

Edinburgh Research Explorer

Mining source code repositories at massive scale using
language modeling

Citation for published version:
Allamanis, M & Sutton, C 2013, Mining source code repositories at massive scale using language modeling.
in Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on. IEEE Computer Society,
pp. 207-216. DOI: 10.1109/MSR.2013.6624029

Digital Object Identifier (DOI):
10.1109/MSR.2013.6624029

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/MSR.2013.6624029
https://www.research.ed.ac.uk/portal/en/publications/mining-source-code-repositories-at-massive-scale-using-language-modeling(066b5203-acbe-4e09-8009-057677e3300f).html

Mining Source Code Repositories at Massive Scale
using Language Modeling

Miltiadis Allamanis, Charles Sutton
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK

Email: m.allamanis@ed.ac.uk, csutton@inf.ed.ac.uk

Abstract—The tens of thousands of high-quality open source
software projects on the Internet raise the exciting possibility
of studying software development by finding patterns across
truly large source code repositories. This could enable new tools
for developing code, encouraging reuse, and navigating large
projects. In this paper, we build the first giga-token probabilistic
language model of source code, based on 352 million lines of
Java. This is 100 times the scale of the pioneering work by
Hindle et al. The giga-token model is significantly better at the
code suggestion task than previous models. More broadly, our
approach provides a new “lens” for analyzing software projects,
enabling new complexity metrics based on statistical analysis
of large corpora. We call these metrics data-driven complexity
metrics. We propose new metrics that measure the complexity of
a code module and the topical centrality of a module to a software
project. In particular, it is possible to distinguish reusable utility
classes from classes that are part of a program’s core logic based
solely on general information theoretic criteria.

I. INTRODUCTION

An important aspect of mining software repositories is the
analysis of source code itself. There are several billion lines
of open source code online, much of which is of professional
quality. This raises an exciting possibility: If we can find pat-
terns that recur throughout the source code of many different
projects, then it is likely that these patterns encapsulate knowl-
edge about good software engineering practice. This could
enable a large variety of data-driven software engineering
tools, for example, tools that recommend which classes are
most likely to be reusable, that prioritize potential bugs that
have been identified based on static analysis results, and that
aid program navigation and visualization.

A powerful set of tools for finding patterns in large corpora
of text is provided by statistical machine learning and natural
language processing. Recently, Hindle et al. [1] presented
pioneering work in learning language models over source
code, that represent broad statistical characteristics of coding
style. Language models (LMs) are simply probability dis-
tributions over strings. However, the language models from
that work were always trained on projects within a single
domain, with a maximum size of 135 software projects of
code in their training sets. Previous experience in natural
language processing has shown that n-gram models are “data
hungry”, that is, adding more data almost always improves
their performance. This raises the question of how much the
performance of an LM would improve with more data, and in
particular, whether it is possible to build a cross-domain LM,

that is, a single LM that is effective across different project
domains.

In this paper, we present a new curated corpus of 14,807
open source Java projects from GitHub, comprising over
350 million lines of code (LOC) (Section III). We use this
new resource to explore coding practice across projects. In
particular, we study the extent to which programming language
text is productive, constantly introducing original identifier
names that have never appeared in other projects (Section IV).
For example, although the names i or str are common across
projects, others like requiredSnaphotScheduling are
specific to a single project; we call these original identifiers.
We examine the rate at which original identifiers occur, finding
that most of them are variable names, with an average project
introducing 56 original identifiers per kLOC.

Second, we train a n-gram language model on the GitHub
Java corpus (Section V). This is the first giga-token LM over
source code, i.e., that is trained on over one billion tokens. We
find that the giga-token model is much better at capturing the
statistical properties of code than smaller scale models. We
also examine what aspects of source code are most difficult
to model. Interestingly, we find that given enough data the
n-gram learns all that it can about the syntactic structure of
code, and that further gains in performance are due to learning
more about patterns of identifier usage.

The giga-token model enables a new set of tools for ana-
lyzing code. First, we examine which tokens are the most pre-
dictable according to the LM, e.g., for identifying code regions
that are important to the program logic. We find that method
names are more predictable than type and variable names,
perhaps because API calls are easy to predict. Extending this
insight, we combine the probabilistic model with concepts
from information theory to introduce a number of new metrics
for code complexity, which we call data-driven complexity
metrics. Data-driven metrics, unlike traditional metrics, are
fine-tuned by statistical analysis of large source code corpora.
We propose using the n-gram log probability (NGLP) as a
complexity metric, showing that it trades off between simpler
metrics such as LOC and cyclomatic complexity. Additionally,
we introduce a new metric that measures how domain specific
a source file is, which we call the identifier information metric
(IIM). This has direct applications to code reuse, because code
that is less domain specific is more likely to be reused.

Finally, we present a detailed case study applying these
new data-driven complexity metrics to the popular rhino

ttotterd
Typewritten Text
Allamanis, M., & Sutton, C. (2013). Mining source code repositories at massive scale using language modeling. In Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on. (pp. 207-216). IEEE Computer Society. doi: 10.1109/MSR.2013.6624029

JavaScript compiler. On rhino the identifier information metric
is successful at differentiating utility classes from those that
implement core logic, despite never having seen any code from
the project in its training set.

II. LANGUAGE MODELS FOR PROGRAMMING LANGUAGES

Source code has two related but competing purposes. First,
it is necessary to provide unambiguous executable instructions.
But it also acts a means of communication among program-
mers. For this reason, it is reasonable to wonder if statistical
techniques that have proven successful for analyzing natural
language will also be useful for analyzing source code.

In this paper, we use language models (LM), which are
probability distributions over strings. An LM is trained on
a corpus of strings from the language, with the goal of
assigning high probability to strings that a human user of
a language is likely to write, and low probability to strings
that are awkward or unnatural. For n-gram language models
(Section II-A), training is programming language independent
since the learning algorithms do not change when we develop
a model for a new programming language.

Because they are grounded in probability theory, LMs afford
the construction of a variety of tools with exciting potential
uses throughout software engineering. First, LMs are naturally
suited to predicting new tokens in a file, such as would be used
by an autocompletion feature in an IDE, by computing the
model’s conditional probability over the next token. Second,
LMs provide a metric for assessing whether source code has
been written in a natural, idiomatic style, because code that is
more natural is expected to have higher probability under the
model. Finally, we can use tools from information theory to
measure how much information (in the Shannon sense) each
token provides about a source file (Section II-B).

LMs have seen wide use in natural language processing,
especially in machine translation and speech recognition [2].
In those areas, they are used for ranking candidate sentences,
such as candidate translations of a foreign language sentence,
based on how natural they are in the target language. To our
knowledge, Hindle et al [1] were the first to apply language
models to source code.

A. n-Gram Language Models

Language models are generative probabilistic models. By
the term generative we mean that they define a probability
distribution from which we can sample and generate new
code. Given a string of tokens t0, t1 . . . tM , an LM assigns a
probability P (t0, t1 . . . tM) over all possible token sequences.
As there is an infinite number of possible strings, obviously
we cannot store a probability value for every one. Instead we
need simplifying assumptions to make the modelling tractable.
One such simplification, which has proven to be effective is
practice, forms the basis of n-gram models.

The n-gram language model makes the assumption that the
next token can be predicted using only the previous n − 1
tokens. In mathematical terms, the probability of a token tm
conditioned on all of the previous tokens t0 . . . tM is a function

only of the previous n − 1 tokens. This assumption implies
that we can write the joint probability of an entire string as

P (t0 . . . tM) =

M∏
m=0

P (tm|tm−1 . . . tm−n+1). (1)

To use this equation we need to know the conditional probabil-
ities P (tm|tm−1 . . . tm−n+1) for each possible n-gram. This
is a table of V n numbers, where V is the number of unique
words in the language. These are the parameters of the model
that we will learn from a training corpus of text that is written
in the language of interest. The simplest way to estimate these
parameters is to use the empirical frequency of the n-gram in
the training corpus, that is,

P (tm|tm−1 . . . tm−n+1) =
c(tm . . . tm−n+1)

c(tm−1 . . . tm−n+1)
, (2)

where c(·) is the count of the given n-gram in the training
corpus. However, in practice this simple estimator does not
work well, because it assumes that n-grams that do not occur
in the training data have zero probability. This is unreasonable
even if the training corpus is massive, because languages
constantly use sentences that have never been uttered before.
Instead, n-gram models are trained using smoothing methods
that reserve a small amount of probability to n-grams that have
never occurred before. For detailed information on smoothing
methods, see Chen and Goodman [3].

B. Information Theory & Language

Since n-grams assign probabilities to sequences of tokens
we can interpret code both from a probabilistic and an infor-
mation theoretic point of view. Given a probability distribution
P (·)

Q(t0, t1 . . . tM) = − log2(P (t0, t1 . . . tM)) (3)

is the log probability of the token sequence t0 . . . tM . We
refer to this measure as the n-gram log probability (NGLP).
Intuitively this is a measure of “surprise” of a (fictional)
receiver when she receives the token sequence. For example,
in Java, tokens such as ; or { can be predicted easily, and
thus are not as surprising as variable names.

The standard way to evaluate a language model is to collect
a test corpus t′0 . . . t

′
M that was not used to train the model,

and to measure how surprised the model is by the new corpus.
The average amount of surprise per token is given by

H(t′0 . . . t
′
M) =

Q

M
= − 1

M

M∑
m=0

log2 P (t
′
m|t′m−1 . . . t′m−n+1),

(4)
and is called the cross entropy. Cross entropy measures how
well a language model P predicts each of the tokens in
turn, while perplexity, equivalent to 2H(.), shows the average
number of alternative tokens at each position. A low cross
entropy means that the string is easily predictable using P .
If the model predicts every token t′m perfectly, i.e., with a
probability of 1, then the cross entropy is 0. A LM that
assigns low cross entropy to a test sequence is better, since

TABLE I: Top Projects by Number of Forks in Corpus

Name # forks Description
hudson 438 Continuous Integration - Software Engineering
grails-core 211 Web Application Framework
Spout 204 Game - Minicraft client
voldemort 182 Distributed key-value storage system
hector 166 High level Client for Cassandra (key-value store)

it is on average more confident when predicting each token.
Cross entropy also has a natural interpretation. It measures the
average number of bits needed to transfer the string t′0 . . . t

′
M

using an optimal code derived from the distribution P . For
this reason, cross entropy is measured in “bits”.

III. THE GITHUB JAVA CORPUS

To our knowledge, research on software repositories, with
the exception of Gabel and Su [4] and Gruska et al. [5], has
focused on small curated corpora of projects. In this section
we describe a new corpus that contains thousands of projects.
Large corpora present unique challenges. First at that scale it
is impractical to compile, or fully resolve code information
(e.g. fully resolved AST) since most of the projects depend
on a large and potentially unknown set of libraries and
configurations. Therefore, there is a need for methods that can
perform statistical analysis from large amounts of code while
being generic or even programming language independent. To
achieve this we turn to probablistic language models (Section
II). A second challenge with large corpora is the need to
automatically exclude low-quality projects. GitHub’s1 social
fork system allows us to approximate that because low quality
projects are more rarely forked.

Although Java is the 3rd most popular language in GitHub
it is only the 19th when considering the average forks per
project (1.5 forks per project). Among the top languages and
across the projects that have been forked at least once, Java
comes 23rd with an average of 20 forks per project. This is
partially due to the fact that some projects, such as Eclipse,
split their codebase into smaller projects that are more rarely
forked. It may also be attributed to Java being more difficult
compared to other popular languages, such as JavaScript.

We processed GitHub’s event stream, provided by the
GitHub Archive2 and filtered individual projects that were
forked3 at least once. For each of these projects we collected
the URL, the project’s name and its language. Filtering by
forks aims to create a quality corpus: Since we filter away the
majority of projects that have a below-average “reputation”,
we hope to obtain code of better quality. This criterion is
not clear-cut and we could have chosen another method
(e.g. GitHub’s star system), but we found this preprocessing
sufficient.

We then downloaded (clone in Git’s terms) the full
repositories for all remaining Java projects and removed any

1http://www.github.com
2http://www.githubarchive.org
3In GitHub’s terminology a fork is when a project is duplicated from its

source to allow variations that may later be merged back to the original project

TABLE II: Top Projects by LOC in Corpus

Name kLOC Description
openjdk-fontfix 4367 OpenJDK fork, fixing fonts
liferay-portal 4034 Enterprise Web Platform
intellij-community 3293 IDE for Java
xtext 3110 Eclipse for DSLs
platform 3084 WSO2 entrerprise middleware platform

TABLE III: Java Corpus Characteristics

Train Test
Number of Projects 10,968 3,817
LOC 264,225,189 88,087,507
Tokens 1,116,195,158 385,419,678

duplicates: We found about 1,000 projects that shared common
commit SHAs indicating that they were most likely forks
of the same project (but not declared on GitHub) and we
manually picked those projects that seemed to be the original
source. Project duplicates need to be removed to avoid a “leak”
of data from the test to the train projects and also to create
a more representative corpus of repositories. Many of the
duplicate projects were Android subsystems and that would
have skewed our analysis towards those projects.

We ended up with 14,807 projects across a wide variety of
domains amounting to 352,312,696 lines of code in 2,130,264
files. Tables I and II present some projects in our corpus.
Only files with the .java extension were considered. We split
the repository 75%-25% based on the lines of code assigning
projects into either the training or test set. The characteristics
of the corpus are shown in Table III and the corpus can be
found online4. We tokenized and retrieved the AST of the
code, using Eclipse JDT. Any tokens representing comments
were removed. From the ASTs we are able to determine if
identifiers represent variables, methods or types.

A potential limitation of the resulting corpus is that it
focuses on open source projects, which limits the type of
domains included. For example, it is more probable to find
projects about programming tools than banking applications.
Second, since GitHub has gained popularity relative recently
some mature and low-activity projects may not be present.

IV. PROPERTIES OF A LARGE SOURCE CODE CORPUS

In this section we explore coding practice at scale using the
GitHub Java corpus (Section III). By examining the training
corpus tokens we observe (Figure 1) Zipf’s law, usually found
in natural languages. Zipf’s law states that the frequency of
a token is inversely proportional to its rank in a hypothetical
(sorted) frequency table.

We are now interested in studying how original identifiers
are introduced across projects. Some identifiers, such as i or
str are far more common, but projects also introduce origi-
nal identifiers such as requiredSnapshotScheduling.
Source code identifiers, the most diverse type of tokens in
code, have strong semantic connotations that allow an intuitive

4http://groups.inf.ed.ac.uk/cup/javaGithub/

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

F
re

qu
en

cy

Count of Token Appearances (rank)

Fig. 1: Zipf’s law for tokens (log-log axis) in the train corpus.
The x-axis shows the number of times a single token appears.
The y-axis shows the number (frequency) of tokens that have
a specific count. The train corpus contains 12,737,433 distinct
tokens. The slope is a = −0.853.

TABLE IV: Original Identifiers Introduced per kLoC for All
Test Projects (statistics across projects)

Method Type Variable Total
Mean 20.98 14.49 21.02 56.49
Median 17.93 12.07 15.13 51.72
St.Dev. 17.93 13.11 22.16 38.80

understanding of the code [6]. We study three types of
identifiers:

• variable and class field name identifiers;
• type name identifiers such as class and interface names;
• method (function) name identifiers.

In this analysis, we ignore literals, identifiers in package
declarations and Java annotations for simplicity. The three
types of identifiers studied represent different aspects of code.

First, we look at the test corpus and compute the number of
original identifiers (not seen in the training set) per kLOC for
each project (Table IV). We observe that type identifiers are
more rarely introduced compared to method or variable identi-
fiers, which are introduced at about the same rate. Interestingly,
variable identifiers have a larger standard deviation, indicating
that the actual rate varies more across projects compared to
other identifiers. As we will discuss later, this is probably due
to the multiple domains in our corpus. Surprisingly, the results
indicate that although test projects are not related to the train
projects they tend to use the same identifier “vocabulary”.

Figure 2 shows the rate at which original identifiers are
introduced in the training corpus as we increase the amount
of code seen. We randomize the order of the source code files
and average over a set of five random sequences. According
to the data the identifier introduction rate decreases as we
observe more lines of code. According to Figure 2, initially,
variable and method identifiers are introduced at about the
same proportion with type identifiers prevailing. However, as
we observe just one order of magnitude more code, variable
and method identifiers prevail. This transitional effect can be
interpreted as the introduction of the basic type vocabulary
commonly reused across projects before reaching a steady
state. Finally, after having observed about a million lines

103 104 105 106 107 108

0.02

0.04

0.06

0.08

0.10

0.12

0.14

O
rig

in
al

Id
en

tifi
er

s
pe

rL
O

C
(tr

ai
n

se
t)

Type Identifiers
Method Identifers
Variable Identifiers

103 104 105 106 107 108

Lines of Code in Train Corpus

0

20

40

60

80

100

Pe
rc

en
to

f
O

rig
in

al
Id

en
tifi

er
s

Fig. 2: The median number of original identifiers introduced
per line of code for each identifier type as more data is
observed (i) as an absolute value (top) and (ii) as a percentage
of the total identifiers introduced (bottom)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

3 3.5 4 4.5 5 5.5 6 6.5 7

F
re

qu
en

cy

Cross-entropy (bits)

Fig. 3: Distribution of project cross entropy (bits) in 3-gram
for test projects. µ = 4.86, σ = 0.64 bits.

of code variable identifiers become the predominant type of
identifiers accounting for almost 50% of the original identifiers
introduced. This effect can be attributed to the reuse of classes
and interfaces and to the fact that variable names are those that
bridge the class (type name) concepts to the domain specific
objects that a piece of code instantiates.

V. GIGA-SCALE LANGUAGE MODELS OF CODE

Now, we describe our model, a cross domain trigram model
that is trained on over a billion tokens of code. We train trigram
model on the training portion of our Java corpus and evaluate
it on the testing portion. As the corpus is divided at a project
level, we are evaluating the model’s ability to predict across
projects. The giga-token model achieves a cross entropy of 4.9
bits on average across the test corpus (Figure 3). Comparing to
the cross entropies of 6 bits reported by Hindle et al. [1], the
new model decreases the perplexity by an order of magnitude.
This result shows that cross-project prediction is possible at
this scale, overcoming problems with smaller scale corpora.

To better understand how n-gram models learn from source
code, in this section we study the learning process of these
models as more data is observed. We plot the learning curve
(Figure 4a) of five sample test projects as a function of
the number of lines of code used to train the LM. The
cross entropy of the sample projects decreases in a log-linear
fashion as more projects are used to train the model, as one
would expect because there is a diminishing returns effect to
enlarging the training corpus.

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

10
3

10
4

10
5

10
6

10
7

10
8

C
ro

ss
 e

nt
ro

py
 (

bi
ts

)

Lines of Code Trained

elasticsearch
hive

rhino
stanford-ner

zookeeper
Corpus

(a) Full Model

1.8

2

2.2

2.4

2.6

2.8

3

10
3

10
4

10
5

10
6

10
7

10
8

C
ro

ss
 e

nt
ro

py
 (

bi
ts

)

Lines of Code Trained

elasticsearch
hive

rhino
stanford-ner

zookeeper
Corpus

(b) Collapsed Model

0

0.2

0.4

0.6

0.8

1

10
4

10
5

10
6

10
7

10
8

%
 o

f
Id

en
ti

fi
er

s
of

 P
ro

je
ct

 S
ee

n

Lines of Code Trained

elasticsearch
hive

rhino
stanford-ner

zookeeper

(c) Identifier Coverage

Fig. 4: Learning curves and identifier coverage for 3-gram LM using 5 sample test projects and for the whole test corpus.

To obtain insight into the model, we can differentiate
between what it learns about the syntactic structure of code as
opposed to identifier usage: we define a new model, which
we call the collapsed model, based on a small change to
the tokenization process. Whenever the tokenizer reads an
identifier or a literal it outputs a special IDENTIFIER or
LITERAL token instead of the actual token. The rest of the
model remains the same. Now our tokenized corpus contains
only tokens such as keywords (e.g. if, for, throws, and)
and symbols (e.g. {, +) that represent the structural side of
code. This means that the model is expected to predict only
that an identifier will be used, but not which one. Using
this tokenization, we now plot the learning curves for five
sample test projects as the n-gram learns from more training
data (Figure 4b). The cross entropy achieved is much lower
than the one achieved by the full model. This signifies the
importance of the identifiers when learning and understanding
code: Identifiers and literals are mostly responsible for the
“unpredictability” of the code.

Interestingly, the learning curve in Figure 4b also shows that
the model has learned all that it can about syntax. After only
about 100,000 lines of code in the training set, the performance
of the collapsed model levels off, indicating that the n-gram
model cannot learn any more information about the structure
of the code. This contrasts to the fact that the original n-gram
model (Figure 4a) continues to improve its performance even
after having seen millions of lines of code, suggesting that the
continuing decrease in cross entropy in the full model is due
to enhanced learning of identifiers and literals.

Additional evidence is given by our study in Section IV.
In that section, we saw that original identifiers are constantly
introduced but at a constantly smaller rate. To verify this result,
Figure 4c plots the percentage (coverage) of identifiers of each
of the sample projects as we increase the size of the training
set, averaged over ten random sequences of training files.
When trained on the full training corpus, the n-gram model
sees about 95% of the identifiers present in the sample test
projects. This provides additional support for the explanation
that the n-gram model (Figure 4a) continues to become better

as it is trained on more data because it becomes able to better
predict the identifiers.

A. Predicting Identifiers

Figure 5 shows a sample elasticsearch snippet tagged
with the probabilities assigned by two n-gram models: the n-
gram model using all tokens (left) and the collapsed version.
According to Figure 5 the collapsed n-gram model is much
more confident at predicting the type of the tokens that are
following, especially when the type of the token is an iden-
tifier. However, when we try to predict the actual identifiers
(Fig. 5 left) the task is much harder. For example, it is hard for
the model to predict that a ForkJoinTask object is about
to be created (line 4; p = 5.5 · 10−7) or that doSubmit will
be called (line 9; p = 1.4 · 10−7) although it is about 45.5%
probable that an identifier will follow.

Nevertheless, the model has managed to capture some
interesting patterns with identifiers. For example, the n-
gram assigns a reasonably high probability (p = 0.028) to
NullPointerException when the previous tokens are
throw new. It also considers almost definite (p = 0.86)
that when an identifier named task is tested for equality,
the second predicate will be null (line 2).

B. Learnability of Identifiers

In the previous sections our results indicate that learning
to predict code from a n-gram perspective is difficult mainly
because of the identifiers. It seems that identifiers are re-
sponsible for the greatest part of code cross entropy while
they are those that allow the expressiveness in programming
languages. Using the findings in Section IV, we now examine
how different types of identifiers are learned.

Figure 6 depicts the learning curves for two sample test
projects we previously used. For each project we plot the
learning curve of a n-gram model trained collapsing all identi-
fiers except from a specific type. Figure 6c shows the number
of extra bits per token required to predict each identifier
type letting us infer the difficulty of predicting each type of
identifier. As expected the fully collapsed token sequences are

10−8

10−6

10−4

10−2

100

1 public void execute(Runnable task) { public void execute(Runnable task) {

2 if (task == null) if (task == null)

3 throw new NullPointerException(); throw new NullPointerException();

4 ForkJoinTask<?> job; ForkJoinTask<?> job;

5 if (task instanceof ForkJoinTask<?>) // avoid re-wrap if (task instanceof ForkJoinTask<?>) // avoid re-wrap

6 job = (ForkJoinTask<?>) task; job = (ForkJoinTask<?>) task;

7 else else

8 job = new ForkJoinTask.AdaptedRunnableAction(task); job = new ForkJoinTask.AdaptedRunnableAction(task);

9 doSubmit(job); doSubmit(job);

10 } }

Fig. 5: Token heatmap of a ForkJoinPool snippet on the elasticsearch project. The background color of each token
represents the probability (color scale—left) assigned by two 3-gram models. The left (right) snippet shows the token
probabilities of the full (collapsed) 3-gram. The underlined tokens are those that the LM returns the probability for a previously
unseen (UNK) token.

3

3.5

4

4.5

5

5.5

10
3

10
4

10
5

10
6

10
7

10
8

C
ro

ss
 e

n
tr

o
p
y
 (

b
it

s)

Lines of Code Trained

methods
types

variables
no identifiers

(a) Token learning in elasticsearch

3

3.5

4

4.5

5

5.5

10
3

10
4

10
5

10
6

10
7

10
8

C
ro

ss
 e

n
tr

o
p
y
 (

b
it

s)

Lines of Code Trained

methods
types

variables
no identifiers

(b) Token learning in rhino

0

0.2

0.4

0.6

0.8

1

10
3

10
4

10
5

10
6

10
7

10
8

L
o
ss

 o
f

C
ro

ss
 e

n
tr

o
p
y
 (

b
it

s)

Lines of Code Trained

methods
types

variables

(c) Average cross entropy gap for each
token type on five sample projects

Fig. 6: Learning Curve for n-gram per token type cross entropy

the easiest to predict and have consistently the lowest cross
entropy across projects.

The collapsed n-gram using method name identifiers has the
second best cross entropy. Predicting method names adds on
average only 0.2 bits per token. This means that API calls are
significantly more predictable compared to types and variable
names. Predicting type identifiers comes second in difficulty
after method names. Thus type identifiers are harder to predict
in code increasing the cross entropy on average by about 0.5
bits per token.

Finally, variable name identifiers increase the cross entropy
by about 0.9 bits, reducing the token probabilities by almost
an order of magnitude compared to the full collapsed n-gram
LM. Again this shows the significance of the variable names
to the domain of each project and the (obvious) importance
they have when appearing in a sequence of code tokens.

The most surprising result (Figure 6c) is the average number
of extra bits of cross entropy required for each type of token:
the model performance on methods and types does not signif-
icantly improve, irrespectively of the amount of lines of code
we train it. In contrast, the n-gram model gradually becomes
better at predicting variable name identifiers, although they are
harder to learn. This is surprising given our prior knowledge
for variable names: Although in general they are harder to
predict, they are more easily learned in large corpora. This
implies that from the large number of distinct variable names
few of them are frequently reused and are more context
dependent. Looking back at Figure 5 we can now better

explain why in line 1 the variable name task is fairly easy
to predict compared to the Runnable type name. Thus when
creating code completion systems variable name prediction
will only improve as more data is used.

VI. CODE ANALYSIS USING GIGA-SCALE MODELS

In this section, we apply the giga-token language model to
gain new insights into software projects. First, we consider
whether cross entropy could be used as a code complexity
metric (Section VI-A), as a complement to existing metrics
such as cyclomatic complexity. Then we examine how cross
entropy varies across files (Section VI-B) and (Section VI-C)
across projects. We find that on average interfaces appear
simpler than classes that implement core logic, and projects
that most define APIs or provide examples have lower cross
entropy than research code. Finally, we define a new metric,
called the identifier information metric, that attempts to mea-
sure how domain specific a file is based on how unpredictable
its identifiers are to a language model (Section VI-D3). We
find that the identifier information metric can successfully
differentiate utility classes from core logic, even on projects
that do not occur in the LM’s training set.

A. n-gram Log Probability as a Data-driven Code Complexity
Metric

Code complexity metrics quantify how understandable a
piece of code is and are useful in software quality assurance.
A multitude of metrics have been proposed [7], including Mc-
Cabe’s cyclomatic complexity (CC) and lines of code (LOC).

TABLE V: Test Corpus Method Complexity Statistics

µ p50% p75% p90% p95% p99%
LOC 8.65 3 9 19 29 67
Cyclomatic 2.13 1 2 4 6 15
Cross Entropy 5.62 5.42 6.56 7.74 8.59 10.44
Collapsed
Cross Entropy 2.67 2.48 2.99 3.59 4.68 6.17

In this section, we consider whether n-gram log probability
(NGLP) can be used as a complementary complexity metric.
The intuition is that code that is more difficult to predict is
more complex. First it is interesting to examine the distribution
of the existing complexity metrics across a large test corpus.
This is shown in Figures 7a and 7b. We see that both CC and
LOC follow a power law, in which most methods have low
values of complexity but there is a long tail of high complexity
methods. For this idea to be credible, we would expect NGLP
to be correlated with existing complexity metrics but is distinct
enough to add information to the existing metrics.

Nevertheless, NGLP differs from the other measures: CC
focuses on the number of linearly independent paths in the
code, ignoring their length. Conversely, LOC solely considers
the length of a method ignoring control flow. In the remainder
of this section we will see that NGLP combines both lines of
code and independent linear paths of source code, providing
a complementary indicator of code complexity.

First, we examine the correlation between the NGLP and the
existing complexity metrics on the methods in the test corpus.
Using Spearman’s rank correlation we find that NGLP and the
metrics are related (ρ = .799 and ρ = .853 for CC and LOC
respectively). This is higher than the one between LOC and
CC (ρ = .778). The lower panels of Figures 7a and 7b present
a histogram of NGLP and the other methods. Overall NGLP
seems to be a reasonable estimator of method complexity.

Table V shows the mean and some of the percentiles of the
complexity metrics across the methods in the test corpus. One
interesting observation is that 50% of Java methods are 3 lines
or less. Manually inspecting these methods we find accessors
(setters and getters) or empty methods (e.g. constructors).
We also examine methods for which LOC and CC disagree.
Unsurprisingly, methods with high LOC but low CC tend to be
test and benchmark methods. For example, the elasticsearch
project’s class AbstractSimpleIndexGatewayTests
contains the testSnapshotOperations method with
CC of 1 and LOC 116. Similarly, the main method of
PureCompressionBenchmark consists of 40 lines of
code but CC is only 2. On the other end of the spec-
trum we find methods that act as lookup tables contain-
ing multiple branches. For example the stats method
of the NodeService class (LOC: 3, CC: 11) or the
create method of the WordDelimiterTokenFactory
class (LOC: 3, CC: 10) contain a series of multiple condition-
als. Neither of these methods are necessarily very complex.

When LOC and CC disagree, what does NGLP do? Figure
8 attempts to answer this question comparing the complexity
of test corpus methods. The x-axis (Figure 8) shows the

100 101 102

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Fr
eq

ue
nc

y
of

Co
m

pl
ex

ity
Va

lu
e

100 101 102

McCabe’s Cyclomatic Complexity

50000
100000
150000
200000
250000
300000
350000

Lo
g

Pr
ob

ab
ilit

y

10−6 10−5 10−4 10−3 10−2 10−1

Frequency of Assigned Log Probability

(a) Cyclomatic Complexity Distribution and NGLP per
Method. CC fits a power law with slope a = −1.871.

100 101 102

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
eq

ue
nc

y
of

Co
m

pl
ex

ity
Va

lu
e

100 101 102

Lines of Code

50000

100000

150000

200000

Lo
g

Pr
ob

ab
ilit

y

10−6 10−5 10−4 10−3 10−2 10−1

Frequency of Assigned Log Probability

(b) Lines of Code Distribution and NGLP per Method.
LOC fit a power law with slope a = −1.624.

Fig. 7: Histograms (log-scale) of 5,277,844 Project Methods
on the test corpus for McCabe’s CC and LOC. The distribution
of NGLP (collapsing identifiers) for these methods is shown
below each histogram. Methods with complexity exceeding
the 99.99 percentile are not shown.

-20

-10

0

10

20

30

40

50

60

70

-80 -60 -40 -20 0 20 40 60

D
iv

er
g

en
ce

 o
f

L
o

g
 P

ro
b

ab
il

it
y

 R
an

k

Rank(cyclomatic) - Rank(LOC)

from max ranked metric
from min ranked metric

Fig. 8: From the test methods we sample 10,000 sets of 100
and rank them using the three metrics. On the y-axis we plot
the average disagreement intensity between NGLP rank and
the min and max of either CC or LOC rank.

“disagreement intensity” (DI) i.e., difference between the CC
and LOC rank of a method. We bin the methods based on
the CC vs LOC DI and plot the average DI between NGLP
and the maximum and minimum rank of the method by either
CC or LOC. We see that, on average, when LOC ranks a
method higher, NGLP follows that metric since DI between
NGLP and LOC tends to zero. As CC considers a piece of
code more complex compared to lines of code, NGLP ranks

the snippet’s complexity slightly lower but never lower than
25 positions from that metric (DI between NGLP and CC is
never less than −25). Therefore, NGLP seems to be a trade-
off between these two metrics, avoiding cases in which either
LOC or CC underestimate the complexity of a method.

Finally, we can gain insight by examining the cross entropy
using the collapsed model. Methods with high (collapsed)
cross entropy tend to contain highly specific and complex
code. For example, in the elasticsearch project we find
methods that are responsible for parsing queries. When looking
at cross entropy, most methods have a similar (rank-wise)
complexity. Nevertheless, there are minor differences: methods
with relatively lower cross entropy compared to CC and LOC
tend to excessively use structures such as multiple nested ifs
(e.g. elasticsearch unwraps some loops for performance). On
the other hand methods with relatively higher cross entropy
are lengthy methods performing multiple tasks that do not
have very complicated execution paths but include series of
code fragments closely coupled with common variables. For
example, the PluginManager.downloadAndExtract
method of elasticsearch is 163 lines of code long with CC 28
and collapsed cross entropy 1.75 bits, and is placed by cross
entropy 10 positions higher compared to the other metrics.
These methods can probably be converted into helper objects
and their variables to its fields.

In summary, from this analysis we observed that NGLP
and cross entropy offer a different view of code complexity,
quantifying the trade-off between branches and LOC and sub-
suming both metrics. Compared to other complexity metrics,
such as LOC, McCabe’s and Halstead complexity, the NGLP
score rather than solely depending on intuition, also depends
on data. This means that NGLP adapts its value based on
the training corpus and is not “hard-wired”. An anonymous
reviewer argued that code complexity may be solely related
to structural complexity, this would indicate that we should
used the collapsed n-gram model. However, we argue that
complexity should measure the difficulty of predicting code.
This means that a piece of code with simple structure but
many domain specific terms is more complex, compared to
one that contains more common identifiers, since it would be
harder for a human to understand. We also believe that this is a
better approach because it is able to capture subtle patterns and
anti-patterns that were previously too complicated to factor in
complexity metrics. Given the promising results in this section,
we propose that practitioners replace hard-coded complexity
metrics with data-driven ones.

B. Log Probabilities at a Project Level

Previously, we studied n-gram model log probability and
cross entropy as complexity metrics. In this section, we present
how NGLP varies across files. Figure 9 shows the distribution
of NGLP across files in a subset of test projects. Each project
has its own distribution but there are some common aspects.
Most of the files have NGLP constrained on a small range,
while there is a small number of files with very large or very
small values.

0.1

0.3

0.5 elasticsearch

0.1

0.3

0.5 hive

0.1

0.3

0.5 rhino

0.1

0.3

0.5 stanford-ner

102 103 104

Code Log Probability of Project Files

0.1

0.3

0.5 zookeeper

Fig. 9: Distribution of the n-gram log probability of files (in
semilogx scale) of five sample test projects.

Since in Java every file is a class or an interface, this
allows us to extend our observations to the design and cod-
ing of classes and get insight into object-oriented software
engineering practice. From manual inspection of the sample
projects, the files with the lowest NGLP are those that contain
interfaces. In the rhino project the average NGLP of interfaces
is 215 while classes have an average of 7153. The same is
the case with cross entropy. This observation is interesting
and shows the significance of interfaces to the simplification
of software packages both from an architectural viewpoint
and the perspective of code readability. Interfaces (APIs)
are the simplest part of each project, abstracting and hiding
implementation details. For practitioners, this translates that
when designing and supporting APIs their NGLP has to be
kept low.

In the middle of the NGLP spectrum lie classes and tests
with well defined responsibilities implementing “helper” com-
ponents. Finally, the most complex (high NGLP) classes are
those responsible for the core functionality of the system. They
provide complex logic responsible for integrating the rest of
the components and core system functionality.

C. n-gram Cross Entropies Scores across Projects

The previous section discussed how NGLP differs across
files in a single project. We now focus to the cross entropy
variance across projects. Figure 3 shows the distribution of
cross entropies of all test projects. Manually inspecting the
projects, we make rough categorizations. At the lower cross
entropy range we find two types of projects:

• Projects that define APIs (such as jboss-jaxrs-api spec
with cross entropy of 3.2 bits per token). This coincides
with our observation in Section VI-D1 that interfaces have
low NGLP.

• Projects containing either example code (such as maven-
mmp-example and jboss-db-example with cross entropy
3.23 and 2.97 bits per token respectively) or template code
(such as Pedometer3 with 2.74 bits per token —a small
project containing the template of an Android application
with minor changes). Intuitively example projects are sim-

ple and contain code frequently replicated in the corpus.

Projects with the high cross entropy vary widely. We recognize
two dominant types:

• Projects that define a large number of constants or act
as “databases”. For example CountryCode (cross entropy
9.88 bits per token) contains one unique enumeration of
all the country codes according to ISO 3166-1. Similarly,
the text project (7.19 bits per token) dynamically creates
a map of HTML special characters.
• Research code, representing new or rare concepts and

domains. Such projects include hac (Hierarchical Agglom-
erative Clustering) with cross entropy of 7.84 bits per token
and rlpark, a project for “Reinforcement Learning and
Robotics in Java” (cross entropy 6.37 bits per token).

For both of these categories, as discussed in Section V, the
identifiers and literals pose the biggest hurdle for modeling
and predicting their code. Code files of the first kind are
usually unwanted in codebases and can be converted to more
efficient and maintainable structures. The latter type of projects
represent code that contains new “terms” (identifiers) repre-
senting domains not in the train corpus. Thus cross-entropy can
translate to actionable information by detecting new concepts
and code smells.

D. Entropy and the Rhino Project: A Case Study

The entropy “lens” that n-grams offer allows for a new
way of examining source code. In this section, we present a
empirical case study of a single project using this perspective.
From the test projects we chose rhino to perform a closer
analysis of the characteristics of its codebase. rhino5 is an
open-source implementation of JavaScript in Java maintained
by the Mozilla Foundation. It contains code to interpret, debug
and compile JavaScript to Java. rhino also contains APIs to
allow other applications to reuse its capabilities.

1) File Cross Entropy: Examining how cross entropy varies
across files, we notice that files that have low cross en-
tropy are mostly interfaces such as Callable (2.75 bits),
Function (3 bits) and Script (3.18 bits). In the middle
of the spectrum we find classes such as ForLoop (3.94 bits),
InterpreterData (4.5 bits). Finally, the most complex
classes are those implementing the core rhino functionality
such as Parser (5.06 bits), ClassCompiler (6.06 bits)
and ByteCode (7.86 bits) responsible for parsing Javascript
and creating JVM code for execution. Empirically, we observe
that classes with the highest cross entropy combine interfaces
and the various components of the system to provide core
system functionality (i.e. a JavaScript compiler for JVM in
rhino’s case).

2) Learning from files: In this section, we ask whether all
files are learned at the same rate. Figure 10 shows rhino’s
learning curve plotting the distribution that cross entropy
follows. The darkest colored area represents the middle 10% of
the cross entropies, while as the color fades we increasingly

5https://www.mozilla.org/rhino/

103 104 105 106 107 108

Lines of Code

3

4

5

6

7

8

Cr
os

se
nt

ro
py

(b
its

)

Fig. 10: rhino 3-gram learning curve. The graph shows the
variance of cross entropies across the project files.

4

4.5

5

5.5

6

10
3

10
4

10
5

10
6

10
7

10
8

C
ro

ss
 e

n
tr

o
p

y
 (

b
it

s)

Lines of Code Trained

example
deprecatedsrc

src
tests
tools

xmlimplsrc

Fig. 11: rhino 3-gram learning per project folder showing how
cross entropy as the LM is trained on more data.

add 10% of the files. We observe (Figure 10) that not all
files in the project have similar learning behavior. Although
the median of the cross entropy is decreasing, the variance
across the files increases. This suggests that classes differ in
their learnability: The most predictable class (Callable)
decreases its cross entropy by 58.22%, on the other hand,
classes with high density of identifiers such as (ByteCode)—
an enum of bytecodes—increases its cross entropy by almost
72%.

Finally, we study cross entropies and learnability across
rhino’s project folders. According to Figure 11 all folders
are learned at a similar rate with the only exception of the
example folder. This confirms the observation in Section
VI-C that projects with example code have low cross entropy.

3) Understanding Domain Specificity: Previously we found
that identifiers are responsible for the largest part of the cross
entropy of source code. We take advantage of this effect
combined with the massive cross-domain nature of our corpus
to get an indication of the domain specificity of files.

For rhino’s files we compute the difference of the cross
entropy under the collapsed and full n-gram LMs. Subtracting
these entropies returns the “gap” between structure and iden-
tifiers which we name Identifier Information Metric (IIM).
IIM is an approximate measure of the domain specificity
of each file, representing the per token predictability of the
identifier “vocabulary” used. The files with small IIM are the
least specific to rhino’s domain. For example, we find classes

such as UintMap (1.42 bits), NativeMath (1.18 bits) and
NativeDate (1.47 bits) and interfaces such as Callable
(0.76 bits), JSFunction (0.84 bits) and Wrapper (1.57
bits).

On the other hand classes with large IIM are highly specific
to the project. Here we find classes such as ByteCode
(8.68 bits), CompilerEnvirons (4.55 bits) and tests like
ParserTest (4.52 bits) that are specific to rhino’s domain.
Thus, scoring classes by IIM can help build recommenda-
tion systems allowing practitioners to identify reusable code.
Overall, this observation is interesting since it implies that by
looking at the identifiers and how common they are in a large
corpus, we can evaluate their reusability for other projects or
find those that can be replaced by existing components. IIM
may also be helpful in code navigation tools, allowing IDEs
to highlight the methods and classes that are most important
to the program logic.

VII. RELATED WORK

Software repository mining at a large scale has been studied
by Gabel and Su [4] who focused on semantic code clones,
while Gruska et al. [5] focus on cross-project anomaly de-
tection. However, this work does not quantify how identifier
properties vary, since it ignores variable and type names.
Search of code at “internet-scale” was introduced by Linstead
et al [8]. Another GitHub dataset, GHTorrent [9] has a different
goal compared to our corpus, excluding source code and
focusing on users, pull requests and all the issues surrounding
social coding.

From a LM perspective, the pioneering work of Hindle et
al [1] was the first to apply language models to programming
languages. They showed that the entropy of source code was
much lower than that of natural language, and that language
models could be applied to improve upon the existing comple-
tion functionality in Eclipse. We build on this work by showing
that much larger language models are much better at prediction
and are effective at capturing regularities in style across project
domains. We also present new information theoretic tools for
analyzing code complexity, explored in a detailed case study.

A different way of machine learning applied to source code
classification has been used by Choi et al [10] for detecting
malicious code. Apart from autocomplete, code LMs could
be applied in programming by voice applications [11], API
pattern mining [12] and clone search [4].

Finally, the role of identifiers has been studied by Liblit et
al [13] from a cognitive perspective, while their importance in
code understanding has been identified by Kuhn et al. [14].

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we present a giga-token corpus of Java code
from a wide variety of domains. Using this corpus, we trained
a n-gram model that allowed us to successfully deal with token
prediction across different project domains. Our experiments
found that using a large corpus for training these models on
code can increase their predictive capabilities. We further
explored how the most difficult class of tokens—namely

identifiers—affect the training procedure and quantified the
effect of three types of identifiers. The identifiers seem to have
a significant role when mining code.

Using the trained n-gram model we explored useful infor-
mation theoretic tools and metrics to explain and understand
source code repositories, thanks to the corpus’ scale. Using
rhino we explored how log probability and cross entropy help
us identify different various aspects of the project.

In the future, from the pure token prediction perspective we
can extend and combine n-gram LMs with other probabilistic
models that can help us achieve better prediction, especially of
identifiers. The various metrics presented can implemented in
large codebases to assist code reuse, evaluate code complexity
and assist code navigation and code base visualization.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Premkumar Devanbu
and Prof. Andrew D. Gordon for their insightful comments and
suggestions. This work was supported by Microsoft Research
through its PhD Scholarship Programme.

REFERENCES

[1] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness
of software,” in Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 2012, pp. 837–847.

[2] J. Martin and D. Jurafsky, Speech and language processing. Prentice
Hall, 2000.

[3] S. Chen and J. Goodman, “An empirical study of smoothing techniques
for language modeling,” in Proceedings of the 34th annual meeting on
Association for Computational Linguistics. Association for Computa-
tional Linguistics, 1996, pp. 310–318.

[4] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2010, pp. 147–156.

[5] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from 6,000
projects: lightweight cross-project anomaly detection,” in ISSTA, vol. 10,
2010, pp. 119–130.

[6] P. Bourque and R. Dupuis, Guide to the Software Engineering Body of
Knowledge, SWEBOK. IEEE, 2004.

[7] S. H. Kan, Metrics and models in software quality engineering.
Addison-Wesley (Reading, Mass.), 2002.

[8] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software repositories,”
Data Mining and Knowledge Discovery, vol. 18, no. 2, pp. 300–336,
2009.

[9] G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a fire-
hose,” in Mining Software Repositories (MSR), 2012 9th IEEE Working
Conference on. IEEE, 2012, pp. 12–21.

[10] J. Choi, H. Kim, C. Choi, and P. Kim, “Efficient malicious code detec-
tion using n-gram analysis and SVM,” in Network-Based Information
Systems (NBiS), 2011 14th International Conference on. IEEE, 2011,
pp. 618–621.

[11] S. C. Arnold, L. Mark, and J. Goldthwaite, “Programming by Voice,
VocalProgramming,” in Assets: International ACM Conference on As-
sistive Technologies. Association for Computing Machinery, 2000, p.
149.

[12] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
helping to navigate the API jungle,” in ACM SIGPLAN Notices, vol. 40,
no. 6. ACM, 2005, pp. 48–61.

[13] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs,” in Proceedings of the 18th Annual
Psychology of Programming Workshop. Citeseer, 2006.

[14] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

