 2)F 1F 0F 2F n...
F r a g m e n t T r e e 3(F T 3)F 1 F 0F 2F 5 F 4 F 3F 7F 6

Figure 6: Samples of fragment trees used

FT1, shown in Fig. 6. Any fragment tree topology, with
the same number of fragments could have been used here
without affecting our results. This is because both ParBoX

and NaiveCentralized communicate directly with all the sites
holding fragments, irrespectively of the structure of the tree
and the location of the fragments in the tree.

The experiment begins with a single fragment F0 and in
each iteration, it increases the number of fragments in the
tree by one, by inserting a new fragment as a sub-fragment
of F0 and assigning it to a different machine. Each fragment
Fj in the tree corresponds to a single XMark site and all the
fragments have the same size within each iteration. The
cumulative size of all the fragments is kept constant across

iterations and equal to 50MB. So, in iteration 1, we have
only fragment F0 of size 50MB, while in iteration 2, we have
fragments F0 and F1, each of size 25MB. In the last iteration,
there are 10 fragments, each of size 5MB.

Figure 7 compares the evaluation times of ParBoX and
NaiveCentralized of a query with |QList(q)| = 8, for each it-
eration. The query is posed at the (coordinating) site hold-
ing fragment F0. The figure clearly demonstrates both the
benefits of using ParBoX, and that data transmission is pro-
hibitively expensive. Notice that as the number of machines
increases in each iteration, so does parallelism, resulting in
reduced evaluation times. Parallelism proves especially ben-
eficial in the first 4 iterations, but its gains diminish as in-
creasingly smaller fragments are assigned to machines (it-
erations 8 - 10). Indeed, the evaluation time in iteration 8
(fragment size 6.3MB) is not significantly different from the
one in iteration 10 (fragment size 5MB). In terms of the
NaiveCentralized and NaiveDistributed algorithms, note that
the query evaluation time of fragment F0 (6.8 seconds) is a
lower bound for both of these algorithms. The additional
cost of NaiveCentralized in each iteration is the cost of send-
ing the data to the coordinator. This cost is high for the
first few iterations and starts to flatten out after iteration 6.
Indeed, in iteration 2 we sent fragment F1 to the coordina-
tor, that is 25MB, while in iteration 3 we sent fragments F1

and F2, that is 34MB (9MB more). However, notice that in
iteration 8, we sent fragments F1 to F7, that is 42MB, while
in iteration 10 we sent fragments F1 to F9, that is 45MB

(only 3MB more).
Figure 8 shows the evaluation times of ParBoX for queries

whose (|QList(q)|) sizes are 2, 8, 15 and 23. As expected,
query evaluation time increases linearly with the size of the
query and the benefits of parallelism are consistent through-
out the different query sizes.

Experiment 2: The aim of this experiment is to highlight
the differences between ParBoX and its variations. To this
end, we use fragment trees similar to tree FT2, shown in

219

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

S
ec

.)

The number of machines/Iteration

ParBox
Central

Figure 7: ParBoX vs. NaiveCentralized

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

S
ec

.)

The number of machines/Iteration

|QList|=23
|QList|=15
|QList|=8
|QList|=2

Figure 8: Scalability in query size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

S
ec

.)

The number of machines/Iteration

ParBox
FDParBox
LZParBox

Figure 9: Query qF0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

S
ec

.)

The number of machines/Iteration

ParBox
FDParBox
LZParBox

Figure 10: Query qFn

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

S
ec

.)

The number of machines/Iteration

ParBox
FDParBox
LZParBox

Figure 11: Query qF⌈n/2⌉

 0

 2

 4

 6

 8

 10

 12

 14

 160 145 130 110 90 75 60 45

R
un

tim
e(

S
ec

.)

The size of datasets(M)

|QList|=23
|QList|=15
|QList|=8
|QList|=2

Figure 12: Scalability in data

Fig. 6. Like Experiment 1, we start with fragment F0 and
in each iteration j we add a new fragment Fj as a sub-
fragment of fragment Fj−1. Note that fragment trees like
FT2 appear often in practice. For example, in a temporal
database each fragment can represent an XMark “site” at a
point in time. Then, FT2 represents the version history of
this XMark “site”. Like Experiment 1, we distribute 50MB

of data evenly among the fragments in each iteration.
First consider a boolean query qF0

that is executed in the
(coordinating) machine holding fragment F0 and it is satis-
fied by fragment F0. Figure 9 shows the evaluation times of
ParBoX, FullDistParBoX and LazyParBoX of qF0

, for each itera-
tion. Note in the figure that the evaluation (parallel compu-
tation) times for all algorithms are almost identical, while
the total computation for the first two algorithms is much
larger (not shown). This is because algorithms ParBoX and
FullDistParBoX evaluate qF0

over all the fragments of FT2,
in parallel, while LazyParBoX by design is only evaluated in
fragments F0 and F1. Recall that LazyParBoX initially eval-
uates a query only in the coordinator and in the fragments
of depth 1 in the fragment tree. Since F0 satisfies qF0

no
other fragment needs to be evaluated in LazyParBoX. The
additional fragments considered in the first two algorithms
have no overhead in the perceived evaluation time since (a)
all fragments have the same size (b) each fragment is in
a different machine (c) all evaluation is done in parallel.
A few important things to note: First, in LazyParBoX only
2 machines evaluate qF0

while all the other machines are
idle. Second, network traffic and communication delays in
our partial evaluation algorithms are negligible not only in
this but in all the other experiments we conducted. This
is because we never sent any data fragments between ma-
chines. In spite of the overall small traffic in our experi-

ments, FullDistParBoX still results in at most half the traffic
of ParBoX. These savings are due to FullDistParBoX not send-
ing any variables.

Next consider a boolean query qFn that is executed in
the (coordinating) machine holding fragment F0 and is care-
fully selected so that it is satisfied by the last fragment Fn

in each iteration. Figure 10 shows the evaluation times of
ParBoX, FullDistParBoX and LazyParBoX of qFn , for each it-
eration. Note that in the first two iterations, by design,
all algorithms evaluate qFn , in parallel, in both fragments
F0 and F1. In subsequent iterations, algorithms ParBoX

and FullDistParBoX both continue to evaluate qFn , in par-
allel, in all the fragments in FT2 and thus they have almost
identical evaluation times. However, the evaluation time of
LazyParBoX starts to increase since the algorithm has to con-
sider sequentially the fragments in increasing depths of the
tree, until it reaches fragment Fn where the query is satis-
fied. Due to this sequential access, the evaluation time of
LazyParBoX is the sum of the evaluation times in fragments
F2 to Fn plus the (parallel) evaluation time of fragments F0

and F1. The increase between iterations is not linear since
as the 50MB data are re-distributed between iterations, the
total additional data that we need to sequentially evaluate
between iterations i and (i+1) are only 50

i×(i+1)
. So, between

iterations 2 and 3, the evaluation time is that of iteration 2
plus the cost of evaluating the query additionally over 8.3MB

of data, while between iteration 9 and 10 the additional data
are only 0.5MB.

Finally, consider a boolean query qF⌈n/2⌉
that is executed

in the (coordinating) machine holding fragment F0 and in
each iteration, it is satisfied by the F⌈n/2⌉ fragment, in the
middle of ST2. Figure 11 shows the evaluation times of
ParBoX, FullDistParBoX and LazyParBoX of qF⌈n/2⌉

, for each

220

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e(

S
ec

.)

The number of fragments

ParBox

Figure 13: Varying the number of fragments

iteration. Again for the first two iterations, all three algo-
rithms behave the same. Starting at iteration 3, the evalua-
tion time of LazyParBoX starts to oscillate until it converges
to a value of approximately 2.5 seconds. This is because
starting at iteration 3, and every other iteration, we increase
the depth of fragment F⌈n/2⌉ by one. So, the depth of F⌈n/2⌉

is 2 in iterations 3 and 4, while it is 3 in iterations 5 and 6
etc. If the depth of F⌈n/2⌉ is constant between two consecu-
tive iterations i and (i+1), the evaluation time of LazyParBoX

improves since fragments up to the same depth of tree are
considered in both iterations, but in iteration (i + 1) less
data are traversed (due to the re-distribution of data). This
is the case for iteration pairs 3 and 4, 5 and 6 etc. Now,
if the depth of F⌈n/2⌉ increases between two consecutive it-
erations i and (i + 1), LazyParBoX considers one additional
fragment in iteration (i + 1). Therefore, there is a slight
increase in evaluation time. This is the case for iteration
pairs 4 and 5, 6 and 7 etc. As the size of fragments reduces
in later iterations, the gains (losses) in evaluation times are
also reduced. This is due to corresponding reduction in the
size of less (additional) data considered between consecutive
iterations. If we assume that a query is satisfied, on aver-
age, by a fragment close to the middle of the fragment tree,
then this experiment shows that in LazyParBoX query eval-
uation is approximately 3 times slower than ParBoX. How-
ever, LazyParBoX saves half of the total computation done
by ParBoX. Clearly, one is often willing to trade evaluation
time for reduced site load.

Experiment 3: In the first two experiments the data size
was kept constant. We now investigate the effect of data
size on query evaluation times. Additionally, we use a more
natural fragment tree like FT3, shown in Fig. 6. In each
iteration, we increase the amount of data stored in the frag-
ments of FT3. The fragments do not hold the same amount
of data. For example, fragment F0 is always around 10MB;
fragment F1 is the largest in the tree and its size ranges from
10MB up to 50MB, in 5MB increments per iteration; frag-
ment F2 ranges from 3.5MB to 15MB in 1.5MB increments;
and fragment F7 ranges from 700K to 3.7MB. The cumula-
tive size of the fragments, in each iteration, is indicated in
Fig. 12 and ranges from 45MB to 160MB. The figure shows
the evaluation times of ParBoX for queries whose (|QList(q)|)
sizes are 2, 8, 15 and 23. As expected, for each query the
evaluation time is linear w.r.t. the size of data. Moreover, as
the query size increases, evaluation time increases gracefully
over similarly sized data.

Experiment 4: In the previous experiments, each site was
assigned one fragment. Here, we vary the number of frag-
ments assigned to a site. Our objective is to show that the

evaluation time of ParBoX depends on the cumulative size of
the fragments assigned to a site and not on the number of
these fragments. Indeed, this is the case as shown in Fig. 13.
The figure shows the (almost constant) evaluation time in
ParBoX of a query with |QList(q)| = 8 for a single site, where
the cumulative data assigned to it is 50MB. In iteration i
the 50MB are split into i equi-sized fragments.

7. RELATED WORK
Partial evaluation has found applications ranging from

compiler optimization to parallel evaluation of functional
programming languages. Its relevance to query evaluation
has surfaced from time to time, most notably in the closely
related areas of query rewriting with views and deductive
databases [9]. From a traditional functional programming
perspective, our work is most closely related to the uses
of partial evaluation in dataflow architectures [17] in which
one evaluates some or all of the arguments of a function
in parallel. The difference with our work is that traditional
functional programming neglects the benefits of partial eval-
uation for functions accessing large data sets.

Distributed query evaluation has been extensively studied
(see, e.g., [19]). The key issue is minimizing data move-
ment across sites as the communication costs are domi-
nant [19]. Our algorithms minimize data movement by
shipping partially evaluated functions (Boolean expressions)
rather than data. Partial evaluation of XPath queries can
also be combined with other distributed query processing
techniques e.g., hybrid shipping, two-phase optimization [19]
and replication [1]. Also related is parallel query evalua-
tion [7, 14], in particular in shared-nothing database ma-
chines. The main difference is the amount of communication
involved. By shipping Boolean expressions rather than re-
partitioning/distributing data, we communicate relatively
small amounts of data, and guarantee that each site is vis-
ited a bounded number of times. To our knowledge, no pre-
vious work has explored partial evaluation of xml queries
in distributed or parallel database systems, by performing
xml tree traversal, the most time consuming part, in paral-

lel. The benefits of the partial evaluation technique are also
evident in querying distributed catalogs (ldap [3, 23]), and
in xml query processing in systems where transmission de-
lays are significant, such as in P2P systems. Our technique
can be readily applied to evaluating Boolean XPath queries
in a P2P system and it can be combined with existing tech-
niques in this field (e.g., [6, 8]).

XPath evaluation has been extensively studied for cen-
tralized systems, but the optimal strategies (e.g., [10, 18])
may not work well in a distributed setting. Optimization
techniques (e.g., [5, 21]) are complementary to ours.

Most closely related to our work is [24], which studies dis-
tributed query evaluation on semistructured data with per-
formance bounds on total network traffic and total compu-
tation. Its main technique is query decomposition: rewrite
the input query Q into sub-queries based on the accessibility
information of the distributed data, evaluate sub-queries on
the corresponding data components to get partial results,
and finally assemble the partial results to get the result of
Q. The obvious difference is that in our work no query de-
composition is necessary. Furthermore, [24] does not lever-
age (residual) functions. Another difference concerns the
performance metric: [24] emphasizes the number of commu-
nication steps and counts a “broadcast” to (resp. a “gather”

221

from) n sites as a single step. Though this is admittedly an
approximation of the communication costs, it can be further
improved. It also differs from our work in the queries and
the distributed systems considered. Another related work
is [20], which proposes the mutant query plans (MQP) for
distributed xml queries. When a site receives a MQP it
partially evaluates as much of the plan as it can, producing
a new MQP plan and passes it to some other site that can
continue processing. The sites evaluate queries in sequence
rather than in parallel, as is the case in our work.

Incremental view maintenance has been studied for tra-
ditional databases (see [12]), data warehouses (e.g., [26]),
semistructured data (e.g., [24]), and recently for XPath
views of xml data [22]. These differ from our incremen-
tal algorithm in that they focus on centralized algorithms
and/or different classes of views. An important criterion for
incremental view maintenance in a de-centralized system is
minimizing unnecessary visits to data fragments and remote
sites, which our algorithm provides. To our knowledge, our
algorithm is the first for incremental maintenance of Boolean
XPath views in a de-centralized system.

8. CONCLUSIONS
We have shown that partial evaluation is effective in pro-

cessing xml queries in a de-centralized system. We have
proposed the first evaluation and incremental maintenance
algorithms with performance guarantees for Boolean XPath
queries. Our experimental study has verified the effective-
ness of our technique. In addition to its application to query
processing in such systems, we believe that the technique
has the potential to be useful in other applications, in dis-
tributed and centralized systems alike.

We plan to extend the current work in a number of di-
rections. First, we plan to extend our algorithms to handle
more general queries in XPath and XQuery. A recent exten-
sion is capable of processing data selection XPath queries
with the performance guarantee that each site is visited at
most twice, and thus demonstrates the potential of the tech-
nique to process non-Boolean queries. Second, we aim to in-
corporate other optimization techniques for xml query pro-
cessing, in the presence of replication. Third, we plan to
apply the technique to processing queries over large docu-
ments in (centralized) native xml stores. Finally, it is not
difficult to identify other situations in which partial evalu-
ation could yield major benefits in a de-centralized system.
For example, numerical and aggregating computations over
large data sets can benefit from the technique. We believe
that the general topic deserves a broader study.

9. REFERENCES
[1] Serge Abiteboul, Angela Bonifati, Gregory Cobena,

Ioana Manolescu, and Tova Milo. Dynamic XML
documents with distribution and replication. In
SIGMOD, 2003.

[2] M. Altinel and M.J. Franklin. Efficient filtering of
XML documents for selective dissemination of
information. In VLDB, 2000.

[3] Sihem Amer-Yahia, Divesh Srivastava, and Dan Suciu.
Distributed evaluation of network directory queries.
TKDE, 16(4):474–486, 2004.

[4] Jan-Marco Bremer and Michael Gertz. On distributing
XML repositories. In WebDB, pages 73–78, 2003.

[5] E. Colen, H. Kaplan, and T. Milo. Labeling dynamic
XML tree. In PODS, 2002.

[6] Adina Crainiceanu, Prakash Linga, Johannes Gehrke,
and Jayavel Shanmugasundaram. Querying
peer-to-peer networks using P-Trees. In WebDB, 2004.

[7] David J. DeWitt and Jim Gray. Parallel database
systems: The future of high performance database
systems. Commun. ACM, 35(6), 1992.

[8] Prasanna Ganesan, Mayank Bawa, and Hector
Garcia-Molina. Online balancing of range-partitioned
data with applications to Peer-to-Peer systems. In
VLDB, 2004.

[9] Parke Godfrey and Jarek Gryz. A strategy for partial
evaluation of views. In Intelligent Information

Systems, 2000.

[10] Georg Gottlob, Christoph Koch, and Reinhard
Pichler. Efficient algorithms for processing XPath
queries. In VLDB, 2002.

[11] Jim Gray. Where the rubber meets the sky: The
semantic gap between data producers and data
consumers. In SSDBM, page 3, 2004.

[12] A. Gupta and I. Mumick. Materialized Views. MIT
Press, 2000.

[13] Alon Y Halevy. Theory of answering queries using
views. SIGMOD Record, 29(4), 2001.

[14] H. Hsiao and D. J. DeWitt. Chained Declustering: A
New Availability Strategy for Multiprocessor
Database Machines. In ICDE, 1990.

[15] G. Huck, I. Macherius, and P. Fankhauser. PDOM:
Lightweight persistency support for the document
object model. In OOPSLA, 1999.

[16] H. V. Jagadish, Laks V. S. Lakshmanan, Tova Milo,
Divesh Srivastava, and Dimitra Vista. Querying
network directories. In SIGMOD, pages 133–144, 1999.

[17] Neil D. Jones. An introduction to partial evaluation.
ACM Computing Surveys, 28(3), 1996.

[18] Christoph Koch. Efficient processing of expressive
node-selecting queries on XML data in secondary
storage: A tree automata-based approach. In VLDB,
2003.

[19] D. Kossman. The State of the Art in Distributed
Query Processing. ACM Computing Surveys,
32(4):422–469, 2000.

[20] Vassilis Papadimos and David Maier. Distributed
queries without distributed state. In WebDB, pages
95–100, 2002.

[21] Prakash Ramanan. Efficient algorithms for minimizing
tree pattern queries. In SIGMOD, 2002.

[22] Arsany Sawires, J Tatemura, Oliver Po, Divyakant
Agrawal, and K. S. Candan. Incremental maintenance
of path expression views. In SIGMOD, 2005.

[23] Mark Smith and Timothy A. Howes. LDAP :

Programming Directory-Enabled Apps. Sams, 1997.

[24] Dan Suciu. Distributed query evaluation on
semistructured data. TODS, 27(1):1–62, 2002.

[25] Wanhong Xu and Z. Meral Özsoyoglu. Rewriting
XPath queries using materialized views. In VLDB,
2005.

[26] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer,
and Jennifer Widom. View maintenance in a
warehousing environment. In SIGMOD, 1995.

222

