

Edinburgh Research Explorer

Static Type Inference for Parametric Classes

Citation for published version:
Ohori, A & Buneman, P 1994, 'Static Type Inference for Parametric Classes'. in CA Gunter & JC Mitchel
(eds), Theoretical Aspects of Object-Oriented Programming. MIT Press, pp. 121-148.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Theoretical Aspects of Object-Oriented Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/static-type-inference-for-parametric-classes(278eb979-acea-4492-b93d-55c891f070cc).html

Static Type Inference for Parametric Classes∗

Atsushi Ohori Peter Buneman

Abstract

Method inheritance and data abstraction are central features of object-

oriented programming that are attained through a hierarchical organization of

classes. Recent studies have shown that method inheritance can be supported

by an ML style type inference when extended to labeled records. This is based

on the observation that a function that selects a field f of a record can be given

a polymorphic type that enables it to be applied to any record which contains a

field f . Several type systems also provide data abstraction through abstract type

declarations. However, these two features have not yet been properly integrated

in a statically checked polymorphic type system.

This paper proposes a static type system that achieves this integration in

an ML-like polymorphic language by adding a class construct which allows the

programmer to build a hierarchy of classes connected by multiple inheritance

declarations. Classes can be parameterized by types allowing “generic” defi-

nitions. The type correctness of class declarations is statically checked, and a

principal scheme is inferred for any type correct program containing methods

and objects defined in classes. Moreover, the type system can be extended to

include the structures and operations needed for database programming and

therefore can serve as a basis of an object-oriented database programming lan-

guage.

1 Introduction

Code sharing is a term that implies the ability to write one piece of code that can
be applied to different kinds of data. What this means in practice depends on what
we mean by “kinds of data”. In object-oriented languages [GR83] each data element
(object) belongs to a unique member of a class hierarchy. The code that is applicable
to that object is not only the code that is defined in its own class but also the
one defined in its super-classes. As an example, we can define a class person with a
method increment age that increments a person’s age by 1. We may define a subclass,

∗ Published in a book “Theoretical Aspects of Object-Oriented Programming Types,

Semantics and Language Design”, C. Gunter and J. Mitchell, editors, pages 121 – 148,

MIT Press, 1994.

This is an extended version of the paper appeared in Proc. ACM OOPSLA Conference. Pages

445–456. New Orleans, LA., 1989.

This research was supported in part by grants NSF IRI86-10617, ARO DAA6-29-84-k-0061 and

ONR NOOO-14-88-K-0634.

Authors’ current address: Atsushi Ohori: Oki Electric Industry, Kansai Laboratory, Crystal Tower,

1-2-27 Shiromi, Chuo-ku, Osaka 540, JAPAN. Peter Buneman: Department of Computer and Infor-

mation Science, University of Pennsylvania, Philadelphia, PA 19104-6389.

1

employee, of person and expect that the same method, increment age, can be applied
to instances of the class employee.

In contrast, languages such as Ada [IBH+79], CLU [LAB+81], Standard ML
[HMT88] and Miranda [Tur85] — to name a few — provide a generic or polymorphic
type system that allows code to be refined by instantiating type variables. Moreover,
in the type system of ML, a most general polymorphic type-scheme may be inferred
for an (untyped) function and the correctness of the application of that function is
checked by finding a suitable instantiation of the type variables. For example, in ML,
one may define a polymorphic function reverse that reverses a list. From a definition
of reverse that contains no mention of types, the ML type system is able to infer that
list(t) → list(t) is a most general polymorphic type-scheme of reverse where t is a
type variable. One may subsequently apply this function to a list of arbitrary type,
i.e. a value of any type of the form list(τ). Through this polymorphic type inference
mechanism, ML achieves much of the flexibility of programming without the need
to express type information, as in dynamically typed languages, while maintaining
most of the advantages — for program correctness and efficiency — of a static type
system. A drawback to ML is that it does not combine data abstraction with inher-
itance in the same sense that object-oriented languages do this. While ML provides
data abstraction through abstract data type declarations, it does not allow these to
be organized into a class hierarchy.

The purpose of this paper is to develop a static type system that supports both
forms of code sharing by combining ML polymorphism and explicit class definitions.
In our type system a programmer can define a hierarchy of classes. A class can be
parametric and can contain multiple inheritance declarations. The type correctness
of such a class definition (including the type consistency of all inherited methods)
is statically checked by the type system. Moreover, apart from the type assertions
needed in the definition of a class, the type system has a static type inference similar
to that available in ML.

We develop such a type system by exploiting a form of type inference for labeled
records and labeled disjoint unions originally suggested by Wand [Wan87]. Labeled
records and labeled disjoint unions are the structures that one naturally uses to im-
plement a class hierarchy. For example, to implement a subclass in object-oriented
languages one usually adds instance variables to those of the parent class; but one can
equally well think of this as adding fields to a record type that implements the parent
class. We combine a type inference system for these structures with explicit type dec-
larations that represent classes. The main technical contribution is to demonstrate
that such a combination is possible. We show that the resulting type system is sound
with respect to the underlying type system and that it has a type inference algorithm.
These results can be used to develop a programming language that integrates central
features of object-oriented programming and those of statically typed polymorphic
languages. Moreover, it is also possible to extend the type system to incorporate a
number of structures and operations for database programming. The extended type
system can serve as a basis for database programming languages, where databases are
represented as typed data structures and queries and other database operations are
cleanly represented as statically typed polymorphic functions. Parametric classes and
polymorphism capture various aspects of object-oriented databases. Based on these
results a prototype programming language embodying the type system described in

2

this paper (with the exception of class parameterization) has been implemented at
University of Pennsylvania. The “core” of the language, i.e. the language without class
construct, was described in [OBBT89]. A more detailed description of the language
can be found in [BO90].

Wand [Wan87] observed that method inheritance can be supported in an ML-
like strongly typed language by extending ML’s type inference mechanism to la-
beled records and labeled disjoint unions. In this paradigm, classes correspond
to record types and inheritance is realized by polymorphic typing of functions on
records. For example, if we represent the classes person and employee by the record
types [Name : string, Age : int] and [Name : string, Age : int, Salary : int]
then the requirement that the method increment age defined on the class person
should be inherited by employee simply means that the type of the function in-
crement age should be a polymorphic type whose instances include not only the
type [Name : string,Age : int] → [Name : string, Age : int] but also the type
[Name : string, Age : int, Salary : int] → [Name : string,Age : int, Salary : int].

Wand’s system, however, does not share ML’s feature of existence of principal
typing schemes (see [OB88, Wan88] for an analysis of this issue.) Based on Wand’s
general observation, [OB88] extended the notion of principal type-schemes to include
conditions on type variables. (See also [Sta88, JM88, Rem89, Wan89] for related stud-
ies.) This extension allows ML polymorphism to be extended to standard operations
on records and variants and also to various database operations such as join and
projection. (See also [Wan89, CM89, HP91, Rem91] for proposals for other opera-
tions on records.) For example, the function increment age can be implemented by
the following code:

fun increment age(p) = modify(p,Age, p.Age + 1)

where e.l selects the l field from the record e, and modify(p, l, e) returns the new
record that is same as p except that its l field is changed to e. For this function, the
following principal conditional type-scheme is inferred:

[(t)Age : int] → [(t)Age : int]

The notation [(t) l1 : τ1, . . . , ln : τn] represents a conditional type variable t, for which
substitutions are restricted to those θ such that θ(t) is a record type containing the
fields li : θ(τi), 1 ≤ i ≤ n. Since both [Name : string ,Age : int] and [Name :
string ,Age : int ,Salary : int] satisfy the condition, [Name : string, Age : int] →
[Name : string, Age : int] and [Name : string, Age : int, Salary : int] → [Name :
string, Age : int, Salary : int] are both instances of the above conditional type-
scheme. By this mechanism the function increment age can be safely applied not
only to person objects but also to employee objects.

The type inference method suggested by this example shows an integration of
method inheritance and a static type system with ML polymorphism. This approach
is not subject to the phenomenon of “loss of type information” associated with type
systems based on the subsumption rule [Car88] – the problem observed by Cardelli
and Wegner [CW85] (see [BTBO89] for a discussion on this problem). However this
approach relies on the structure of record types of objects: inheritance is derived
from the polymorphic nature of field selection. We would like to borrow from object-
oriented languages the idea that the programmer can control the sharing of methods

3

through an explicitly defined hierarchy of classes and that objects are manipulated
only through methods defined in these classes, achieving data abstraction.

Galileo [ACO85] integrates inheritance and class hierarchies in a static type system
by combining the subtype relation in [Car88] and abstract type declarations. Galileo,
however, does not integrate polymorphism or type inference. [JM88] suggests the
possibility of using their type inference method to extend ML’s abstract data types to
support inheritance. Here we provide a formal proposal that achieves the integration
of ML style parametric abstract data types and multiple inheritance by extending
the type inference method presented in [OB88]. The class declarations we describe
can be regarded as a generalization of ML’s abstract data types, but there seems to
be no immediate connection with the notion of abstract types as existential types in
[MP85].

As an example, the class person can be implemented by the following class defini-
tion:

class person = [Name : string, Age : int] with
fun make person(n, a) = [Name = n,Age = a]

: (string ∗ int) → person;
fun name(p) = p.Name : sub → string;
fun age(p) = p.Age : sub → int;
fun increment age(p) = modify(p,Age, p.Age + 1)

: sub → sub;
end

Outside of this definition, the actual structure of objects of the type person is hidden
and person objects can only be manipulated through the explicitly defined set of
interface functions (methods). This is enforced by treating classes as if they were
base types and the methods as the primitive operations associated with them.

As in Miranda’s abstract data types, we require the programmer to specify the
type (type-scheme) of each method. The keyword sub in the type specifications of
methods is a special type variable representing all possible subclasses of the class
being defined. It is to be regarded as an assertion by the programmer (which may
later prove to be inconsistent with a subclass definition) that a method can be applied
to values of any subclass. For example, we may define a subclass

class employee = [Name : string, Age : int, Sal : int]
isa person with

fun make employee(n, a) =
[Name = n,Age = a, Sal = 0]

: (string ∗ int) → employee;
fun add salary(e, s) = modify(e, Sal, e.Sal + s)

: (sub ∗ int) → sub;
fun salary(e) = e.Sal : sub → int

end

which inherits the methods name, age and increment age, but not make person from
the class person because there is no sub in the type specification of make person.
For reasons that will emerge later we have given the complete record type required

4

to implement employee, not just the additional fields we need to add to the imple-
mentation of person. It is possible that for simple record extensions such as these we
could invent a syntactic shorthand that is more in line with object-oriented languages.
Continuing in the same fashion, we may define classes

class student =
[Name : string, Age : int,Grade : real]

isa person with
...

end

class researchFellow =
[Name : string, Age : int,Grade : real, Sal : int]

isa {employee, student} with
...

end

The second of these illustrates the use of multiple inheritance.
The type system we are proposing can statically check the type correctness of these

class definitions containing multiple inheritance declarations. Moreover, the type
system always infers a principal conditional type-scheme for expressions containing
methods defined in classes. For example, for the following function

fun raise salary(p) = add salary(p,div(salary(p), 10))

which raises the salary of an object by approximately 10%, the type system infers the
following principal conditional type-scheme:

(t < employee) → (t < employee)

where (t < employee) is a conditional type variable whose instances are restricted to
subclasses of employee. This function can be applied to objects of any subclass of
employee and the type correctness of such applications is statically checked.

To demonstrate the use of type parameters, consider how a class for lists might
be constructed. We start from a class which defines a “skeletal” structure for lists.

class pre list = (rec t.〈Empty : unit, List : [Tail : t]〉)
with

nil = 〈Empty = ()〉 : sub;
fun tl(x) = case x of

〈Empty = y〉 ⇒ . . . error . . .;
〈List = z〉 ⇒ z.Tail;

end : sub → sub
fun null(x) = case x of

〈Empty = y〉 ⇒ true;
〈List = z〉 ⇒ false;

end : sub → bool;
end

5

This example shows the use of recursive types (rec t. τ) and labeled variant types
(〈l1 : τ1, ...ln : τn〉) with the associated case expressions. By itself, the class pre list
is useless for it provides no method for constructing non-empty lists. We may never-
theless derive a useful subclass from it.

class list(a) =
(rec t. 〈Empty : unit, List : [Head : a, Tail : t]〉)

isa pre list
with

fun cons(h, t) = 〈List = [Head = h, Tail = t]〉
: (a ∗ sub) → sub;

fun hd(x) =case x of
〈Empty = y〉 ⇒ . . . error . . .;
〈List = z〉 ⇒ z.Head;

end : sub → a;
end

which provides the usual polymorphic operations on lists. Separating the definition
into two parts may seem pointless here but we may be able to define other useful
subclasses of pre list. Moreover, since a may itself be a record type, we may be able
to define further useful subclasses of list. This is something we shall demonstrate in
Section 6. The type correctness of these parametric class declarations is also statically
checked by the type system and type inference also extends to methods of parametric
classes.

In the following sections we define a simple core language and describe type in-
ference for this language. We then extend the core language with class declarations
and show that the extended type system is correct with respect to the underlying
type system and provide the necessary results to show that there is a type inference
algorithm. To simplify the presentation, we omit sets and database operations treated
in [OB88]. However, the theory of parametric classes is completely compatible with
these structures. We briefly describe the method to extend the type system presented
here to sets and database operations in Section 7. We also omit proofs of some of
the results. Their detailed proofs as well as the full treatment of sets and database
operations can be found in [Oho89b]. In Section 8 we consider the limitations and
implementation aspects of our type system. The combination of multiple inheritance
with type parameters requires certain restrictions, and some care is needed to make
sure of the existence and correctness of the type inference method. Even if some other
formulation of classes in a statically typed polymorphic language is preferable to the
system proposed here, we believe that similar issues will arise.

2 The Core Language

The set of types (ranged over by τ) of the core language, i.e. the language without
class definitions, is given by the following abstract syntax:

τ ::= b | [l : τ, . . . , l : τ] | 〈l : τ, . . . , l : τ〉 |
τ → τ | (rec v. τ(v))

6

where b stands for base types and (rec v. τ(v)) represents recursive types. τ(v) in
(rec v. τ(v)) is a type expression possibly containing the symbol v. In (rec v. τ(v)),
τ(v) must be either a record type, a variant type or a function type. The same
restriction will apply to similar notations defined below. Formally, the set of types
is defined as the set of regular trees [Cou83] constructed from base types and type
constructors. The above syntax should be regarded as representations of regular trees.
In particular (rec v. τ(v)) represents a regular tree that is a unique solution to the
equation v = τ(v). By the restriction of τ(v), (rec v. τ(v)) always denotes a regular
tree. For convenience, we assume a set of special labels #1, . . . , #n, . . . and treat a
product type (τ1∗τ2∗· · ·∗τn) as a shorthand for the record type [#1 : τ1, . . . , #n : τn].

The set of raw terms (un-checked untyped terms, ranged over by e) is given by
the following syntax:

e ::= cτ | x | fn x ⇒ e | e(e) |
[l = e, . . . , l = e] | e.l | modify(e, l, e) | 〈l = e〉 |
case e of 〈l = x〉 ⇒ e; · · · ; 〈l = x〉 ⇒ e end

where cτ stands for constants of type τ , x stands for a given set of variables and
〈l = e〉 stands for injections to variants. We write fn (x1, . . . , xn) ⇒ e for the
shorthand for fn x ⇒ e′ where e′ is the term obtained form e by substituting xi with
x.#i (1 ≤ i ≤ n). Recursion is represented by a fixed point combinator, which is
definable in the core language. The following definition of Y given in [Plo75] can be
used to define recursive functions under the usual “call-by-value” evaluation:

fun Y (f) = (fn x ⇒ (fn y ⇒ (f(x(x)))(y)))
(fn x ⇒ (fn y ⇒ (f(x(x)))(y)))

A recursive function definition of the form fun f(x) = e where f appears in the body
e is regarded as a shorthand for f = Y (fn f ⇒ fn x ⇒ e). ML’s let polymorphism
[Mil78, DM82] is compatible with the type system we will develop in this paper and
polymorphic let binding can be easily added to the language. Interested readers are
referred to [Oho89a] for a formal treatment of adding let-expressions in a type system
like the one defined in this paper.

An association between a raw term and a type is called a typing . A type assignment
A is a function from a subset of variables to types. For a given type assignment A,
we write A{x : v} for the type assignment A′ such that dom(A′) = dom(A) ∪ {x},
A(x) = v, and A′(y) = A(y) for all y ∈ dom(A), y 6= x. A typing is then defined as a
formula of the form A¤e : τ that is derivable in the proof system shown in Figure 1.
We write ` A¤ e : τ if A¤ e : τ is derivable.

In general a raw term has infinitely many typings. One important feature of the
ML family of languages is the existence of a type inference algorithm, which is based
on the existence of a principal typing scheme for any typable raw term. The set of
type-schemes (ranged over by ρ) is the set of regular trees represented by the following
syntax:

ρ ::= t | b | [l : ρ, . . . , l : ρ] | 〈l : ρ, . . . , l : ρ〉 |
ρ → ρ | (rec v. ρ(v))

where t stands for type variables. A substitution θ is a function from type variables to
type-schemes such that θ(t) 6= t for only finitely many t. We write [ρ1/t1, . . . , ρn/tn]

7

(const) A¤ cb : b

(var) A¤ x : τ if A(x) = τ

(record)
A¤ e1 : τ1, · · · , A¤ e2 : τn

A¤ [l1 = e1, . . . , ln : en] : [l1 : τ1, . . . , ln : τn]

(select)
A¤ e : τ

A¤ e.l : τ ′
if τ is a record type containing l : τ ′

(modify)
A¤ e1 : τ A¤ e2 : τ ′

A¤ modify(e1, l, e2) : τ
if τ is a record type containing l : τ ′

(variant)
A¤ e : τ

A¤ 〈l = e〉 : τ ′
if τ ′ is a variant type containing l : τ

(case)
A¤ e : 〈l1 : τ1, . . . , ln : τn〉, A{xi : τi}¤ ei : τ (1 ≤ i ≤ n)
A¤ case e of 〈l1 = x1〉 ⇒ e1 ; · · · ; 〈ln = xn〉 ⇒ en end : τ

(app)
A¤ e1 : τ1 → τ2 A¤ e2 : τ1

A¤ e1(e2) : τ2

(abs)
A{x : τ1}¤ e : τ2

A¤ fn x ⇒ e : τ1 → τ2

Figure 1: Typing Rules for the Core Language

for the substitution θ such that {t|θ(t) 6= t} = {t1, . . . , tn} and θ(ti) = ρi, 1 ≤ i ≤
n. A substitution uniquely extends to type-schemes (and other syntactic structures
containing type-schemes). For finite types, this is the unique homomorphic extension
of θ. For general regular trees, see [Cou83] for a technical definition. A type-scheme
ρ is an instance of a type-scheme ρ′ if there is a substitution θ such that ρ = θ(ρ′).
An instance ρ is ground if it is a type. A substitution θ is ground for ρ if θ(ρ) is a
type. A type assignment scheme Γ is a function from a finite subset of variables to
type-schemes. A typing scheme is then defined as a formula of the form Γ¤e : ρ such
that all its ground instances are typings. A typing scheme Γ¤ e : ρ is principal if for
any typing A ¤ e : τ , (A↑dom(Γ), τ) is a ground instance of (Γ, ρ), where f↑X is the
function restriction of f to X. A principal typing scheme can be also characterized
syntactically as a most general typing scheme with respect to an ordering induced by
substitutions.

For ML it is well-known ([Mil78, DM82]) that for any typable raw term, there
is a principal typing scheme; moreover, there is an algorithm to compute this typ-
ing scheme. For example, the ML type inference algorithm computes the following
principal typing scheme for the function id ≡ fn(x) ⇒ x:

∅¤ id : t → t

The set of all typings of id is correctly represented by the set of all ground instances
of the above typing scheme (with possible weakening of type assignments). By this
mechanism, ML achieves static type-checking and polymorphism (when combined
with the binding mechanism of let). In the above example, the function id can be
safely used as a function of any type of the form τ → τ .

8

In our core language, however, a typable raw term does not necessarily have a
principal typing scheme because of the conditions associated with the rules (select),
(modify) and (variant). In [OB88] this problem is resolved by extending type-
schemes to include conditions on substitutions of type variables. The set of conditional
type-schemes (ranged over by T) is the set of regular trees represented by the following
syntax:

T ::= t | [(t)l : T, . . . , l : T] | 〈(t)l : T, . . . , l : T 〉 | b |
[l : T, . . . , l : T] | 〈l : T, . . . , l : T 〉 | T → T |
(rec v. T (v))

[(t)l : T, . . . , l : T] and 〈(t)l : T, . . . , l : T 〉 are conditional type variables. Intuitively,
[(t)l1 : T1, . . . , ln : Tn] and 〈(t)l1 : T1, . . . , ln : Tn〉 respectively represent record types
and variant types that contain the set of fields l1 : T1, . . . , ln : Tn. This intuition is
made precise by the notion of admissible instances. For a conditional type-scheme T ,
the condition erasure of T , denoted by erase(T), is the type scheme obtained form
T by “erasing” all conditions from conditional type variables, i.e. by replacing all
conditional type variables of the form [(t) . . .] and 〈(t′) . . .〉 by t and t′ respectively.
Substitutions are extended to conditional type-schemes as θ(T) = θ(erase(T)). A
ground substitution θ for [(t)l1 : T1, . . . , ln : Tn] is admissible for [(t)l1 : T1, . . . , ln : Tn]
if θ(t) is a record type containing l1 : θ(T1), . . . , ln : θ(Tn). Similarly, θ is admissible
for 〈(t)l1 : T1, . . . , ln : Tn〉 if θ(t) is a variant type containing l1 : θ(T1), . . . , ln : θ(Tn).
A ground substitution is admissible for a conditional type-scheme T if it is admissible
for all conditional type variables in T . A type τ is an admissible instance of T if there
is an admissible ground substitution θ for T such that τ = θ(T). A conditional type-
scheme denotes the set of all its admissible instances. For example, the conditional
type-scheme

[(t)Age : int] → [(t)Age : int]

denotes the set of all types of functions on records containing Age : int field that
return a record of the same type.

By using conditional type-schemes, Damas and Milner’s result for ML can be
extended to our language. A conditional type assignment scheme Γ is a function from
a finite subset of variables to conditional type-schemes. A conditional typing scheme
is a formula of the form Γ ¤ e : T such that all its admissible instances are typings.
We write ` Γ¤e : T if it is a conditional typing scheme. A conditional typing scheme
` Γ¤e : T is principal if for any typing ` A¤e : τ , A↑dom(Γ) ¤e : τ is an admissible
instance of Γ ¤ e : τ . As in ML a principal conditional typing scheme of e represents
the set of all typings for e.

In [OB88] the following property is show for a language containing labeled records
and a number of structures and operations for databases:

Theorem 1 For any raw term e, if e has a typing then it has a principal conditional
typing scheme. Moreover, there is an algorithm which, given any raw term, computes
its principal conditional typing scheme if one exists and reports failure if not.

This result can be easily adapted to our language. The following is an examples of a
principal conditional typing scheme:

9

∅¤fn x ⇒ modify(x,Age, x.Age + 1)
: [(t)Age : int] → [(t)Age : int]

This property guarantees that we can statically check the type correctness of any
given raw term.

3 Formulation of Classes

In this section, we first present a proof system for class declarations as an extension
to the core language. We then show the soundness of the proof system relative to
the soundness of the type system of the core language and develop a type inference
algorithm for the extended language.

3.1 Proof System for Classes

We assume that there is a given ranked alphabet of class constructors (ranged over
by c) and a set of method names (ranged over by m). A class constructor of arity 0 is
a constant (non-parametric) class. The set of types is extended by class constructors:

τ ::= b | [l : τ, . . . , l : τ] | 〈l : τ, . . . , l : τ〉 |
τ → τ | c(τ, . . . , τ) | (rec v. τ(v))

The set of raw terms is extended by method names:

e ::= m | cτ | . . .

In order to allow parametric class declarations, we extend the set of type-schemes
with class constructors:

ρ ::= t | b | [l : ρ, . . . , l : ρ] | 〈l : ρ, . . . , l : ρ〉 |
ρ → ρ | c(ρ, . . . , ρ) | (rec v. ρ(v))

In particular, we call type-schemes of the form c(ρ1, . . . , ρk) class-schemes. We write
c(t) and c(ρ) for c(t1, . . . , tk) and c(ρ1, . . . , ρk) where k is the arity of c.

A class definition D has the following syntax:

class c(t) = ρ isa {c1(ρc1), . . . , cn(ρcn)} with
m1 = e1: M1;

...
mn = en: Mn;

end

c(t) is the class-scheme being defined by this definition. t in c(t) are type parame-
ters, which must contain all the type variables that appear in the class definition. ρ

is the implementation type-scheme of the class c(t), which must not be a type vari-
able. {c1(ρc1), . . . , cn(ρcn)} is the set of immediate super-class schemes from which
c(t) directly inherits methods. We will show below that the subclass relationship is
obtained from this immediate isa relation by taking the closure under transitivity
and instantiation. Note that class definitions allow both multiple inheritance and
type parameterization. If the set of super-classes is empty then the isa declaration is

10

omitted. If the set is a singleton set then we omit the braces { and }. Each mi is the
name of a method implemented by the code ei. Method names mi should not appear
in any method bodies ej in the same class definition. This restriction is enforced
by the type system defined below. It should be noted however that this restriction
does not imply that we disallow (mutually) recursive method definitions, which can
be provided by the following syntactic sugar:

rec m1 = e1 : M1;
and · · ·

...
and mn = en : Mn;

defined as

m1 = (Y (fn (x1, . . . , xn) ⇒ (e′1, . . . , e
′
n))).#1 : M1

...
mn = (Y (fn (x1, . . . , xn) ⇒ (e′1, . . . , e

′
n))).#n : Mn

where e′i is the term obtained form ei by substituting mi by xi (1 ≤ i ≤ n). Mi is a
method type specifying the type of mi, whose syntax is given below:

M ::= sub | t | b | [l : M, . . . , l : M] |
〈l : M, . . . , l : M〉 | M → M | c(M, . . . , M)

sub is a distinguished type variable ranging over all subclasses of the class being
defined. Note that we restrict method types to be finite types. This is necessary to
ensure the decidability of type-checking of class definitions.

A class context (or simply context) D is a finite sequence of class definitions:

D ::= Ø | D; D

where Ø is the empty sequence.
Class declarations are forms of bindings for which we need some mechanism to re-

solve naming conflicts, such as visibility rules and explicit name qualifications. Here
we ignore this complication and assume that method names and class constructor
names are unique in a given context. Like a typing scheme, a class definition contain-
ing type variables intuitively represents the set of all its instances. The scope of type
variables is the class definition in which they appear.

The special type variable sub that appears in method type specifications denotes
the set of all possible subclasses that the programmer will declare later. This can be
regarded as a form of bounded quantification [CW85]. The method type M containing
sub corresponds to ∀sub < c(t).M where c(t) is the class being defined. The relation
< is the subclass relation under a context D, denoted by D ` c1(ρ1) < c2(ρ2), which
is defined as the smallest transitive relation on class schemes containing:

1. D ` c(t) < c(t) if D contains a class definition of the form class c(t) = ρ · · · end,

2. D ` c1(t1) < c2(ρ2) if D contains a class definition of the form
class c1(t1) = ρ isa {. . . , c2(ρ2), . . .} with · · · end,

3. D ` c1(ρ1) < c2(ρ2) if D ` c1(ρ′1) < c2(ρ′2) and (ρ1, ρ2) is an instance of (ρ′1, ρ
′
2),

11

The combination of multiple inheritance and type parameterization requires cer-
tain conditions on isa declarations. A context D is coherent if whenever D ` c1(ρ1) <

c2(ρ2) and D ` c1(ρ1) < c2(ρ′2), then ρ2 = ρ′2. We require a context to be coher-
ent. This condition is necessary to develop a type inference algorithm. The following
property is easily shown.

Lemma 1 For a given context D, it is decidable whether D is coherent or not.

We say that a subclass relation D ` c1(ρ1) < c2(ρ2) is more general than D `
c1(ρ′1) < c2(ρ′2) if (ρ′1, ρ

′
2) is an instance of (ρ1, ρ2). A subclass relation D ` c1(ρ1) <

c2(ρ2) is principal if it is more general than all provable subclass relations between c1

and c2.
Under the coherence condition, the subclass relation has the following property:

Lemma 2 For any coherent context D and any method names c1, c2, if D ` c1(ρ1) <

c2(ρ2) then there is a principal subclass relation D ` c1(t1) < c2(ρ′2). Moreover, there
is an algorithm which, given a coherent context D and a pair c1, c2, returns either
(t, ρ) or failure such that if it returns (t, ρ) then D ` c1(t) < c2(ρ) is a principal
subclass relation between c1, c2 otherwise there is no subclass relation between c1 and
c2.

Note that since the substitution relation is decidable, this result implies that the
subclass relation is decidable.

The extended type system has the following forms of judgments:

` D D is a well typed class context,

` D,A¤ e : τ the typing D,A¤ e : τ is derivable.

The proof systems for these two forms of judgments are defined simultaneously.
Let D be a class definition of the form class c(t) = ρc · · · end. D induces the

tree substitution φD on type-schemes. For finite type-schemes, φD(ρ) is defined by
induction on the structure of ρ as follows:

φD(b) = b

φD(t) = t

φD(f(ρ1, . . . , ρn)) = f(φD(ρ1), . . . , φD(ρn)) for any

type constructor f s.t. f 6= c

φD(c(ρ)) = ρc[φD(ρ)/t]

where [φD(ρ)/t] denotes [φD(ρ1)/t1, . . . , φD(ρk)/tk] (with k the arity of c). Since ρc

is not a type variable, φD is a non-erasing second-order substitution on trees [Cou83],
which extends uniquely to regular trees. See [Cou83] for the technical details. Since
regular trees are closed under second-order substitution [Cou83], φD(ρ) is a well de-
fined type-scheme.

The rule for ` D is defined by induction on the length of D:

1. The empty context is a well typed context, i.e. ` Ø.

2. Suppose ` D. Let D be the following class definition:

12

class c(t) = ρ isa {c1(ρc1), . . . , cn(ρcn)}
with

m1 = e1 : M1;
...
mn = en : Mn

end.

Then ` D; D if the following conditions hold:

(a) it is coherent,

(b) if a class name c′ appears in some of ρ, c1(ρc1), . . . , cn(ρcn
) then D contains

a definition of the form class c′(t′) · · · end,

(c) ` D, ∅¤ ei : τ for any ground instance τ of φD(Mi[ρ/sub]),

(d) for any method m = em : Mm defined in some declaration of class c′(t′) in
D such that D; D ` c(t) < c′(ρ′), ` D, ∅¤ em : τ for any ground instance
τ of Mm[ρ′/t′, ρ/sub].

We have already discussed the necessity of the condition (a). The necessity of the
condition (b) is obvious. The condition (c) states that each method defined in the
definition of the class c(t) is type consistent with its own implementation. Note that
since Mi is finite, φD(Mi[ρ/sub]) is effectively computable by the inductive definition
of φD. The condition (d) ensures that all methods of all super-classes that are defined
in D are also applicable to the class c(t). This is done by checking the type consistency
of each method em defined in a super-class against the type-scheme obtained from Mm

by instantiating its type variables with type-schemes specified in isa declaration in
the definition of the class c(t) and replacing the variable sub with the implementation
type ρ of the class c(t).

The proof rules for typings are given by extending the proof rules for typings of
the core language by the following rule:

(method) ` D,A¤ m : τ

if ` D and there is a method m = e : M of a class c(t) in D such that τ is an
instance of M [ρ/t, c′(t′)/sub] for some D ` c′(t′) < c(ρ).

The well definedness of these two mutually dependent definitions can be checked
by induction on the length of D. Since the decidability of judgments of the form ` D
will follow from Lemma 1, 2, and the decidability of typing judgments, the decidability
of static typechecking of the entire type system is established by the existence of a
complete type inference algorithm for typing judgments, which we will develop in
Section 5. But first, we establish the soundness of the type system. The following
property is useful:

Lemma 3 If ` D; D and m = e : M is defined in D then m does not appear any
body of method definition in D; D.

4 Soundness of the Type System

Let D be a given context and τ be a type. The exposure of τ under D, denoted by
exposeD(τ), is the type given by the following inductive definition on the length of D:

13

1. if D = Ø then exposeD(τ) = τ ,

2. if D = D′; D then exposeD(τ) = exposeD′(φD(τ)).

By the condition (b) of the definition for ` D, if ` D,A¤ e : τ then exposeD(τ) does
not contain any class name and therefore a type in the core language. Intuitively,
exposeD(τ) is the type obtained from τ by recursively replacing all its classes by
their implementation types. We extend exposeD to syntactic structures containing
type-schemes.

The unfold of a raw term e under a context D, denoted by unfoldD(e), is the raw
term given by the following inductive definition on the length of D:

1. if D = Ø then unfoldD(e) = e,

2. if D = D′;class . . .with
m1 = e1 : M1;
...
mn = en : Mn

end,

then unfoldD(e) = unfoldD′(e[e1/m1, . . . , en/mn]).

By Lemma 3, if ` D,A ¤ e : τ then unfoldD(e) does not contain any method name
and is therefore is a raw term in the core language. unfoldD(e) corresponds to the
raw term obtained from e by recursively replacing all method names defined in D
with their implementations. We then have the following theorem.

Theorem 2 If ` D,A¤ e : τ then ` exposeD(A) ¤ unfoldD(e) : exposeD(τ) in the
core language.

Proof (Sketch) The proof is by induction on the length of D. The basis is trivial.
The induction step is by induction on the structure of e. Cases other than e = m

follow directly from the properties of expose and unfold . The case for e = m is proved
by the typing rule (method) and the definitions of expose, unfold .

Since the soundness of the core language can be shown by using, for example, the
techniques developed in [Tof88], the above theorem establishes the soundness of the
type system with parametric classes. In particular, since the type system of the core
language prevents all run-time type errors, a type correct program in the extended
language cannot produce a run-time type error.

The converse of this theorem, of course, does not hold, but we would not expect it
to hold, for one of the advantages of data abstraction is that it allows us to distinguish
two methods that may have the same implementation. As an example, suppose
D contains definitions for the classes car and person whose implementation types
coincide and person has a method minor which determines whether a person is older
than 21 or not. By the coincidence of the implementations, ` ∅¤exposeD(minor(c)) :
bool for any car object c. But ` D,A ¤ minor(c) : bool is not provable unless we
declare (by a sequences of isa declarations) that car is a subclass of person. This
prevents illegal use of a method through a coincidence of the implementation schemes.

14

5 Type Inference for the Extended Language

We next show that there is a static type inference algorithm for the extended language.
The set of conditional type-schemes is extended with classes and new conditional type
variables:

T ::= c(T, . . . , T) | (t < {T, . . . , T}) | · · ·
where (t < {T, . . . , T}) stands for new form of conditional type variables, called
bounded type variables. Intuitively, (t < {T1, . . . , Tn}) represents the set of all in-
stances θ(t) that are subclasses of all of θ(T1), . . . , θ(Tn) under a given context D.
This intuition is made precise by extending the notion of condition erasure erase(T),
substitution instances θ(T) and the admissibility of substitutions. The condition era-
sure erase(T) of T is extended to bounded type variables, i.e. erase also replaces
conditional type variables of the form (t < {T1, . . . , Tn}) by t. The definition of in-
stances is the same as before. The admissibility of substitutions is now defined relative
to a context D. A ground substitution θ is admissible for (t < {T1, . . . , Tn}) under a
context D if D ` θ(t) < θ(Ti) for all 1 ≤ i ≤ n. Note that for a bounded type variable
(t < {T1, . . . , Tn}) to have an admissible substitution, each Ti must be a type-scheme
of the form c(T, · · · , T). The rules for other forms of conditional type variables are
the same as before. A ground substitution is admissible for a conditional type-scheme
T under a context D if it is admissible for all conditional types variables in T under
D. A type τ is an admissible instance of T under D if there is an admissible ground
substitution θ for T under D such that τ = θ(T). A conditional type-scheme denotes
the set of all its admissible instances under a given context.

The relationship between the provability of conditional typing schemes and typings
is similar to the one in the core language except it is now defined relative to a given
context D. Γ¤ e : T is a conditional typing scheme under D, denoted by ` D,Γ¤ e :
T , if ` D,A¤ e : τ holds for any admissible instance A¤ e : τ of Γ¤ e : T under D.
The definition for principality is also the same. We then have the following theorem
which is an extension of Theorem 1:

Theorem 3 For any raw term e, and any well typed context D if e has a typing
under D then it has a principal conditional typing scheme under D. Moreover, there
is an algorithm which, given any raw term and any well typed context D, computes
its principal conditional typing scheme under D if one exists, and reports failure
otherwise.

Proof (sketch) The strategy is based on that used in [OB88]. The algorithm to com-
pute a principal conditional typing scheme is defined in two steps. It first constructs
a typing scheme and a set of conditions of the forms T < T ′ (representing bound
conditions), [(l : T) ∈ T ′] (representing field inclusion relation on record types) and
〈(l : T) ∈ T ′〉 (representing field inclusion relation on variant types). The algorithm
then reduces the set of conditions to conditional type-schemes. For a condition of the
from T < T ′, the reduction is done by producing a most general substitution θ such
that D ` θ(T) < θ(T ′). This is possible because of the property shown in Lemma 2.
The reduction of conditions of the forms [(l : T) ∈ T ′] and 〈(l : T) ∈ T 〉 is done by
producing a substitution θ and a set of conditional types of the form [(t)l : T, . . .] and
〈(t)l : T, . . .〉.

15

6 Further Examples

In Section 1, we defined the classes person and employee. The sequence of the two
definitions is indeed a type correct class context in our type system. Figure 2 shows an
interactive session involving these class definitions in our prototype implementation,
whose syntax mostly follows that of ML. -> is input prompt followed by user input. >>
is output prefix followed by the system output. (’a < person) and (’a < employee)

are bounded type variables. As seen in the example, the system displays the set of
all inherited methods for each type correct class definition.

Let us look briefly at some further examples of how type parameterization can
interact with inheritance. At the end of Section 1 we defined a polymorphic list class
list(a). We could immediately use this by implicit instantiation of a. For example,
the function

fun sum(l) =if null(l) then 0
else hd(l) + sum(tl(l))

will be given the type list(int) → int, as would happen in ML. However we can
instantiate the type variable a in other ways. For example, we could construct a class

class genintlist(b) =
(rec t. 〈Empty : unit,

List : [Head : [Ival : int, Cont : b],
Tail : t]〉)

isa list([Ival : int, Cont : b])
with

...
end

which could be used, say, as the implementation type for a “bag” of values of type
b. In this case all the methods of pre list and list are inherited. However, we might
also attempt to create a subclass of list with the following declaration in which we
directly extend the record type of the List variant of the implementation:

class genintlist(b) =
(rec t. 〈Empty : unit,

List : [Head : int, Cont : b, Tail : t]〉)
isa list(int)
with

...
end

In this class, all the methods of pre list could be inherited but the method cons of
list(a) cannot be inherited because the implementation type of genintlist(b) is incom-
patible with any of the possible types of cons. In this case, the type checker reports
an error.

16

-> class person = [Name:string,Age:int]

with · · · end;

>> class person with

make person : (string*int) -> person

name : (’a < person) -> string

age : (’a < person) -> int

increment age : (’a < person) -> (’a < person)

-> class employee = [Name:string,Age:int,Sal:int]

with · · · end;

>> class employee isa person with

make employee : (string*int) -> employee

add salary : (employee*int) -> employee

salary : (’a < employee) -> int

inherited methods:

name : (’a < person) -> string

age : (’a < person) -> int

increment age : (’a < person) -> (’a < person)

-> val joe = make person("Joe",21);

>> val joe = : person

-> val helen = make employee("Helen",31)

>> val helen = : employee

-> age(joe);

>> 21 : int

-> val helen = increment age(helen);

>> val helen = : employee

-> age(helen);

>> 32 : int

Figure 2: A Simple Interactive Session with Classes

17

7 Extension for Database Programming

The type system described so far can be further extended to incorporate the structures
and operations necessary for databases. Indeed, the core type system of [OB88] on
which this paper is based includes set data types and a number of database operations.
This extension together with the mechanism of parametric classes presented here
makes the language appropriate as the basis of an object-oriented database program-
ming language. Here we briefly describe the extension. For the detailed type inference
system and its relevance to database programming, see respectively [OB88, BO90].

Since sets and most database operations require decidable equality on terms, they
cannot be introduced on arbitrary terms. For this reason, we identify subsets of
terms and types as what we call description terms and description types. Description
types are those that do not contain function types (outside the scope of a reference
type). Description types are a generalization of ML’s eqtypes and also have available
a number of useful database operations such as join and projection.

It is not difficult to introduce a set type constructor on description types. The
crucial step toward a satisfactory integration of databases and a polymorphic type
system is to introduce database operations that are powerful enough to manipulate
complex database objects. One important operation common in databases is to join
two records of consistent information. For example [Name = ”Joe”, Age = 21] and
[Name = ”Joe”, Sal = 30, 000] join to form [Name = ”Joe”, Age = 21, Sal =
30, 000]. This can be regarded as a form of record concatenation [Wan89, HP91,
Rem91], but can be generalized to arbitrary complex description terms to form nat-
ural join of complex database objects. In [BJO91, Oho90], we have achieved this
by exploiting information orderings v and ¿ respectively on description terms and
description types. d1 v d2 represents our intuition that d2 is a better description
than d2 and δ1 ¿ δ2 denotes the fact that the structure represented by δ2 is “more
informative” than that represented by δ1. Here is a simple example of ¿.

{[Name : [Fn : string, Ln : string], Age : int]}
¿ {[Name :[Fn : string, Mi : char, Ln : string],

Age : int, Salary : int]}
The natural join is then regarded as the operator which “combines” two consistent
descriptions and is generalized to arbitrary description terms (even those involving
cyclic definitions) as:

join(d1, d2) = d1 tv d2

with the following polymorphic type:

join : (δ1 ∗ δ2) → δ1 t¿ δ2

Figure 3 shows an example of the generalized natural join of complex values. Other
database operations can also be defined using the orderings.

It should be noted that the ordering on types, although somewhat similar to that
used in [Car88], is in no sense a part of record polymorphism. In particular, it has no
connection to the notion of structural subtyping. We introduced the orderings only to
represent join and other database operations. This should be apparent from the fact
that we have already incorporated field selection and other operations as polymorphic
operations without having to make use of subtyping.

18

join({ [Name=[Last="Ludford"], Children={"Jeremy", "Christopher"}],
[Name=[Last="Gurman"], Children={"Adam", "Benjamin"}]},

{ [Name=[First="Bridget", Last="Ludford"],

Address=[Street="33 Cleveden Dr", City="Glasgow"]],

[Name=[First="Wilfred", Last="Anderson"],

Address=[Street="13 Princes St", City="Edinburgh"]]})
= { [Name=[First="Bridget", Last="Ludford"],

Children={"Jeremy","Christopher"},
Address=[Street="33 Cleveden Dr", City="Glasgow"]]}

Figure 3: An Example of Higher-Order Join

To integrate sets, join and other database operations in the type system, the
necessary extensions are a new class of type variables that ranges only over description
types, and new forms of conditions on type variables that capture polymorphic nature
of database operations. In the case of join, the necessary condition is of the form
σ = jointype(σ1, σ2). It was shown in [OB88] that these extensions preserve the
existence of principal conditional typing schemes and the extended system still has
a complete type inference algorithm. Since our mechanism of parametric classes
relies only on the existence of a type inference algorithm, the entire language can be
extended to database structures. Using operations on sets and join, database queries
including SQL like expressions of the form

select · · · from · · ·where · · ·

can be defined and freely combined with class structures. This achieves a proper
integration of object-oriented programming and database programming in a static
type system.

For example, the classes student and employee we have defined earlier can be used
to construct a database containing sets of types {student} and {employee} where
{ } is the set type constructor. For such a database, queries can be easily defined as
polymorphic functions as shown in the following example:

fun wealthy S = select name(x)
from x ∈ S

where salary(x) > 100000
: { (t < employee) } → {string}

fun good students S = select name(x)
from x ∈ S

where grade(x) > 3.7
: { (t < student) }− > {string}

fun good fellows S =
intersection(wealthy(S), good students(S))

: { (t < {student, employee}) }− > {string}

Moreover, by representing object identity by reference types as implemented in Stan-

19

dard ML, the type system can capture various aspects of object-oriented databases.

8 Limitations and Implementation

First, we should point out that the language we have proposed differs in some fun-
damental ways from object-oriented languages in the Smalltalk tradition. A static
type system does not fit well with late binding – a feature of many object-oriented
languages. One reason to have late binding seems to be to implement overriding of
methods. It is possible that some form of overloading could be added to the language
to support this.

One limitation in our type system is the restriction we imposed on inheritance dec-
larations in connection with type parameters. We required that if a class c(t1, . . . , tk)
is a subclass of both c′(τ1, . . . , τj) and c′(τ ′1, . . . , τ

′
j) then τi = τi for all 1 ≤ i ≤ j.

This is necessary to preserve the existence of principal conditional typing schemes for
all typable raw terms. This disallows certain type consistent declarations such as:

class C1(t) = τ with
fun m(x) = m(x) : sub → t

end

class C2 = τ ′ isa {C1(int), C1(bool)} with
c = e : C2

...
end

which is type consistent in any implementation types τ, τ ′ but creates a problem
that terms like m(c) do not have a principal conditional typing scheme. However, we
believe that the condition is satisfied by virtually all ordinary class declarations. Note
that in the above example the result type of the method m is the free type variable
t without any dependency of its domain type sub, which reflects the property that
the method m does not terminate on any input. The authors could not construct
any natural example that is type consistent but that does not satisfy this coherence
condition.

We have only allowed a single sub variable. This restricts the expressiveness of
method types. For example, we may want to define a method older which compares
any two objects of any subclasses of person. One possible definition of older in the
definition of a class person is

older = fn (x, y) ⇒ x.Age > y.Age : (sub ∗ sub) → bool

The type system infers the following conditional type-scheme for older

((t < person) ∗ (t < person)) → bool

But this type-scheme requires older to be applied to a pair of objects of the same
type. This problem can be solved by introducing multiple sub variables. Since
possible subclasses of a given class is always finite, it is not hard to extend our formal
type system to allow multiple sub variables and to show that the extension preserves
the soundness of the type system and the existence of a complete type inference

20

algorithm. As we will note below, however, such extension makes it more difficult to
implement the type inference algorithm.

From a practical perspective, our type system does not immediately yield an
efficient implementation. To typecheck a new class definition, the type system requires
the typechecking of the raw terms that correspond to new methods defined in the class,
and also the consistency checking of all methods of all super-classes already defined
against the implementation type of the new class. A naive way to do this would
involve recursively unfolding definitions of methods and repeated type-checking of the
resulting raw terms in the type system of the core language, which will be prohibitively
expensive when the class hierarchy becomes large. Fortunately, this problem can be
avoided using the existence of a principal conditional typing scheme for any typable
raw term in the extended language. One strategy is to save the principal conditional
typing scheme of a method when it is first defined. Typechecking of new methods
involving this method name can be done by using the saved principal typing scheme
of the method. The type consistency of this method against implementation types of
newly defined subclasses can be determined by checking whether the required method
types are instances of the saved principal conditional type-scheme or not. These
techniques eliminate both recursive unfolding and repeated type-checking of method
bodies. Since checking whether a method type is an instance of a given principal
conditional type-scheme or not can be done efficiently, this strategy yields an efficient
implementation of static type-checking of class hierarchies.This strategy, however,
relaies on the fact that the type system only allows a single sub variable. An efficient
implementation strategy for a type system with multiple sub variables remains to be
investigated.

9 Conclusion

We have presented a type inference system for classes that supports inheritance and
parametricity in a statically typed language similar to ML. This achieves a proper inte-
gration of object-oriented programming and ML style polymorphic typing. Moreover,
the type system can be further extended to include the structures and operations
needed for database systems, and can therefore serve as a basis of object-oriented
databases.

Some further syntactic sugaring may be appropriate, and we need to investigate
scoping rules and overloading to bring our system into line with conventional object-
oriented languages. It is also possible that there may be some integration between
what we have proposed and the system of modules for Standard ML [Mac86] and its
refinement [MMM91].

Another interesting question is a semantics of class definitions. A definition of a
class determines a subset of types that are compatible with the set of methods (i.e.
the set of raw lambda terms that implement the methods). This suggests that a class
definition could be regarded as a form of existential type ∃sub : K. (M1 ∗ . . . ∗Mn)
where K denotes the subset of types that are compatible to the set of methods and
M1, . . . , Mn are the types of the methods defined in the class definition. This is a
form of bounded existential types introduced in [CW85] but differs from theirs in that
the kind K reflects directly the implementations of methods. Semantics of such types

21

should explain not only the functionality of the set of methods (as is done in [MP85])
but also the structure of a kind K determined by a set of raw lambda terms.

Acknowledgment

We would like to thank Anthony Kosky for his helpful comments on a draft of this
paper. In particular, he pointed out the limitation of single sub variable mentioned
above.

References

[ACO85] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, in-
teractive conceptual language. ACM Transactions on Database Systems,
10(2):230–260, 1985.

[BJO91] P. Buneman, A. Jung, and A. Ohori. Using powerdomains to generalize
relational databases. Theoretical Computer Science, 91(1):23–56, 1991.

[BO90] P. Buneman and A. Ohori. Polymoprhism and type inference in database
programming. Technical report, Universities of Glasgow and Pennsylvania,
1990. To appear in ACM Transaction on Database Systems.

[BTBO89] V. Breazu-Tannen, P. Buneman, and A. Ohori. Can object-oriented
databases be statically typed? In Proc. 2nd International Workshop on
Database Programming Languages, pages 226 – 237, 1989. Morgan Kauf-
mann Publishers.

[Car88] L. Cardelli. A semantics of multiple inheritance. Information and Com-
putation, 76:138–164, 1988. (Special issue devoted to Symp. on Semantics
of Data Types, 1984).

[CM89] L. Cardelli and J. Mitchell. Operations on records. In Proc. Mathemat-
ical Foundation of Programming Semantics, Lecture Notes in Computer
Science 442, pages 22–52, 1989.

[Cou83] B. Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25:95–169, 1983.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471–522, 1985.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional programs.
In Proc. ACM Symp. on Principles of Programming Languages, pages
207–212, 1982.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the language and its imple-
mentation. Addison-Wesley, 1983.

[HMT88] R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT
Press. 1990.

22

[HP91] R. Harper and B. Pierce. A record calculus based on symmetric concate-
nation. In Proc. ACM Symp. on Principles of Programming Languages,
pages 131–142, 1991. Extended version available as Carnegie Mellon Tech-
nical Report CMU-CS-90-157.

[IBH+79] J.H. Ichbiah, J.G.P. Barnes, J.C. Heliard, B. Krieg-Bruckner, O. Roubine,
and B.A. Wichmann. Rationale of the design of the programming language
Ada. SIGPLAN Notices, 14(6), 1979.

[JM88] L. A. Jategaonkar and J.C. Mitchell. ML with extended pattern matching
and subtypes. In Proc. ACM Conf. on LISP and Functional Programming,
pages 198–211, 1988.

[LAB+81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaf-
fert, Robert Scheifler, and Alan Snyder. CLU Reference Manual, Lecture
Notes in Computer Science 114. Springer-Verlag, 1981.

[Mac86] D.B. MacQueen. Using dependent types to express modular structure. In
Proc. ACM Symp. on Principles of Programming Languages, pages 277–
286, 1986.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[MMM91] J. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML
modules with subtyping and inheritance. In Proc. ACM Symp. on Prin-
ciples of Programming Languages, pages 270–278, 1991.

[MP85] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types.
ACM Transaction on Programming Languages and Systems, 10(3):470–
520, 1988.

[OB88] A. Ohori and P. Buneman. Type inference in a database programming
language. In Proc. ACM Conf. on LISP and Functional Programming,
pages 174–183, 1988.

[OBBT89] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in
Machiavelli – a polymorphic language with static type inference. In Proc.
ACM SIGMOD Conference, pages 46–57, 1989.

[Oho89a] A. Ohori. A simple semantics for ML polymorphism. In Proc. ACM Conf.
on Functional Programming Languages and Computer Architecture, pages
281–292, 1989.

[Oho89b] A. Ohori. A Study of Types, Semantics and Languages for Databases and
Object-oriented Programming. PhD thesis, University of Pennsylvania,
1989.

[Oho90] A. Ohori. Semantics of types for database objects. Theoretical Computer
Science, 76:53–91, 1990.

[Plo75] G. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

23

[Rem89] D. Rémy. Typechecking records and variants in a natural extension of
ML. In Proc. ACM Symp. on Principles of Programming Languages, pages
242–249, 1989.

[Rem91] D. Rémy. Typing record concatenation for free. Technical report, INRIA–
Rocquencourt, Le Chesnay Cedex, France., 1991.

[Sta88] R. Stansifer. Type inference with subtypes. In Proc. ACM Symp. on
Principles of Programming Languages, pages 88–97, 1988.

[Tof88] M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD
thesis, Department of Computer Science, University of Edinburgh, 1988.

[Tur85] D.A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architec-
ture, Lecture Notes in Computer Science 201, pages 1–16. Springer-Verlag,
1985.

[Wan87] M. Wand. Complete type inference for simple objects. In Proc. Symp. on
Logic in Computer Science, pages 37–44, 1987.

[Wan88] M. Wand. Corrigendum : Complete type inference for simple object. In
Proc. Symp. on Logic in Computer Science, 1988.

[Wan89] M. Wand. Type inference for records concatenation and simple objects.
In Proc. Symp. on Logic in Computer Science, pages 92–97, 1989.

24

