The Fast Fourier Transform as a Database Query
Peter Buneman
Department of Computer and Information Science
University of Pennsylvania

Philadelphia, Pa 19104, USA

The study of the common properties of programs that operate over lists, multisets, and sets, gener-
ically called collection types, has recently received some attention in database and programming
language research [8, 2]. It has been especially important in extending the standard query language
for relational databases — essentially first-order logic — to deal with the wider range of data types
that are to be found, for example, in object-oriented databases. While the commonality between
lists, multisets and sets is reasonably well understood, it is an open question as to whether arrays
can be be successfully added to this family. The purpose of this note is to provide some positive
evidence for this by showing that the fast Fourier transform can be derived from its specification,
discrete Fourier transform, by casting it in the form of a database query and using an extension of
the syntactic manipulation techniques already known for database query optimization.

That the FFT may be obtained by program transformation has already been demonstrated by
Geraint Jones [5] using techniques based on the Bird-Meertens formalisms for lists [1]. However,
derivation presented here is somewhat shorter and is, perhaps, more in tune with the mathematical
syntax whose manipulation suggests that an O(nlogn) algorithm may be obtained.

Comprehension syntax is based on Zermelo-Fraenkel set notation. For example {Name z | 2 «
Employee, Age z > 35} and {(z,y) | (z,2) — R,(t,y) — S,z = t} — the latter denoting the
composition of binary relations R and S — are queries in relational calculus, which operates on
sets of tuples. However they can also be viewed as programs on lists and are meaningful in certain
functional programming languages [6]. It is known that such expressions can be transformed into
an equivalent algebra of functions based on the categorical notion of a monad [7, 2] in which two
central operations are a mapping operator fthat applies f to each member of a collection and a
flattening function p that flattens a collection of collections into a single collection. For sets p is
“big” union; for lists it is concatenation. The behavior of these operations is described by

Meves,. e} = {f(21), f(2),. -, f(2n)} (1)

N{{‘rle .. .,$17m1}, .. -7{$n717 .. ‘7xn7mn}} = {,1‘171, e Ty 1y Tnd, .,CCmmn} (2)

It helps to keep in mind the types of these operations. If 7 is some type, let us use C(7) to describe
the type of a collection of 7. If f is a function of type 0 — 7, f is of type C(o) — C(7); and for for
each type 7, p is a function of type C(C(7)) — C(7)

These operations are connected by an identity. If S has type C(C(C(7))),
pu(5)) = p(a(s)) (3)

To see the relationship with comprehension syntax, observe that the general form of a compre-
hension is {e | ¢1,...,¢,}, where ¢; is either a boolean expression or is a generator of the form
x; < €; that introduces the variable z; and binds it to each member of the collection denoted by
the expression e;. Once a variable has been introduced by a generator, it may be used in the “head”
of the comprehension e or in subsequent components ¢;y1,...,¢,. In what follows we shall not be
concerned with boolean components of comprehensions.

https://core.ac.uk/display/28974634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using the mapping and flattening operations defined above, {e | z; — €;,¢;41,...,¢,} can be

expressed as p{{e | ¢;y1,...,¢,} | @ — €'}; therefore we need only to deal with one-component
comprehensions of the form {e | < €’'}. Such comprehensions may be eliminated with the identity:
{e|z—¢€} = [(€) where f(z)=¢e (4)

Repeated applications of (4) can be used to eliminate completely comprehension syntax from an
expression. Also from (4), the following identities may be derived:

{fle)lz—ey= flele =€} ={f(y)|y —{elz ¢}

if z does not occur in f (5)

If fis a function of type C(7) — 7, we may have an identity related to 3 that f(u(9))
For example, summation, X satisfies

l
=
N
N

™A
S
g

B(u(5)) = B(X(9)) (6)
on lists or multisets of numbers, but not on sets.

A natural question to ask is whether arrays fit into this scheme of collections. For consistency,
we must adopt the convention of many programming languages that arrays are one-dimensional.
Mapping and flattening make sense for arrays, but we must now keep the length of arrays as part of
their type. Using A™(7) for the type of arrays of length n, a two dimensional m x n array has type
A™(A"™(7)). Thus for any m,n, 7, there is a flattening operation u at type A™(A"(7)) — A™"(7T).
The equation 3 still holds for arrays. Each side has type A'(A™(A"(7))) — A™*(7) but the
intermediate types resulting from the applications of y and @ are now different.

Comprehension syntax also appears to make sense for arrays: {2z | #; — V} will result in array
whose ith component is double the ith component of V', and {iz | ; — V'} will result in an array
whose ith component is ¢ times the ith component of V. Note the deviation from mathematical
convention, in which one would write {iz; | ; — V}. In comprehension notation, the binding
x; «— V is taken to bind both the variable z and the variable ¢ to each successive value-index pair
in V. It is also apparent that the identities 4, 5 and 6 hold for arrays.

The programming language APL [4] suggests two further operations on arrays that have a close
relationship with the operations above. Transposition, ¢ is of type A™(A"(7)) — A"(A™(7)) and
satisfies the identity:

{elo =€} ly—€} = o{{e|y—e"} |z ¢}

provided z does not occur in €¢” nor y in €’ (7)

The second operation, reshape p(m,n), of type A" (1) — A™(A"(7)), builds a two-dimensional

array. This is a right inverse to p, i.e., p(p(()m,n)(a)) we also have the identity:

{elai =V} = p{{e'|ap = W}|Wo < p(n,m)V}

where €’ is obtained from e by substituting ma + b for ¢ (8)

The m-shuffle operation needed in the fast Fourier transform and many other algorithms is simply
defined as p(¢(p(m,n)V)) for an mn-array V.

Lastly, we need to express the fact that we can interchange the order of summations over an
m X n-array. If W does not occur in e then

S{¥{e|ap = W}H| W, =V} = X{3{e'|a, =Y} |Y, — o(V)}

where €’ is obtained from e by interchanging ¢ and b (9)

Omitting a sign and a factor of /27, discrete Fourier transform (DFT) of an mn-array V can be
expressed as

(V) = {Z{wie|a; <= VY|i— 10} (10)

In this, w! is the ith power of the nth principal root of 1, and I is the array 0,1,...,n — 1. Tt
is important to stress that (10) is a program, and one that can be written with minor syntactic
changes in certain functional programming and database query languages. In such languages, the
program would have a running time proportional to (mn)?.

Using (8) and (9), we can transform the DFT (10) into
{2y L gy = 2} | 20 = Slp(m,n)V)} | i = 10"}
Writing W for ¢(p(m,n)V) and using (8) gives us
PSRy [y, — 2} |20 = W) e = 1™} | d = 10}
Moving a product over a sum in the obvious way gives us:

PSS w0y [gy — 2} [z = W) e = 1M} [d = 107}
= p{ SIS oy Ly — 2} |20 = W) | c = 1M} |d =10} by (5)
SIS {wly [y = 2} e = TM} | 2 W}) [d = 1™} by (7)
= St = {Z{wy |y — 2} [e = I} |20 = W) [d =TT} by (5)
= {S(@{wri I [t — 9M(2)} | 20 = W} [d = TV} (11)

This last expression is a program that implements the DFT of size mn using m DFTs of size n.
Having computed the latter, the number of additional operations used in (11) is readily seen to be
proportional to m?n. Thus if 7(n) is the time needed to compute the DF'T of n, this transformation
shows that T(mn) = mT(n) + Km?n for some constant K. When m = 2 we have the well-known
recurrence relation T(2n) = 27(n) + K'n, which shows that the number of operations needed to
evaluate the discrete Fourier transform of an array of length n is proportional to nlog, n.

The foregoing does not complete the picture for arrays as collection types, nor does it tell us how
to develop really fast Fourier transforms [3], however I believe it indicates the use of a common
syntax for arrays and other collection types to be more than a notational convenience.

References

[1] R.S. Bird, “An Introduction to the Theory of Lists”, Logic of Programming and Calculi of
Discrete Design, M. Broy, ed, pp.3-42, Springer 1987.

[2] V. Breazu-Tannen, O.P. Buneman and L. Wong. “Naturally Embedded Query Languages”,
Proc. Int. Conference on Database Theory, Berlin, October 1992. Springer-Verlag LNCS,
pages 140-154.

O. Buneman, US Patent 4,878,187 “Apparatus and Method for Generating a Sequence for
Sines and Cosines.”

K. Iverson. A Programming Language, Wiley, 1962.

G. Jones, “Deriving the fast Fourier algorithm by calculation”, Glasgow Functional Program-
ming Group Workshop, K. Davis and J. Hughes, eds, Springer Workshops in Computing,
1990

D.A. Turner. Miranda: A non-strict functional language with polymorphic types. In Func-
tional Programming Languages and Computer Architecture, Lecture Notes in Computer Sci-
ence 201, pages 1-16. Springer-Verlag, 1985.

P. Wadler. “Comprehending Monads”, Proc. ACM Conf. on Lisp and Functional Program-
ming, Nice, June 1990.

D.A. Watt and P. Trinder. Towards a Theory of Bulk Types. Fide Technical Report 91/26,
Glasgow University, Glasgow G12 8QQ, Scotland, July 1991.

