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Abstract—We studied the electroencephalogram (EEG) background activity of 

Alzheimer’s disease (AD) patients with Detrended Fluctuation Analysis (DFA). 

DFA provides an estimation of scaling information and long-range correlations in 

time series. We recorded the EEG in 11 AD patients and 11 age-matched controls. 

Our results showed two scaling regions in all subjects’ channels (for limited time 

scales from 0.01 s to 0.04 s and from 0.08 s to 0.43 s, respectively), with a clear 

bend when their corresponding slopes (α1 and α2) were different. No significant 

differences between groups were found with α1. However, α2 values were 

significantly lower in control subjects at electrodes T5, T6, and O1 (p < 0.01, 

Student’s t-test). These findings suggest that the scaling behavior of the EEG is 

sensitive to AD. Although α2 values allowed us to separate AD patients and 

controls, accuracies were lower than with spectral analysis. However, a forward 

stepwise linear discriminant analysis with a leave-one-out cross-validation 

procedure showed that the combined use of DFA and spectral analysis could 

improve the diagnostic accuracy of each individual technique. Thus, despite 

spectral analysis outperforms DFA, the combined use of both techniques may 

increase the insight into brain dysfunction in AD. 

 

Index Terms—Alzheimer’s disease, Detrended fluctuation analysis, 

Electroencephalogram, Scaling behavior 
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I. INTRODUCTION 

Alzheimer’s disease (AD) is a primary degenerative dementia of unknown 

etiology that gradually destroys brain cells and represents the most prevalent form of 

dementia in western countries [1]. AD is characterized by progressive impairments in 

cognition and memory whose course lasts several years prior to the death of the patient 

[2]. Structural changes in AD are related to the accumulation of amyloid plaques 

between nerve cells in the brain and with the appearance of neurofibrillary tangles 

inside nerve cells, particularly in the hippocampus and the cerebral cortex [3]. These 

two abnormal microscopic structures cause neuronal damage or death, which is 

followed by a chemical imbalance. Both structural and chemical changes produce a 

progressive cell death and an overall shrinkage of brain tissue, which culminates in the 

progressive clinical symptoms of AD [3]. 

The clinical diagnosis of AD is made primarily on the basis of medical history 

studies, psychiatric evaluation and different memory, reasoning and mental status tests. 

Nevertheless, the diagnostic accuracy values in AD are under 90% and a definite 

diagnosis is only possible by necropsy [4]. Thus, new approaches are necessary to 

improve AD diagnosis. 

The electroencephalogram (EEG) has been used in dementia diagnosis for 

several decades. There are several reasons why intensive research has been performed 

on the EEG in AD. One is that AD is a cortical dementia in which EEG abnormalities 

are more frequently shown. Moreover, coherence analysis of the EEG in AD allows 

non-invasive assessment of synaptic dysfunction [2]. Conventional spectral analysis 

shows that one of the hallmarks in AD is a shift of the EEG power spectrum to lower 

frequencies [2], although in the early stages of the disease the EEG may exhibit normal 

frequencies [5]. A decrease of coherence among cortical areas has also been reported 
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[2]. From another point of view, several studies have examined the non-linear dynamics 

of the EEG in AD (a detailed review can be found in [2]). In general, the EEG is less 

complex and more regular in AD patients than in controls [2], [6], [7]. Moreover, AD 

patients’ EEGs show reduced functional connections when compared to elderly controls 

[8]. These changes are likely due to decreased non-linear cell-dynamics and/or non-

linear couplings among cortical areas as well as linear couplings [8], [9]. EEG 

abnormalities in AD are thought to be associated with functional disconnections among 

cortical areas resulting from death of cortical neurons, axonal pathology, cholinergic 

deficits, etc. [2]. 

The complex nature of the electrical brain activity results in a high degree of 

spatial and temporal fluctuations in the EEG [10]. To understand the EEG activity in a 

better way, it is important to characterize its fluctuations over different time scales. 

Recent studies indicate that EEG oscillations in the human brain show long-range 

temporal correlations [10]–[12]. 

In the present study, the scaling behavior of the EEG in AD was examined with 

Detrended Fluctuation Analysis (DFA). DFA provides an estimation of scaling 

information and long-range correlations in time series, and is known for its robustness 

against non-stationarities [10], [13], [14]. The information provided by DFA might have 

potential implications for the classification of EEGs in subtypes [10]. According to a 

recent physiologically based model of EEG generation, the main EEG scaling features 

and deviations from them could be related to the underlying physiology of dendritic 

propagation [15], which might be affected in different neurophysiologic states. We 

wanted to test the hypothesis that long-range temporal correlations in AD patients’ 

EEGs would be different from those of age-matched controls and to check if these 

differences could be useful to distinguish both groups. We also performed a spectral 
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analysis to compare DFA results with the slowing of the EEG usually found in AD [2], 

[5] and studied whether the combined use of both techniques could improve AD 

diagnosis. 

II. MATERIAL AND METHODS 

A. Subjects 

Twenty-two subjects participated in this study. Informed consent was obtained 

from all control subjects and all caregivers of the demented patients. The study was 

approved by the local ethics committee. 

Eleven patients (5 men and 6 women; age = 72.5 ± 8.3 years, mean ± standard 

deviation SD) fulfilling the criteria of probable AD were recruited from the Alzheimer’s 

Patients’ Relatives Association of Valladolid and referred to the University Hospital of 

Valladolid (Spain), where EEGs were recorded. The diagnosis was made on the basis of 

exhaustive medical, physical, neurological, psychiatric and neuropsychological 

examinations. Mini-Mental State Examination (MMSE) was used to assess the 

cognitive function [16]. The mean MMSE score for the patients was 13.1 ± 5.9 (mean ± 

SD), with five of them having a score of less than 12 points, indicating a severe degree 

of dementia. Two patients were receiving lorapezam. Although with therapeutic doses 

benzodiapzepines may enhance beta activity, no prominent rapid rhythms were 

observed in the visual examination of their EEGs. None of the other patients used 

medication that could be expected to influence the EEG. 

The control group consisted of 11 age-matched, elderly control subjects without 

past or present neurological disorders (7 men and 4 women; age = 72.8 ± 6.1 years, 

mean ± SD). The MMSE score value for all control subjects was 30. 

B. EEG recording 
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EEGs were recorded from the 19 scalp loci of the international 10-20 system 

(electrodes F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, C4, P3, P4, O1, O2, Fz, Cz, 

and Pz) using a Profile Study Room 2.3.411 EEG equipment (Oxford Instruments). 

More than five minutes of data were recorded from each subject. The sample frequency 

was 256 Hz, with a 12-bit A-to-D precision. Recording sessions were conducted with 

the subjects in an awake but resting state with eyes closed and under vigilance control. 

All EEGs were visually inspected by a specialist physician to check for eye 

movement and other artifacts and only EEG data free from electrooculographic and 

movement artifacts, and with minimal electromyographic (EMG) activity were selected 

to be studied with DFA. EEGs were then organized in 5 second artifact-free epochs 

(1280 points). An average number of 30.0 ± 12.5 artifact-free epochs (mean ± SD) were 

selected from each electrode for each subject. Furthermore, prior to the DFA all 

recordings were digitally filtered with a band-pass filter with cut-off frequencies at 0.5 

Hz and at 40 Hz in order to remove residual EMG activity. 

C. Detrended Fluctuation Analysis (DFA) 

Since its introduction, the DFA has been established as an important tool for the 

detection of long-range correlations and fluctuations in different time series. For 

instance, it has been applied to evaluate characteristics of data such as DNA sequences 

[13], long-time weather records [17], sea clutter radar datasets [18] or heart rate 

dynamics [19], [20]. 

DFA has been used to detect long-range correlations in scalp EEG [10]. It has 

also been used to study the differences between the scaling properties of sleep EEG in 

patients with apnea and control subjects, and to relate them to the brain activity in 

different sleep stages [21]. Furthermore, it has been shown that DFA can be used to 

successfully distinguish patients with acute ischemic stroke from control subjects [10]. 



PAPER IDENTIFICATION NUMBER: TBME-00403-2007R2 
 

 7

Moreover, it has provided a mean to discriminate among levels of consciousness during 

general anesthesia; different indexes derived from the scaling behavior of the EEG have 

been proposed to characterize the patient’s state [22]. DFA has also been applied to 

study the EEG in AD, which is characterized by diminished fluctuations in the level of 

synchronization [23]. Changes in the scaling properties of the EEG in AD have also 

been investigated with DFA [24]. 

Let the EEG time series be denoted by {x(t)}, where t is the discrete time 

ranging from 1 to N (N = 1280). To perform the DFA of the EEG time series: 

1. We integrate the time series. If )(tx  represents the average value of x(t), the 

integrated series is 

 

[ ]∑
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=−=
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2. We divide the entire time range into B equal windows, discarding any 

remainder, so that each window has k=int(N/B) time points (int(a) denotes the 

integer part of a). We have used window or box sizes between 3 and 128 points, 

as one-tenth of the signal length can be considered as the maximum box size 

when using a DFA [14]. 

3. Within each window b (b=1,…,B), we perform a least-square fit of {y(n)} by a 

straight line )(nyb . That is the semi-local trend for the bth window. 

4. We define )(2
kFb  to be the variance of the fluctuation {y(n)} from )(nyb  in the 

bth window 
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 It is a measure of the semi-locally detrended fluctuation in window b. 

5. The square root of the average of )(2 kFb  over all windows is the rms fluctuation 

from the semi-local trends in B windows, each of k time points 
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 Since DFA considers only the fluctuations from the semi-local trends, it is 

insensitive to spurious correlations introduced by slowly varying external trends [10]. 

The study of the dependence of F(k) on the window size k is the essence of DFA. 

If there is a power-law behavior ( α
kkF ∝)( ), α is an indicator of the nature of the 

fluctuations in the EEG. This exponent is 0.5 for uncorrelated white noise [23]. If α < 

0.5, the correlations in the signal are anti-persistent (i.e. an increment is very likely to be 

followed by a decrement, and vice versa), while if 0.5 < α the correlations in the signal 

are persistent (i.e., an increment is very likely to be followed by an increment, and vice 

versa) [14]. The exponents estimated by DFA lie between 0 and 2 [25]. 

D. Spectral analysis 

 The power spectral density for each signal was estimated as the Fourier 

transform of the autocorrelation function. The powers were integrated in the following 

frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 

Hz). The relative power for each frequency band was computed by dividing the 

integrated value by the total power in the whole filtered band. 

E. Statistical analysis 

Student’s t-test was used to evaluate the statistical differences between the 

scaling exponents from AD patients and control subjects and between the relative 
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powers of both groups for each frequency band. Differences were considered 

statistically significant if the p value was lower than 0.01. 

The ability to discriminate AD patients from control subjects at the electrodes 

where p < 0.01 was evaluated using Receiver Operating Characteristic (ROC) curves 

[26] with a leave-one-out cross-validation procedure. Moreover, a forward stepwise 

linear discriminant analysis (LDA) with a leave-one-out cross-validation scheme was 

performed to assess whether spectral analysis and DFA could provide complementary 

information to improve AD diagnosis. 

III. RESULTS 

We performed DFA for channels F3, F4, F7, F8, Fp1, Fp2, T3, T4, T5, T6, C3, 

C4, P3, P4, O1, and O2. We studied the fluctuations using window sizes between 3 and 

128 samples (from 0.01 s to 0.5 s). Furthermore, we plotted the natural logarithm of 

F(k) as a function of the natural logarithm of k. If the plot displays a linear scaling 

region with a certain scaling exponent, then there is a power-law behavior in the time 

series. 

We found two scaling regions in the EEG with a clear bend when the two slopes 

in the two regions are distinctly different. These scaling properties were found in all 

channels for all subjects. Fig. 1 and Fig. 2 show F(k) vs. k in a log-log plot for one EEG 

epoch from a control subject at electrode T5 and for one EEG epoch from an AD patient 

at electrode T5, respectively. In both cases, two very different slopes can be seen and a 

bend in the transition between them can be observed. We have denoted α1 the scaling 

exponent of the first region and α2 the exponent on the second one. 

---------------------------------------------------------------------------------------------------------- 

Insert Figures I and II around here 

---------------------------------------------------------------------------------------------------------- 
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To quantify the scaling exponents, we performed a linear fit in region I for 1 < ln 

k < 2.3 (from 0.01 s to 0.04 s) and in region II for 3 < ln k < 4.5 (from 0.08 s to 0.43 s). 

The limits for ln k were chosen after a visual inspection of the results showed that fitting 

this way correctly characterizes the slopes in the two regions. The results were averaged 

based on all the artifact-free 5 second epochs within the five-minute period of EEG 

recordings. The α1 and α2 values (mean ± SD) for the AD patients and control subjects 

are summarized in Tables I and II, respectively. No significant differences were found 

between the α1 values of both groups (p > 0.01). On the other hand, α2 values were 

lower in control subjects than in AD patients, with significant differences at electrodes 

T5, T6, and O1 (p < 0.01). 

The intersection of the slopes α1 and α2 provides a good approximation of the 

bend position. Thus, we used this feature to estimate the value of ln k for which the 

slope between both scaling regions changes. Table III summarizes the obtained bend 

values. The bend is limited to a narrow range in most subjects and most channels 

corresponding to window sizes between 10 and 25 points (time scales from 0.04 to 0.10 

s). No significant differences were found between both groups. 

---------------------------------------------------------------------------------------------------------- 

Insert Tables I, II and III around here 

---------------------------------------------------------------------------------------------------------- 

The relative power values in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 

Hz), and beta (13–30 Hz) frequency bands (mean ± SD) are shown in Table IV. AD 

patients are characterized by a shift of the power spectrum to lower frequencies. In fact, 

our results show an increase of the delta and theta activities, with significant differences 

at O2 and at F3, F7, and O1, respectively. Moreover, the power decrease in the alpha 

and beta bands is also reflected. The average relative power in the alpha band is 
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significantly lower in the AD patients at T3 and T4, while in the beta band a significant 

power decrease is found at O1 and O2. 

---------------------------------------------------------------------------------------------------------- 

Insert Table IV around here 

---------------------------------------------------------------------------------------------------------- 

We used ROC plots to evaluate the ability of α2 and the relative power values to 

discriminate AD patients from control subjects at electrodes where significant 

differences were found. In addition, leave-one-out cross-validation was used to prevent 

problems like over-fitting and bias. We have performed a subject-based classification, 

where the models were trained using all available data except for data from one subject. 

The excluded set was then used to test the performance of the model. The procedure 

was repeated for all subjects to obtain a more reliable estimate of classification 

performance. This method allows a larger training set to be used while still calculating 

the test error based on unseen data. This is very beneficial in situations where there is a 

limited amount of data available. We have also performed an epoch-based 

classification. The models were trained using all available data except for data from one 

epoch, which was then used to test the performance. This was done to take into account 

the variability of the results among different epochs from the same electrode and the 

same subject. In both classification schemes, the optimum threshold was the cut-off 

point in which the highest accuracy (i.e., maximum number of subjects/epochs correctly 

classified) was obtained. Results are shown in Table V in terms of sensitivity (true 

positive rate), specificity (true negative rate) and accuracy. The accuracies obtained 

with α2 in the subject-based classification are between 63.64% and 72.73%. On the 

other hand, those obtained with the relative power in different frequency bands show 

more variability, ranging between 50% (alpha band relative power at T3) and 86.36% 
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(theta band relative power at O1). The epoch-based classification shows a slight but not 

significant change in the accuracy of the classification with α2. Conversely, the changes 

in the accuracies with the relative power and the epoch-based classification are greater. 

This probably reflects that the variability in the relative power is larger than that of α2 

among the analyzed EEG epochs. 

---------------------------------------------------------------------------------------------------------- 

Insert Table V around here 

---------------------------------------------------------------------------------------------------------- 

A forward stepwise LDA with a leave-one-out cross-validation procedure was 

performed to check whether the combined use of spectral analysis and DFA could 

improve the subjects and epochs classification. LDA is used to model the behavior of a 

dependent categorical variable on the basis of one or more predictor variables 

(independent variables). LDA attempts to find the linear combinations of the 

independent variables that best distinguish the categories of the dependent variable. 

When trying to model the dependent variable from a set of predictors, the stepwise 

method can be useful to automatically select the “best” variables to be used in the 

model. Results are summarized in Table VI. In the subject-based classification, only 3 

spectral analysis parameters were selected (alpha band power at T4, theta band power at 

F7 and beta band power at O1) among the 11 that were available (relative powers and α2 

values at electrodes where p < 0.01). An accuracy of 95.45% was achieved, implying an 

increase of 9.09% with respect to the best individual results, obtained with theta band 

power at O1. On the other hand, the discriminant model included parameters both from 

spectral analysis and DFA in the epoch-based classification scheme. In this case, eight 

parameters were automatically selected (firstly theta band power at O1, followed by 

beta band power at O1, alpha band power at T4, theta band power at F7, beta band 
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power at O2, α2 at O1, α2 at T6, and theta band power at F3, respectively) and an 

accuracy of 94.04% was achieved. This fact implies an increase of 15.26% with respect 

to the best individual accuracy results, obtained with theta band power at O1. 

---------------------------------------------------------------------------------------------------------- 

Insert Table VI around here 

---------------------------------------------------------------------------------------------------------- 

It has been reported that crossovers of DFA plots can be caused by trends [14]. 

We used closed-eyes resting state EEG, resulting in a significantly strong alpha band. 

Thus, we wanted to examine if this issue might be causing the bending phenomena. In 

order to do so, we created new time series from the original EEG recordings using a 

band-stop filter to eliminate the alpha band and, subsequently, we performed DFA of 

these EEG time series. Fig. 3 illustrates the typical behavior found in control subjects. It 

shows F(k) vs. k in a log-log plot for the EEG epoch used in Fig.1 and the results from 

the DFA of the EEG with the alpha band filtered out. It can be seen that the bending 

occurs at a lower value of ln k and is less clear than in Fig. 1. In addition, the slope in 

the second scaling region is steeper than originally. On the other hand, Fig. 4 is 

representative of the AD patients’ behavior. It shows F(k) vs. k in a log-log plot for the 

EEG epoch used in Fig. 2 and the results from the DFA of the EEG without the alpha 

band. In this case, the differences between both representations are not that clear, 

probably due to the low alpha power in the original EEG epoch of the AD patient. 

---------------------------------------------------------------------------------------------------------- 

Insert Figures 3 and 4 around here 

---------------------------------------------------------------------------------------------------------- 

IV. DISCUSSION AND CONCLUSIONS 

We analyzed the EEG background activity of 11 AD patients and 11 control 
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subjects with DFA, a technique that provides an estimation of scaling information and 

long-range correlations in time series. We found two different scaling regions in the 

EEG that depend on the window size k. The first region corresponds to small window 

sizes (less than 0.04 s) and could be characterized by a scaling exponent α1, with 

average values over 1.7. The second one corresponds to larger window sizes (from 0.08 

s to 0.43 s) and could be described with an exponent α2, with average values between 

0.59 and 1.07. For a certain window size between 10 and 25 data points (from around 

0.04 s to 0.10 s), there is a bend – limited to a narrow range in most epochs – that marks 

a change in the nature of the fluctuations of the EEG. These scaling properties were 

found in all channels for all subjects. 

DFA is one of the most frequently used methods to estimate the key scaling 

exponent: the Hurst parameter H [25]. It has been used to analyze long-range 

correlations in a wide variety of signals, which include the EEG. For instance, changes 

in the EEG in sleep stages [21] and other physiological states [11], [12] have been 

studied with DFA. Moreover, it has also been useful to characterize EEG changes in AD 

[23], [24]. The scaling behavior of the EEG as a measure of the level of consciousness 

during general anesthesia has also been studied with DFA [22]. Not only scalp EEG has 

been analyzed with this technique, as intracranial EEG DFA has shown that long-range 

correlations are also present in the hippocampus of epileptic patients [27], [28]. 

Most of these studies report one scaling region in the scalp EEG instead of two. 

However, due to the different range of window sizes inspected, comparisons with our 

study are not straightforward. In addition, in some studies long-range temporal 

correlations are obtained analyzing time series derived but different from the EEG, like 

the amplitude dynamics of alpha and beta oscillations [11], [12], the mean level of 

synchronization [23] or the “energy” of the signal obtained from the Cz electrode [29]. 
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The scaling range in those studies was quite diverse (for instance, from 0.04 s to 5 s in 

[29] and from 5 s to 80 s in [11]). On the other hand, the results from [10] and [24] are 

in agreement with our study, in the sense that two scaling regions with a clear bend 

between them were found in the EEG. These studies also show that information 

provided by DFA has potential implications for the classification of EEGs in subtypes. 

Furthermore, in [10] the first region ranges from 0.01 s to 0.04 s, thus being similar to 

our region I, while the second one goes from 0.13 s to 1.25 s. Hence, the bending occurs 

at time scales similar to those reported here. Nevertheless, it must be noted that these 

results were obtained without integrating the EEG time series. Other study shows a 

breakpoint between scaling regions at around 0.1 s [24], something that is again 

consistent with our results. However, given the fact that the first scaling region is so 

short, the possible usefulness of the α1 exponents is really limited. Two temporal scaling 

regimes in locally detrended human EEG fluctuation have also been reported in [15], 

where a model of EEG generation, which has been found to yield excellent agreement 

with observations of EEG spectra [30], evoked potentials [31] and normal arousal states 

and epileptic seizures [32], was used. The breakpoint between scaling regions was 

between 0.02 s and 0.1 s. Nevertheless, our results do not agree with the two scaling 

regions reported in [22], with time scales between 0.07 s and 0.16 s in the first one and 

from 1.58 s and 6 s (or 1.67 s and 7.5 s, depending on the epoch length) in the second 

one. However, it must be noted that the time scales from our region I were not analyzed 

in that study and the first region corresponds partially to our region II. Moreover, the 

scaling exponents in the awake state for time scales between 0.07 s and 0.16 s are 

similar to those obtained from the frontal electrodes in our study. In addition, the second 

scaling region in [22] is characterized by very low exponents. This might be showing 

that, as k increases, F(k) would become a constant and the asymptotic slope would 
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become zero [10]. 

From the view of many body systems, long-range temporal correlations in the 

EEG should originate from the strong interactions of the neural cells. It is logical to 

assume that AD would weaken or even block the interactions. Therefore, one may 

expect that the temporal scaling behavior of the EEG would be sensitive to the 

individuals with or without AD [24]. This is reflected by the exponents obtained in the 

second scaling region and corroborates previously reported results [24] for time scales 

beginning at about 0.25 s. It is worth mentioning that the scaling exponents reported in 

[24] are lower than in our study. 

 The computation of the distinct slopes in each plot allowed us to determine the 

location of their intercept, which gives a good approximation to the position of the bend 

in the whole plot. Since scaling behavior means that the examined system has no 

intrinsic scale, scale non-invariance at the intercept implies that it is related to a 

characteristic time scale in the data [10]. It has been suggested that the time scale of the 

bend can be associated with a sine wave with frequency f calculated as the sampling rate 

divided by the window size of the intercept [10], which in our case lies between 0.04 s 

and 0.10 s, approximately. Thus, the bends would correspond to frequencies between 10 

and 25 Hz and would have physiological meaning. However, this interpretation of the 

breakpoint in scaling behavior has been recently questioned using an EEG model [15]. 

This model predicts the power spectrum from quantities such as corticothalamic 

connectivities, synaptic strengths, dendritic time constants, neural conduction speeds, 

axonal ranges, and the effects of the EMG artifact [30]–[32]. Moreover, it explains the 

fluctuations in terms of the underlying power spectrum filtering implied by the 

detrending process [15]. It could be hypothesized that the significant differences 

between the α2 values in AD patients and control subjects’ EEGs might be due to brain 



PAPER IDENTIFICATION NUMBER: TBME-00403-2007R2 
 

 17

alterations in AD related to the model parameters. However, a suitable model to explain 

the impact of AD in the EEG considering the parameters of the aforementioned one has 

yet to be developed. Furthermore, the model suggests that the main breakpoint in the 

scaling is related primarily to dendritic filtering, rather than to alpha or beta band 

frequencies [15]. Nevertheless, our analysis of the EEG epochs with the alpha band 

filtered out shows that the bending and these frequencies are indeed related to a certain 

extent. Thus, it seems that one cannot rule out the influence of the alpha band in the 

bending phenomenon. However, despite the relevant differences found between the 

alpha relative power from AD patients and control subjects in the original EEG epochs, 

DFA did not reflect significant differences between the bend values of both groups. This 

leads us to think that a combination of different effects might be responsible for these 

bending phenomena. 

One issue that also influences the temporal scaling regimes in the EEG is EMG 

activity [15]. Although all analyzed EEGs had minimal EMG activity and were filtered 

prior to DFA to remove residual EMG activity, jaw and facial muscles can yield 

significant contribution unless the subjects succeed to relax them [15]. These 

contributions vary with respect to the electrode, with minimal activity near the crown of 

the head (Cz electrode). In the presence of significant EMG activity, larger exponents 

should be found near the crown of the head than at electrodes near ear level, for window 

sizes in the tens of milliseconds [15]. Although the scaling exponents at P3 and P4 

(close to Cz) are, in general, slightly higher than at other electrodes in region I (from 

0.01 s to 0.04 s), the differences are small, suggesting that this effect is insignificant in 

our data. 

No significant differences were found between AD patients and control subjects’ 

scaling exponents at region I. However, α2 values were significantly lower in control 
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subjects at T5, T6, and O1. We evaluated the possible usefulness of α2 in AD diagnosis 

with ROC plots and a leave-one-out cross-validation procedure, obtaining accuracies 

around 70%. These values were lower than accuracies obtained with spectral analysis. 

Moreover, our results using DFA and spectral analysis are not completely consistent. 

This might be due to the fact that EEG signals are only approximately fractals in a very 

limited time scale range. Experimental data are always finite, and therefore may not 

conform to the ideal definition of fractal processes with long-range correlations [25]. 

Given the fact that DFA showed significant differences between groups at some 

electrodes where spectral analysis failed to separate AD patients from controls and vice 

versa, we inspected whether both techniques may contain complementary information 

that could improve AD diagnostic accuracy. In order to do so, a forward stepwise LDA 

with a leave-one-out cross-validation procedure was performed. In the subject-based 

classification three spectral analysis parameters were selected. With this model, an 

accuracy of 95.45% was achieved, improving by 9.09% the highest accuracy obtained 

with a single parameter (theta band power at O1). However, the results of this subject-

based classification model should be taken with caution due to the reduced sample size, 

since 11 parameters were used to classify 22 subjects. On the other hand, the amount of 

data available for analysis is much larger in the epoch-based classification, since more 

than 600 epochs were processed. In this case, the discriminant model included 

parameters both from spectral analysis and DFA. An accuracy of 94.04% was achieved, 

representing an increase of 15.26% with respect to the highest accuracy obtained with a 

single parameter (theta band power at O1). This implies that the combination of DFA 

and spectral analysis may provide a more reliable model to detect AD from EEG epochs 

than that obtained using single parameters. It is noteworthy that these combined models 

correctly detected some subjects/epochs misclassified by one or more single parameters. 
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We have previously analyzed the same dataset with non-linear techniques, 

obtaining accuracies – without a leave-one-out cross-validation procedure – between 

72.72% and 81.81% with sample entropy [7] and Lempel-Ziv’s complexity [33]. 

However, comparison of results is not easy, as DFA inspects signal properties in 

different time scales. Recently, multiscale entropy (MSE) has been introduced to 

quantify signal complexity considering several time scales [34]. The analysis of our 

database with MSE showed important differences between AD patients and control 

subjects on the larger time scales, with significant differences at 10 electrodes (p < 0.01) 

[35]. The classification accuracies using the slope of the MSE profiles for those scales 

were between 77.27% and 90.91%. However, the analyzed time scales were not the 

same as in this study and a leave-one-out cross-validation procedure was not used. A 

related but much easier to compute multiscale measure, the scale-dependent Lyapunov 

exponent, has been recently proposed [36]. Due to its ability to characterize different 

types of motions, its performance in AD patients’ EEG analysis should be checked. 

Some limitations of our study merit consideration. First of all, our results from 

DFA and spectral analysis are not completely consistent. This could mean that EEG 

signals are only approximately fractals in a very limited time scale range. In fact, the 

fractal scaling behavior identified from the EEG in our study is only valid within very 

limited time scale ranges (from 0.01 s to 0.04 s and from 0.08 s to 0.43 s). The second 

scaling region may correspond to a larger one, as shown in other EEG studies, but we 

are limited by the available epoch length. Although our results show that the combined 

use of spectral analysis and DFA could improve AD diagnosis accuracy, further studies 

with a larger sample size are required to prove the usefulness of our methodology. 

Moreover, as AD diagnosis is only definite after necropsy, the sample may not fully 

represent this disease. Finally, the scaling properties of the EEG should be studied in 
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depression or other dementias to verify if the reported changes are specific to AD. 

In summary, DFA shows two scaling regions in the EEG with a breakpoint 

between them that might have biological significance. Although scaling exponents for 

large window sizes allowed us to separate AD patients and control subjects, accuracies 

were lower than using spectral analysis. However, due to the approximately fractal 

nature of the EEG, the combined use of DFA and spectral analysis improved the AD 

diagnostic accuracy of each individual technique. DFA of the EEG in AD patients may 

increase the insight into brain dysfunction in this dementia and complement the 

classification based on spectral techniques. 
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TABLE AND FIGURE CAPTIONS 

 

TABLE I Average values of the slope in the first scaling region 

 

TABLE II Average values of the slope in the second scaling region. Significant 

differences are marked with an asterisk 

 

TABLE III Average values of the estimated change of slope between the two scaling 

regions in the EEG 

 

TABLE IV Relative power values (Mean ± SD) in the delta (0.5–4 Hz), theta (4–8 Hz), 

alpha (8–13 Hz), and beta (13–30 Hz) frequency bands for AD patients and control 

subjects. Significant group differences are marked with an asterisk 

 

TABLE V Sensitivity, specificity and accuracy values obtained with ROC curves and 

leave-one-out cross-validation 

 

TABLE VI Sensitivity, specificity and accuracy values obtained with a forward 

stepwise LDA and leave-one-out cross-validation 

 

Fig. 1.  F(k) vs. k in a log-log plot for one EEG epoch from electrode T5 of a control 

subject. The scaling exponents α1 and α2 are depicted with a solid line and their 

numerical values included. 
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Fig. 2.  F(k) vs. k in a log-log plot for one EEG epoch from electrode T5 of an AD 

patient. The scaling exponents α1 and α2 are depicted with a solid line and their 

numerical values included. 

 

Fig. 3.  F(k) vs. k in a log-log plot for the EEG epoch from Fig. 1 before (marked with 

‘*’) and after (marked with ‘◊’) filtering the alpha band out. 

 

Fig. 4.  F(k) vs. k in a log-log plot for the EEG epoch from Fig. 2 before (marked with 

‘*’) and after (marked with ‘◊’) filtering the alpha band out. 
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TABLE I 
AVERAGE VALUES OF THE SLOPE IN THE FIRST SCALING REGION 

 

 

Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value 

F3 1.8305 ± 0.0848 1.8495 ± 0.0769 0.5890 
F4 1.8207 ± 0.0661 1.8541 ± 0.0807 0.3013 
F7 1.8171 ± 0.0879 1.7805 ± 0.1086 0.3946 
F8 1.7965 ± 0.0869 1.7911 ± 0.1065 0.8990 

Fp1 1.8034 ± 0.0856 1.8147 ± 0.0665 0.7332 
Fp2 1.8064 ± 0.0816 1.8205 ± 0.0590 0.6459 
T3 1.7763 ± 0.1179 1.7470 ± 0.1170 0.5646 
T4 1.7701 ± 0.0950 1.7287 ± 0.1126 0.3631 
T5 1.8445 ± 0.1054 1.8618 ± 0.0668 0.6504 
T6 1.8366 ± 0.1120 1.8666 ± 0.0807 0.4792 
C3 1.8265 ± 0.0852 1.8522 ± 0.0920 0.5037 
C4 1.8364 ± 0.0870 1.8367 ± 0.1006 0.9952 
P3 1.8744 ± 0.0954 1.9196 ± 0.0564 0.1908 
P4 1.8844 ± 0.1119 1.9255 ± 0.0478 0.2761 
O1 1.8255 ± 0.1218 1.8594 ± 0.0743 0.4399 
O2 1.8162 ± 0.1223 1.8672 ± 0.0791 0.2593 
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TABLE II 
AVERAGE VALUES OF THE SLOPE IN THE SECOND SCALING REGION. SIGNIFICANT 

DIFFERENCES ARE MARKED WITH AN ASTERISK 
 

 

Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value 

F3 0.8755 ± 0.1890 0.9590 ± 0.1794 0.3005 
F4 0.9202 ± 0.1934 0.9458 ± 0.1603 0.7386 
F7 0.8605 ± 0.1595 0.9820 ± 0.1661 0.0954 
F8 0.8976 ± 0.1388 0.9710 ± 0.1590 0.2618 

Fp1 0.9317 ± 0.1575 1.0662 ± 0.2085 0.1032 
Fp2 0.9618 ± 0.1662 1.0640 ± 0.1850 0.1879 
T3 0.7180 ± 0.1265 0.8792 ± 0.2009 0.0357 
T4 0.7323 ± 0.1128 0.8812 ± 0.2699 0.1068 

T5* 0.6403 ± 0.1689 0.9107 ± 0.2328 0.0054 
T6* 0.6559 ± 0.1295 0.9009 ± 0.2483 0.0088 
C3 0.7336 ± 0.2038 0.8551 ± 0.1790 0.1530 
C4 0.7192 ± 0.1560 0.8280 ± 0.1785 0.1438 
P3 0.6520 ± 0.2292 0.9000 ± 0.2466 0.0240 
P4 0.6077 ± 0.2160 0.8660 ± 0.2607 0.0199 

O1* 0.5990 ± 0.1757 0.8821 ± 0.2469 0.0057 
O2 0.6238 ± 0.2076 0.8846 ± 0.2570 0.0165 
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TABLE III 
AVERAGE VALUES OF THE ESTIMATED CHANGE OF SLOPE BETWEEN THE TWO SCALING 

REGIONS IN THE EEG 
 

 

Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value 

F3 2.3109 ± 0.3625 2.4581 ± 0.3581 0.3494 
F4 2.2686 ± 0.3006 2.4839 ± 0.2932 0.1045 
F7 2.3766 ± 0.3346 2.3476 ± 0.3777 0.8509 
F8 2.2952 ± 0.3276 2.3786 ± 0.3548 0.5730 

Fp1 2.2497 ± 0.4068 2.2239 ± 0.5443 0.9013 
Fp2 2.2451 ± 0.3361 2.3337 ± 0.3038 0.5242 
T3 2.4331 ± 0.2458 2.3687 ± 0.3278 0.6078 
T4 2.4101 ± 0.2772 2.3489 ± 0.2643 0.6023 
T5 2.5885 ± 0.2278 2.6536 ± 0.1638 0.4504 
T6 2.5577 ± 0.2793 2.6300 ± 0.1282 0.4444 
C3 2.4370 ± 0.3280 2.5108 ± 0.2410 0.5544 
C4 2.4535 ± 0.3477 2.5287 ± 0.1681 0.5257 
P3 2.5787 ± 0.3125 2.6896 ± 0.1360 0.2932 
P4 2.5982 ± 0.3197 2.6863 ± 0.1081 0.3969 
O1 2.5957 ± 0.2354 2.6583 ± 0.1331 0.4518 
O2 2.5680 ± 0.2758 2.6606 ± 0.1302 0.3260 
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TABLE IV 
RELATIVE POWER VALUES (MEAN ± SD) IN THE DELTA (0.5–4 HZ), THETA (4–8 HZ), 
ALPHA (8–13 HZ), AND BETA (13–30 HZ) FREQUENCY BANDS FOR AD PATIENTS AND 

CONTROL SUBJECTS. SIGNIFICANT GROUP DIFFERENCES ARE MARKED WITH AN 

ASTERISK 
 

DELTA BAND (0.5-4 Hz) THETA BAND (4-8 Hz) 

Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value 

Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value Electrode 
Control subjects 

(mean ± SD) 
AD patients 
(mean ± SD) 

p-value 

 
 

F3 0.7121 ± 0.1069 0.7123 ± 0.1402 0.9961 F3* 0.0741 ± 0.0149 0.1255 ± 0.0531 0.0058 
F4 0.6097 ± 0.1589 0.6730 ± 0.1432 0.3377 F4 0.0854 ± 0.0238 0.1339 ± 0.0539 0.0129 
F7 0.6387 ± 0.1914 0.6505 ± 0.1330 0.8679 F7* 0.0840 ± 0.0223 0.1366 ± 0.0527 0.0063 
F8 0.5968 ± 0.1599 0.6500 ± 0.1350 0.4092 F8 0.0874 ± 0.0270 0.1345 ± 0.0586 0.0250 

Fp1 0.6620 ± 0.1543 0.7039 ± 0.1562 0.5347 Fp1 0.0762 ± 0.0132 0.1217 ± 0.0563 0.0168 
Fp2 0.6743 ± 0.1658 0.7418 ± 0.1349 0.3069 Fp2 0.0764 ± 0.0195 0.1119 ± 0.0545 0.0558 
T3 0.4793 ± 0.1576 0.5716 ± 0.1865 0.2245 T3 0.0912 ± 0.0464 0.1379 ± 0.0628 0.0608 
T4 0.4460 ± 0.1344 0.5776 ± 0.1647 0.0534 T4 0.0976 ± 0.0400 0.1375 ± 0.0629 0.0913 
T5 0.5164 ± 0.1457 0.6259 ± 0.1236 0.0719 T5 0.1028 ± 0.0608 0.1774 ± 0.0636 0.0108 
T6 0.4266 ± 0.1756 0.6293 ± 0.1940 0.0183 T6 0.1001 ± 0.0446 0.1513 ± 0.0653 0.0441 
C3 0.6093 ± 0.2021 0.6838 ± 0.1641 0.3537 C3 0.0822 ± 0.0354 0.1245 ± 0.0638 0.0691 
C4 0.5925 ± 0.2021 0.7002 ± 0.1776 0.1993 C4 0.0770 ± 0.0302 0.1143 ± 0.0601 0.0812 
P3 0.4755 ± 0.1968 0.6558 ± 0.1853 0.0387 P3 0.1090 ± 0.0858 0.1575 ± 0.0786 0.1819 
P4 0.4026 ± 0.1976 0.6400 ± 0.1960 0.0104 P4 0.0967 ± 0.0499 0.1437 ± 0.0573 0.0534 
O1 0.4247 ± 0.2029 0.6095 ± 0.1411 0.0222 O1* 0.0877 ± 0.0287 0.1651 ± 0.0570 0.0007 

O2* 0.4002 ± 0.1789 0.6088 ± 0.1490 0.0075 O2 0.0927 ± 0.0530 0.1527 ± 0.0473 0.0110 

ALPHA BAND (8-13 Hz) BETA BAND (13-30 Hz) 

F3 0.0937 ± 0.0655 0.0736 ± 0.0527 0.4360 F3 0.1048 ± 0.0651 0.0776 ± 0.0469 0.2739 
F4 0.1238 ± 0.0900 0.0839 ± 0.0447 0.2029 F4 0.1587 ± 0.0825 0.0956 ± 0.0559 0.0484 
F7 0.1267 ± 0.0935 0.0755 ± 0.0421 0.1134 F7 0.1267 ± 0.0913 0.1028 ± 0.0500 0.4552 
F8 0.1162 ± 0.0681 0.0750 ± 0.0385 0.0957 F8 0.1643 ± 0.0846 0.1083 ± 0.0532 0.0778 

Fp1 0.0964 ± 0.0736 0.0681 ± 0.0459 0.2911 Fp1 0.1375 ± 0.0869 0.0895 ± 0.0588 0.1449 
Fp2 0.0976 ± 0.0659 0.0608 ± 0.0365 0.1208 Fp2 0.1272 ± 0.0851 0.0727 ± 0.0459 0.0762 
T3* 0.1643 ± 0.0965 0.0712 ± 0.0377 0.0074 T3 0.2088 ± 0.1006 0.1552 ± 0.1127 0.2533 
T4* 0.1599 ± 0.0665 0.0724 ± 0.0420 0.0014 T4 0.2351 ± 0.1174 0.1538 ± 0.0822 0.0746 
T5 0.1929 ± 0.1319 0.0946 ± 0.0427 0.0290 T5 0.1591 ± 0.0715 0.0871 ± 0.0469 0.0112 
T6 0.2222 ± 0.1252 0.1115 ± 0.0918 0.0282 T6 0.2089 ± 0.1291 0.0906 ± 0.0609 0.0124 
C3 0.1285 ± 0.0805 0.0804 ± 0.0511 0.1098 C3 0.1606 ± 0.1403 0.0960 ± 0.0643 0.1801 
C4 0.1228 ± 0.0703 0.0736 ± 0.0536 0.0801 C4 0.1839 ± 0.1549 0.0968 ± 0.0729 0.1071 
P3 0.2212 ± 0.1524 0.0995 ± 0.0702 0.0259 P3 0.1720 ± 0.1226 0.0782 ± 0.0610 0.0344 
P4 0.2952 ± 0.2112 0.1284 ± 0.1178 0.0331 P4 0.1800 ± 0.1235 0.0799 ± 0.0573 0.0242 
O1 0.2652 ± 0.2097 0.1195 ± 0.0751 0.0422 O1* 0.1800 ± 0.0878 0.0902 ± 0.0410 0.0060 
O2 0.2724 ± 0.1929 0.1345 ± 0.1040 0.0500 O2* 0.1866 ± 0.0935 0.0881 ± 0.0411 0.0045 
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TABLE V 
SENSITIVITY, SPECIFICITY AND ACCURACY VALUES OBTAINED WITH ROC CURVES AND 

LEAVE-ONE-OUT CROSS-VALIDATION 
 

Method Electrode 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 

α2 

T5 SB 54.55 81.82 68.18 
T5 EB 54.05 85.19 69.10 
T6 SB 72.73 72.73 72.73 
T6 EB 60.98 79.50 69.91 
O1 SB 54.55 72.73 63.64 
O1 EB 60.98 81.71 71.07 

Delta band 
power 

O2 SB 81.82 72.73 77.27 
O2 EB 68.82 70.73 69.76 

Theta band 
power 

F3 SB 63.64 90.91 77.27 
F3 EB 64.54 76.92 70.43 
F7 SB 63.64 72.73 68.18 
F7 EB 53.76 92.90 72.69 
O1 SB 90.91 81.82 86.36 
O1 EB 70.52 87.50 78.78 

Alpha band 
power 

T3 SB 54.55 45.46 50.00 
T3 EB 89.02 47.81 69.22 
T4 SB 63.64 63.64 63.64 
T4 EB 65.32 72.46 68.66 

Beta band 
power 

O1 SB 81.82 72.73 77.27 
O1 EB 68.79 72.56 70.62 
O2 SB 81.82 63.64 72.73 
O2 EB 76.77 72.26 74.55 

SB: SUBJECT-BASED CLASSIFICATION 
EB: EPOCH-BASED CLASSIFICATION 
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TABLE VI 
SENSITIVITY, SPECIFICITY AND ACCURACY VALUES OBTAINED WITH A FORWARD 

STEPWISE LDA AND LEAVE-ONE-OUT CROSS-VALIDATION 
 

Method Scheme Sensitivity (%) Specificity (%) Accuracy (%) 

LDA1 SB 90.91 100 95.45 
LDA2 EB 95.59 92.17 94.04 

SB: SUBJECT-BASED CLASSIFICATION; EB: EPOCH-BASED CLASSIFICATION 
1
 SELECTED PARAMETERS: ALPHA BAND POWER AT T4, THETA BAND POWER AT F7, AND 

BETA BAND POWER AT O1 
2
 SELECTED PARAMETERS: THETA BAND POWER AT O1, BETA BAND POWER AT O1, ALPHA 

BAND POWER AT T4, THETA BAND POWER AT F7, BETA BAND POWER AT O2, α2 AT O1, α2 

AT T6, AND THETA BAND POWER AT F3 
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Fig. 1.  F(k) vs. k in a log-log plot for one EEG epoch from electrode T5 of a control 

subject. The scaling exponents α1 and α2 are depicted with a solid line and their 

numerical values included. 
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Fig. 2.  F(k) vs. k in a log-log plot for one EEG epoch from electrode T5 of an AD 

patient. The scaling exponents α1 and α2 are depicted with a solid line and their 

numerical values included. 
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Fig. 3.  F(k) vs. k in a log-log plot for the EEG epoch from Fig. 1 before (marked with 

‘*’) and after (marked with ‘◊’) filtering the alpha band out. 
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Fig. 4.  F(k) vs. k in a log-log plot for the EEG epoch from Fig. 2 before (marked with 

‘*’) and after (marked with ‘◊’) filtering the alpha band out. 
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