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Myosin 1E interacts with synaptojanin-1 and dynamin via its SH3
domain
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Abstract
Myosin 1E is one of two “long-tailed” human Class I myosins that contain an SH3 domain within
the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3
complex, an important regulator of actin polymerization. No binding partners for the SH3 domains
of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins
with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of
human Myo1E. Myosin 1E colocalizes with clathrin- and dynamin-containing puncta at the plasma
membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which
acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that
myosin 1E may contribute to receptor-mediated endocytosis.
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INTRODUCTION
Class I myosins are actin-dependent molecular motors expressed in various organisms from
yeast to humans. All class I myosins contain a head (motor) domain, a light chain-binding neck
domain, and a tail, which can be either short, consisting only of a membrane-binding tail
homology (TH)-1 domain, or long, with a proline-rich TH2 domain and an SH3 domain in
addition to TH1. In humans and mice, there are eight myosin I (Myo1) heavy chain genes, two
of which, Myo1E and F, are long tailed [1,2].

Long-tailed Myo1s are found in both lower and higher eukaryotes. Long-tailed yeast and
amoeboid Myo1s interact with activators of the Arp2/3 complex, an important regulator of
actin polymerization, and are involved in actin reorganization and endocytosis [3-9]. In
budding yeast, inactivation of Myo1 isoforms (Myo3p and Myo5p) leads to defects in
endocytosis [3]. In Acanthamoeba, various Myo1 isoforms are found in association with
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intracellular vesicles [10]. In Dictyostelium, long-tailed Myo1s (myo B, C, and D) are required
for fluid-phase endocytosis [11].

Myo1e, the mouse homolog of the human long-tailed myosin, Myo1E (formerly referred to as
Myo1C under the old myosin nomenclature [12]), has been previously localized to phagocytic
structures [13]. In this study, we report that Myo1E binds to two proline-rich proteins,
synaptojanin-1 and dynamin, via its SH3 domain, and can be observed to co-localize with
dynamin by immunofluorescence microscopy. Synaptojanin-1 and dynamin are involved in
clathrin-mediated endocytosis, and our observations of live cells using total internal reflection
fluorescence microscopy microscopy (TIRF) indicate that Myo1E colocalizes with clathrin-
and dynamin-containing puncta at the plasma membrane. Expression of Myo1E tail, which
acts in a dominant-negative manner, inhibits endocytosis of transferrin, which suggests that
interaction of Myo1E with endocytic proteins may play an important role in receptor-mediated
endocytosis.

MATERIALS AND METHODS
Materials

Antibodies: rabbit anti-Myo1E [14], mouse monoclonal anti-myc (Zymed), rabbit anti-
dynamin-2 (Oncogene), mouse anti-dynamin Hudy-1 (Upstate), anti-GFP (Molecular Probes).
Secondary antibodies labeled with Alexa-488 and -568 were purchased from Molecular Probes.

Cloning and recombinant protein expression
All constructs were produced using PCR cloning and vectors pEGFP-C1 and pLNCX2-EGFP
(BD Biosciences Clontech). Primers used to subclone Myo1E tail (including TH1, TH2, and
SH3 domains) flank AA 710-1109, primers for subcloning TH1 domain surround AA 717-920,
TH2 domain – AA 913-1060, TH3 domain - AA 1052-1109. GST-tagged proteins were
expressed using vector pGEX-5X-3 and affinity-purified according to standard protocols.
HeLa and Cos-1 cells were cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) and transfected using Lipofectamine.

Yeast two-hybrid screening
A Myo1E tail fragment (TH2+SH3) subcloned into pGBKT7-BD vector using primers
flanking aa 915-1109 was used to screen pretransformed human kidney Matchmaker cDNA
library (Clontech) following the manufacturer’s protocol. Positive clones were isolated and
verified by mating with yeast strains containing empty vector, lamin C (negative control), or
Myo1E bait construct (see Fig. 1). Synaptojanin-1 fragment identified using yeast two-hybrid
represents a splice form that has previously been isolated from embryonic muscle cells
(Genbank accession number DQ421853.1).

Binding and immunoprecipitation assays
Pull-down of proteins from rat brain extracts was performed as described [15]. For pull-downs
from HeLa or Cos-1 cells, cells were lysed in 20 mM imidazole (pH 7.2), 75 mM KCl, 1 mM
EGTA, 2.5 mM MgCl2, 1% NP-40 and centrifuged for 15 min. at 16,000 g. The supernatant
was incubated with GST-tagged proteins and glutathione agarose for 3 hrs at 4°C. Beads were
washed 4 times with phosphate-buffered saline containing 1% Triton X-100.

Synaptojanin-1 and dynamin were purified from rat brain essentially as described [16] except
that 20 mM Pipes pH 6.5, 1.2 M NaCl, 1 mM EDTA was used to elute bound dynamin and
synaptojanin-1 from endophilin-SH3-beads and a Source 15Q FPLC column (Amersham)
eluted with a linear gradient from 0 to 0.3 M NaCl was used to separate dynamin from
synaptojanin-1. For in vitro binding assays, purified proteins and glutathione agarose beads
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were incubated for 2 hrs at 4°C. The bead pellets and unbound proteins were separated by
centrifugation and processed for SDS-PAGE.

Deoxycholate-solublized, synapse-enriched rat brain extracts were prepared essentially as
described [17]. Extracts were pre-cleared with 1/10 volume protein-A-Sepharose (Amersham)
1 hr at 4°C, and incubated with 100 μg/ml anti-Myo1E antibody or rabbit IgG overnight at 4°
C. Protein-A-Sepharose (blocked with 5% BSA) was added at 1/10 dilution, and incubated 1
hr at 4°C. Pellets were washed 7×5 min with 10 mg/L BSA, 1 mM DTT, 1 mM EGTA, 0.2 M
KCl, 5 mM Mg-ATP, 1 mM Pefabloc, 50 mM Tris pH 7.4, 0.1% Triton X-100, and processed
for SDS-PAGE.

TIRF microscopy
Swiss3T3 cells stably expressing DsRed-clathrin were cultured in DMEM/10% FBS the
presence of 0.5 mg/ml G-418. Cells were transiently transfected with EGFP-tagged myosin
constructs using 3.4 μg total DNA and 10 μl Lipofectamine 2000 per 35 mm dish. For analysis
of dynamin and Myo1E localization, untransfected Swiss3T3 cells were transiently transfected
with EGFP-Myo1E and mRFP-dynamin-1 as described above. Cells were trypsinized and
replated onto 35-mm glass-bottom dishes (Well-Co, Warner Instruments, Hamden, CT) 3 hrs
post-transfection and imaged the following day using a Nikon Eclipse 2000 multimode TIRF
microscope prototype. During imaging cells were maintained in DMEM containing 25 mM
HEPES and no phenol red supplemented with 5% FBS, using a dish warmer (Warner
Instruments) to maintain 37°C temperature. For analysis of Myo1E and clathrin colocalization,
green and red channels for a single frame from each time-lapse movie were examined separately
using ImageJ, and each distinct fluorescent punctum was manually marked. The two sets of
marked images were then superimposed, and puncta that appeared in both channels, as well as
puncta that were present only in the red or only in the green channels, were counted. At least
three separate dishes of cells were examined for each construct.

Transferrin internalization
Internalization assays using Alexa-568-transferrin were performed as described [18] except
that PBS (pH 4) was used in place of citrate buffer to remove surface-bound transferrin. Image
collection was performed using Bio-Rad 1024 confocal microscope. For the analysis of
transferrin uptake in cells expressing EGFP-tagged Myo1E tail constructs, images of at least
100 EGFP-expressing cells were collected for each construct, and cells that exhibited punctate
transferrin labeling were counted as positive and cells that did not contain distinct transferrin
puncta counted as negative.

Immunofluorescence microscopy
For immunofluorescence staining, cells were plated onto acid-washed coverslips and fixed
using pH-shift fixation as described in [19]. Anti-Myo1E polyclonal antibody and Hudy-1
monoclonal antibody were used to label Myo1E and dynamin, respectively.

RESULTS
Identification of synaptojanin-1 as a Myo1E-binding protein using yeast two-hybrid
screening

The tail of Myo1E contains a positively charged TH1 domain, a proline-rich TH2 region, and
an SH3 domain, which may interact with proline-rich motif-containing proteins (Figure 1A).
To identify proteins binding to the tail of Myo1E, we conducted a yeast two-hybrid screen of
a human kidney cDNA library using Myo1E tail fragment containing TH2 and SH3 regions
as a bait (Figure 1B). This screen identified a cDNA fragment corresponding to the C-terminal
portion of synaptojanin-1, a lipid phosphatase implicated in synaptic vesicle trafficking [20].
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Specificity of the two hybrid interaction was verified by examining interaction of
synaptojanin-1 with a negative control protein (Lamin C) (Fig. 1C). Synaptojanin-1 contains
an N-terminal region homologous to yeast inositol phosphatase Sac1p, a central inositol 5-
phosphatase domain, and a C-terminal proline-rich domain (PRD) that is involved in
interactions with SH3 domain-containing proteins (Figure 1B). Two isoforms of
synaptojanin-1 generated by alternative splicing have been described: a 145 kD isoform
expressed primarily in adult neurons and a 170 kD isoform that is more ubiquitously expressed
[21]. The two isoforms differ by the presence of several additional proline-rich motifs in the
p170 isoform and by distinct membrane-binding properties. The synaptojanin-1 fragment
identified in the screen corresponds to the longer, 170 kD, splice form of human synaptojanin-1
and includes a small portion of the inositol 5-phosphatase domain and the entire PRD (Figure
1B).

Synaptojanin-1 and dynamin bind to the SH3 domain of Myo1E
In order to verify Myo1E-synaptojanin-1 interactions, GST-tagged SH3 domain of human
Myo1E was used to pull down proteins from rat brain extracts. Synaptojanin-1 bound to GST-
SH3 but not to GST alone (Figure 2A). GST-tagged SH3 domain of endophilin-1, a known
binding partner of synaptojanin-1 [15], was used as a positive control. In addition to the
synaptojanin-1 band, both Myo1E and endophilin pull down reactions contained bands of
∼100 kD, the molecular weight of the known endophilin binding protein dynamin [15].
Immunoblot analysis revealed that both dynamin-1 and –2 were present in protein complexes
bound to Myo1E and endophilin (Figure 2A). Thus, our data indicate that both long (170 kDa)
and short (145 kDa, brain-specific) isoforms of synaptojanin-1, as well as dynamins 1 and 2,
interact with Myo1E.

To determine whether interactions of Myo1E SH3 domain with synaptojanin-1 and dynamin
were direct and independent of each other, we analyzed binding of synaptojanin-1 and dynamin
purified from rat brain to GST-SH3 (Figure 2B). GST-SH3 was able to independently bind to
purified synaptojanin-1 and dynamin, confirming that both synaptojanin-1 and dynamin bind
directly to the SH3 domain of Myo1E. Binding of synaptojanin-1, dynamin-1, and dynamin-2
to Myo1E SH3 was further confirmed in binding assays, in which GST-SH3 was used to pull
down overexpressed human dynamin-1, dynamin-2, or synaptojanin-1 (C-terminal portion of
the kidney isoform) or endogenous dynamin-2 from cell lysates (Figure 2C). To verify the
importance of the SH3 domain-PRD interaction for Myo1E binding to synaptojanin and
dynamin, we introduced a W1089K mutation in the SH3 domain of Myo1E to replace a
conserved tryptophan in the hydrophobic groove of the SH3 domain with a positively charged
lysine [22]. This mutation disrupted interactions of Myo1E SH3 domain with both
synaptojanin-1 and dynamin (Figure 2). Thus, Myo1E interactions with synaptojanin-1 and
dynamin involve conserved residues in the SH3 domain and are likely to occur via PRDs in
dynamin and synaptojanin-1.

To determine whether Myo1E forms complexes with synaptojanin-1 and dynamin in vivo, we
immunoprecipitated Myo1E from a synapse-rich fraction of rat brain. Synaptojanin-1 and
dynamin are highly expressed at synapses, and we find that Myo1E is enriched over total brain
homogenate in this synapse-rich fraction (E.K.O., unpublished observations). Myo1E co-
immunoprecipitated with synaptojanin-1 and both dynamin-1 and dynamin-2 (Figure 3).

Myo1E co-localizes with clathrin-coated and dynamin-containing vesicles
Since the binding experiments described above indicated that Myo1E interacts with dynamin
and synaptojanin, two proteins that are involved in clathrin-dependent endocytosis, we sought
to determine whether Myo1E colocalizes with clathrin associated endocytic structures at the
plasma membrane. Previously, TIRF microscopy of live DsRed-clathrin-expressing Swiss 3T3
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cells has been successfully used to analyze recruitment of endocytosis-related proteins to
clathrin-containing puncta at the plasma membrane (presumably coated pits and newly formed
vesicles) [23,24]. TIRF microscopy was used to examine localization of EGFP-tagged Myo1E
or Myo1E tail in DsRed-clathrin expressing Swiss 3T3 fibroblasts. DsRed-clathrin and EGFP-
Myo1E (or EGFP-Myo1E-tail) localized to puncta on the bottom surface of the cells (Figure
4). In cells co-expressing clathrin and Myo1E, 34.6% of all clathrin-positive puncta contained
Myo1E. Interestingly, the degree of co-localization of Myo1E tail with clathrin was higher
than that of full-length Myo1E with clathrin (Figure 4), possibly reflecting the fact that in the
absence of a functional motor domain Myo1E persists in clathrin-coated structures for
prolonged time periods.

Co-localization of Myo1E tail with clathrin was lower in cells expressing Myo1E tail with
mutant SH3 domain that does not bind dynamin and synaptojanin (Figure 4). While the
presence of the functional SH3 domain was important for proper localization of Myo1E tail,
it was not sufficient, since the isolated SH3 domain was mostly diffuse and showed a very low
degree of co-localization with clathrin puncta (Figure 4). A tail construct consisting of TH2
and SH3 domains also showed lower degree of co-localization with clathrin than full-length
Myo1E tail (Figure 4 A,B). Thus, in addition to the interaction of the SH3 domain with dynamin
and/or synaptojanin, the interaction of the positively charged TH1 domain with membrane
phospholipids may play an important role in recruitment of Myo1E to clathrin-coated pits and/
or vesicles. However, TH1 domain alone was not sufficient for co-localization with clathrin
puncta (Figure 4 A,B). In addition, neither EGFP-tagged Myo1A, which possesses only a
positively charged TH1 domain but no TH2 or SH3 domains, nor EGFP-tagged Myo1A tail
(TH1) localized to clathrin containing puncta (data not shown), further confirming that TH2
and SH3 domains may contribute to proper localization of Myo1E.

We also used TIRF microscopy to determine whether Myo1E is present on dynamin-containing
vesicles in live cells. In Swiss3T3 cells transfected with RFP-dynamin-1 and EGFP-Myo1E,
Myo1E co-localized with dynamin-containing endocytic structures (Figure 4C). Using
immunofluorescence labeling of fixed cells, we also observed co-localization of EGFP-
Myo1E-tail and endogenous Myo1E with endogenously expressed dynamin (Figure 5). Only
a small fraction of Myo1E-positive puncta was observed to co-localize with dynamin by
immunofluorescence; this suggests that it is difficult to detect transient interactions of Myo1E
with endocytic vesicles using antibody staining of fixed cells.

These observations confirm that Myo1E interacts in vivo with dynamin molecules assembled
on endocytic structures at the plasma membrane, such as clathrin-coated pits and budding
vesicles. Since synaptojanin-1 is expressed in non-neuronal cells at extremely low levels and,
unlike dynamin, its localization in live non-neuronal cells is unknown, we did not examine
Myo1E localization in Swiss3T3 or HeLa cells relative to synaptojanin-1 localization.

Expression of Myo1E tail inhibits receptor-mediated endocytosis
To determine whether interactions of Myo1E with its tail-binding partners play a role in
endocytosis, we examined uptake of fluorescent transferrin in HeLa cells expressing EGFP-
tagged fragments of Myo1E tail, which can act in a dominant-negative fashion by displacing
endogenous Myo1E (Figure 6). While almost all control cells exhibited punctate transferrin
labeling, ∼ 80% of cells expressing Myo1E tail did not take up transferrin (Figure 6B).
Presumably, the tail domain displaces endogenous motor by competing with tail-binding
partners that may be required for Myo1E localization and/or function in clathrin-mediated
endocytosis. Replacement of the conserved tryptophan in the SH3 domain with a lysine
(W1089K mutation), which abolishes interactions with synaptojanin and dynamin, reduced the
ability of Myo1E tail to inhibit transferrin internalization (Figure 6B), indicating that SH3
domain interactions are important for Myo1E functions. On the other hand, expression of the
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isolated SH3 domain did not inhibit transferrin uptake, suggesting that TH1 and/or TH2
domains, which contribute to Myo1E localization to clathrin-coated vesicles, may be necessary
to completely displace endogenous Myo1E. Additionally, this observation indicates that
inhibition of transferrin uptake by Myo1E DN-tail is not due solely to the SH3 domain
sequestering the Myo1E interacting proteins dynamin and synaptojanin but rather due to
specific displacement of endogenous Myo1E.

DISCUSSION
Formation of endocytic vesicles at the plasma membrane involves multiple transient
interactions between proteins involved in invagination of clathrin-coated pits, vesicle scission,
and vesicle uncoating. Assembly of protein complexes during endocytosis relies to a large
extent on interactions between SH3 domains and PRDs, which are found in many endocytic
proteins. In the present study, we describe binding of two PRD-containing endocytic proteins,
dynamin and synaptojanin-1, to the SH3 domain of Myo1E. This interaction was detected both
in vitro, using pull-downs of purified proteins, and in vivo, using immunoprecipitation of
protein complexes from synapse-enriched brain extract and immunolocalization of Myo1E and
dynamin. Our observation of the interaction between human Myo1E and endocytic proteins
suggests that this longtailed myosin may play a role in clathrin-dependent endocytosis.
Involvement of longtailed class I myosin in endocytosis has been previously demonstrated for
yeast myosins [3,7-9], but not for their mammalian homologs. Recently mouse myosin Myo1f,
which is closely related to Myo1E, was shown to regulate presentation of cell adhesion
receptors, integrins, on the surface of neutrophils [25], suggesting that long-tailed class I
myosins in mammals may contribute to both endo- and exocytosis of cell surface receptors.

Interaction between Myo1E SH3 domain and PRD-containing endocytic proteins may promote
recruitment of Myo1E to clathrin-coated structures since an inactivating mutation in the SH3
domain reduced Myo1E localization to clathrin-containing puncta. However, the SH3 domain
alone was not sufficient for localization to clathrin-coated vesicles, since removal of the TH1
and TH2 domain abolished vesicular localization. The positively-charged TH1 domain in
Myo1E tail may contribute to its localization to the endocytic machinery through interactions
with acidic phospholipids or, as has been shown for Myo1A, through interactions with TH-1
binding proteins [19]. The observed role for the SH3 domain in Myo1E localization is
reminiscent of findings in budding yeast where SH3 domain of Myo5p is required but not
sufficient for polarized localization to cortical patches in the bud [26].

Expression of Myo1E tail in HeLa cells inhibited endocytic uptake of transferrin, which occurs
via receptor-mediated endocytosis. This observation suggests that Myo1E tail can act in a
dominant-negative manner by displacing endogenous Myo1E, and that disruption of Myo1E
interactions with tail-binding proteins inhibits clathrin-dependent endocytosis. An intact SH3
domain and TH1 domain were necessary for the efficient inhibition of transferrin uptake. Thus,
both protein-protein interactions mediated by the SH3 domain and membrane binding
promoted by the TH1 domain may be important for Myo1E functions in endocytosis. A
potential contribution of Myo1E to endocytosis is further substantiated by the observation that
mouse Myo1e localizes to the intermicrovillar region of the intestinal brush border, a region
characterized by active endocytosis (M.K. and M.S.M., unpublished observations).

There are a number of potential functional roles for the SH3 mediated interaction of Myo1E
with synaptojanin-1 and dynamin. Synaptojanin-1 or dynamin may serve as docking sites for
Myo1E on the coated pit/vesicle for functions that are independent of the activities of these
two proteins. Myo1E may then facilitate coated vesicle formation by remodeling the cortical
actin network and/or transporting vesicles away from the plasma membrane and toward the
endosomal compartments. Alternatively, Myo1E may regulate dynamin functions during
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vesicle scission and/or the phosphatase activity of synaptojanin-1 during vesicle uncoating.
Some known examples of regulation of the activity of these proteins by their binding partners
include upregulation of GTPase activity of dynamin by binding to SNX9 [27] and activation
of phosphatase activity of synaptojanin by binding to the SH3 domain of endophilin [16]. An
intriguing possibility is that binding of dynamin and synaptojanin to Myo1E tail may activate
motor activity since it has been demonstrated that Myo1E ATPase activity is autoinhibited by
its SH3 domain [28]. Disruption of actin cytoskeletal dynamics inhibits fission and
internalization of clathrin-coated vesicles [29]; therefore, as an actin-dependent motor
localized to clathrin-coated vesicles, Myo1E may play an important role in vesicle formation
and internalization.
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Figure 1.
Myo1E tail structure and identification of tail-binding proteins using yeast two-hybrid screen.

A. The domain structure of Myo1E and the tail constructs used to investigate Myo1E
localization. Myo1E heavy chain is composed of an N-terminal motor domain, a neck
domain with a single IQ light chain binding motif, and a tail domain. Myo1E tail
consists of a positively charged TH1 domain, a proline-rich TH2, and an SH3 (TH3)
domain [2].

B. Myo1E construct used as a bait for the yeast two-hybrid screening consists of TH2
and SH3 domain. Synaptojanin-1 (SJ-1) contains two phosphatase domains (Sac1-
homology and inositol-5-phopshatase) and a C-terminal PRD. Synaptojanin-1
fragment isolated in the yeast two hybrid screen includes a portion of the inositol 5-
phosphatase domain and the PRD.

C. Interaction of Myo1E with SJ-1 in a yeast two-hybrid assay. Yeast clone containing
both Myo1E bait construct and SJ-1 construct exhibits signs of a positive interaction:
the ability to grow on the nutrient-deficient medium and development of blue color
due to ß-galactosidase reaction. Negative controls (Myo1E bait plus empty vector,
SJ-1 construct plus empty vector, SJ-1 construct plus non-interacting protein (Lamin
C)) do not grow on the nutrient-deficient medium.
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Figure 2.
Interaction of Myo1E with synaptojanin-1 and dynamin.

A. Myo1E binding proteins from rat brain extracts. Immunoblot analysis indicates that
both GST-tagged Myo1E SH3 and endophilin-SH3 but not GST alone bind
synaptojanin-1 (SJ-1), dynamin-1, and dynamin-2 (Dyn-1,2). A Coomassie stained
gel showing the amount of GST fusion proteins used for pulldowns is shown in the
lower panel (GST fusions).

B. Binding of purified synaptojanin-1 and dynamin to Myo1E SH3 domain. SDS-PAGE
of glutathione-bead pellet (P) and supernatant (S) fractions followed by Coomassie
staining indicates that GST-tagged Myo1E SH3 but not mutant SH3 or GST bind
purified synaptojanin-1 and dynamin. Note that mobility shift of dynamin band in
lane 3 (SH3 pellet) is a gel artifact caused by the difference in total protein load
between the lanes. Right-hand panels show Coomassie stained gels of the purified
synaptojanin-1 and dynamin preparations used.

C. Binding of synaptojanin-1, dynamin-1, and dynamin-2 expressed in cultured cells to
Myo1E SH3. Cos-1 cells transfected with EGFP-tagged dynamin-1 or myc-tagged
synaptojanin-1 (partial clone isolated from the kidney cDNA library), HeLa cells
transfected with untagged dynamin-2 or non-transfected HeLa cells were lysed and
cell lysates were incubated with GST-tagged proteins as indicated. Immunoblots
indicated that overexpressed synaptojanin-1 and dynamin-1 and -2 as well as
endogenous dynamin-2 (End. Dyn-2) from HeLa lysate bound to GST-SH3 but not
pure GST or mutant SH3 (SH3WK). Lower panels show Coomassie stained gels of
the GST fusions used.
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Figure 3.
Immunoprecipitation of Myo1E-binding proteins from synapse-enriched rat brain extract.

A. Immunoblot analysis indicated that synaptojanin-1, dynamin-1 and -2 were present
in Myo1E immunoprecipitates but not in non-immune immunoprecipitates.

B. Anti-Myo1E antibody used for immunoprecipitation recognized a single band in the
synapse-enriched rat brain preparation. Positions of molecular weight markers are
shown on the right.
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Figure 4.
Co-localization of Myo1E and Myo1E tail constructs with clathrin- and dynamin-labeled
vesicles in live Swiss3T3 cells.

A. Swiss3T3 fibroblasts stably expressing DsRed-clathrin (Cla) were transfected with
EGFP-tagged Myo1E, Myo1E tail containing all three tail homology regions (TH1,
TH2, SH3), mutant tail (tailWK) or partial tail constructs (TH1 only, TH2+SH3 (TH2
+3), SH3 only) and imaged using TIRF microscopy. Vesicles labeled with both green
and red fluorescent proteins are marked by arrows. Scale bar - 1 μm.

B. Frequency of colocalization of various Myo1E constructs with clathrin-positive
puncta. Percentage of clathrin-coated vesicles (CCVs) labeled with EGFP-tagged
Myo1E constructs was determined as described in Materials and Methods. Numbers
shown represent average percentages+/-SD for 5 cells for Myo1E, tailWK, and SH3
constructs, 7 cells for TH2+3 and TH1, and 10 cells for Myo1E tail. Average percent
colocalization for each construct was compared with the average percent
colocalization for Myo1E tail using t-test. * - P< 0.05, ** - P<0.005, *** - P<0.001.

Krendel et al. Page 13

FEBS Lett. Author manuscript; available in PMC 2008 February 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



C. Colocalization of EGFP-Myo1E and mRFP-dynamin-1 in Swiss3T3 cells by TIRF
microscopy. Arrows indicate fluorescent puncta that contain both EGFP-Myo1E and
dynamin. Scale bar - 1 um.
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Figure 5.
Co-localization of Myo1E-tail or endogenous Myo1E with endogenous dynamin in HeLa and
Swiss 3T3 cells. HeLa cells transfected with EGFP-Myo1E-tail(A) or untransfected Sw3T3
cells (B) were fixed, stained with antibodies against dynamin(A) or dynamin and Myo1E (B),
and imaged using confocal microscopy. Arrows point to vesicles that contain both Myo1E and
dynamin. Scale bar - 5 μm.
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Figure 6.
Inhibition of transferrin uptake by Myo1E tail construct.

A. Transferrin (Tfn) uptake in EGFP-Myo1E tail-transfected HeLa cells. Cells
expressing Myo1E tail (arrows) did not exhibit punctate transferrin labeling. Scale
bar - 20 μm.

B. Quantitative analysis of transferrin endocytosis in HeLa cells. Cells transfected with
various DNA constructs were allowed to take up fluorescent transferrin and processed
as in A. Percent of transfected cells exhibiting punctate transferrin labeling was
determined from three independent experiments (N>/=100 cells for each experiment,
error bars=SD).
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