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Summary 

 

Objectives: In this pilot study, we intended to assess whether a procedure 

based on blind source separation (BSS) and subsequent partial 

reconstruction of magnetoencephalogram (MEG) recordings might enhance 

the differences between MEGs from Alzheimer's disease (AD) patients and 

elderly control subjects. 

 

Materials and methods: We analysed MEG background activity recordings 

acquired with a 148-channel whole-head magnetometer from 21 AD 

patients and 21 control subjects. Artefact-free epochs of 20 s were blindly 

decomposed using the algorithm for multiple unknown signals extraction 

(AMUSE), which arranges the extracted components by decreasing linear 

predictability. Thus, the components of diverse epochs and subjects could 

be easily compared. Every component was characterised with its median 

frequency and spectral entropy (denoted by fmedian and SpecEn, 

respectively). The differences between subject groups in these variables 

were statistically evaluated to find out which components could improve the 

subject classification. Then, these significant components were used to 

partially reconstruct the MEG recordings. 

 

Results: The statistical analysis showed that the AMUSE components which 

provided the largest differences between demented patients and control 

subjects were ordered together. Considering this analysis, we defined two 

subsets, denoted by BSS-{15,35} and BSS-{20,30}, which included 21 

components (15 to 35) and 11 components (20 to 30), respectively. We 
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partially reconstructed the MEGs with these subsets. Then, the classification 

performance was computed with a leave-one-out cross-validation procedure 

for the case where no BSS was applied and for the partial reconstructions 

BSS-{15,35} and BSS-{20,30}. The BSS and component selection 

procedure improved the classification accuracy from 69.05% to 83.33% 

using fmedian with BSS-{15,35} and from 61.91% to 73.81% using SpecEn 

with BSS-{20,30}. 

 

Conclusion: These preliminary results lead us to think that the proposed 

procedure based on BSS and selection of significant components may 

improve the classification of AD patients using straightforward features from 

MEG recordings. 

 

Keywords: Alzheimer's disease; algorithm for multiple unknown signals 

extraction (AMUSE); blind source separation (BSS); magnetoencephalogram 

(MEG); median frequency; spectral entropy. 
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1. Introduction 

Life expectancy has risen considerably during the last decades. In this new 

situation, increasing numbers of people reach ages at which mental 

diseases become widespread [1,2]. Among these, Alzheimer's disease (AD) 

is considered the most frequent cause of dementia in western countries 

[1,3]. Moreover, the prevalence of AD increases rapidly with age [1]. 

AD causes progressive and irreversible impairment of mental functions 

[3]. Eventually, AD patients need complete care. This dementia is 

characterised by neural loss. Moreover, neuritic plaques and neurofibrillary 

tangles also appear [1]. Whereas the former are microscopic extra-cellular 

depositions composed of insoluble amyloid beta-protein, the latter are intra-

cellular twisted fibres produced by protein tau [1]. The only definitive 

method for AD diagnosis is direct pathological examination of brain tissue 

[2]. Nevertheless, a probable diagnosis based on neuroimaging techniques, 

medical history studies and several mental tests – e.g., Mini-Mental State 

Examination (MMSE) [4] – is attempted. 

Due to its relevance and difficult diagnosis, the utility of the 

electromagnetic brain activity in the detection of AD has been widely 

researched in the last decades (for recent reviews, we refer to [5,6]). Both 

electroencephalogram (EEG) and magnetoencephalogram (MEG) record the 

electromagnetic oscillations produced by the pyramidal neurons non-

invasively [7]. In AD, these signals show abnormalities that reflect 

anatomical and functional deficits of the brain cortex damaged by the 

dementia. Thus, the investigation of EEG and MEG signals may provide 

useful insights into AD [5,6]. 
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EEG and MEG have higher temporal resolution than other brain imaging 

techniques, like positron emission tomography or functional magnetic 

resonance imaging (FMRI) [7–9]. However, there are several differences 

between EEG and MEG. Firstly, MEG is blind to radial currents and most 

sensitive to tangential dipoles. On the contrary, EEG records all primary 

currents [8,9]. Secondly, since EEG recordings measure the difference 

between the electric potential at two locations, they require to define an 

electrical reference electrode [7]. The selection of this electrode is a crucial 

matter [10]. In contrast, MEG does not need to define a reference sensor to 

record the brain magnetic field [8]. Finally, MEG is not affected by the 

conductivity of the skull and scalp, while EEG is distorted by these tissues 

[8,9]. Due to these characteristics, MEG is considered a complementary 

signal to EEG [8] that may provide a useful insight into the electromagnetic 

brain activity [6]. 

Visual inspection of the electromagnetic brain recordings from AD 

patients at rest with eyes closed shows a reduction in beta and alpha 

activity and a slowing of the cortical posterior rhythm, among other 

abnormalities [5]. Moreover, diverse research works confirmed this slowing 

applying computerised spectral analysis to EEG and MEG data. For instance, 

several studies quantified the changes that AD produces in the power of 

different frequency bands [5,11–13]. These findings agree with the fact that 

AD patients' EEG and MEG recordings have a lower mean frequency than 

those of healthy control subjects [11,13–16]. AD also causes other 

abnormalities in the electromagnetic brain activity, such as a decrease in 

the functional connectivity among cortical areas. This reduction can be 

measured performing a coherence analysis of brain recordings [5,10,12]. 
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In addition to the aforementioned changes, the irregularity of the AD 

patients' EEG and MEG spectra also decreases [16,17]. This reduction can 

be evaluated using spectral entropy [18,19], which is computed applying 

the Shannon entropy to the normalised power spectral density (PSD) 

function. Moreover, the AD patients' EEG and MEG data have also been 

studied with various non-linear techniques [5,6,17,20] like complexity 

estimators [21–23] or connectivity measures [24,25]. Other works have 

focused on the internal equivalent generator dipoles of MEG activity in AD 

[26]. 

Nevertheless, there is room for further improvement in those 

methodologies [27]. A technique that may improve the subject classification 

based on features extracted from EEG and MEG data is blind source 

separation (BSS) [28,29], since this methodology allows us to examine 

these signals from another point of view [27,30]. 

Typically, BSS techniques are applied to a set of temporally and spatially 

correlated measurements, like EEGs and MEGs, although they can also be 

used with single channel recordings [31]. From the correlated recordings, 

the BSS methods estimate a number of underlying components, or sources, 

blindly (i.e., the components themselves and the mixing process that 

produced the observed measurements from the components are unknown) 

[28,29,32]. To estimate the underlying components, it is assumed that they 

are mutually independent or, alternatively, that their waveforms have no 

spatial and temporal correlations [29]. 

It should be noted that the BSS components are neither equivalent 

current dipoles nor FMRI activated zones. Instead, they are concurrent, 
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spatially and temporally decorrelated electromagnetic activities which were 

added over the scalp to originate the measured recordings [28,33]. 

Given the fact that BSS is able to isolate dissimilar kinds of activity into 

different components [29,32], this technique has been used to reject 

artefacts from EEG [33–36] and MEG [37,38] data. Once the BSS has 

isolated the artefacts into a few components, the brain recording is 

reconstructed using only the non-artefactual components [29,36]. In this 

way, artefacts can be removed from EEG or MEG data with minimal 

interference in brain activity. Likewise, BSS can be used to separate specific 

brain activity, such as epileptiform discharges, in order to assist in further 

analyses [39]. Moreover, BSS methods can be applied to brain recordings 

using another approach. Considering the intrinsic complexity of the brain 

recordings, some BSS components may have certain features that could 

make them more sensitive to particular brain states, such as AD [27] or 

audiovisual stimulation [30]. Hence, the most relevant components may be 

selected and the brain recordings may be partially reconstructed using only 

these components [27]. Thus, diverse brain states might be better 

differentiated in comparison to the situation where BSS is not used. 

Nevertheless, despite the advantages that this approach may provide, few 

studies have implemented it. To our knowledge, this methodology has only 

been applied to EEG data in [27,40]. 

In this study, we applied a BSS algorithm to background MEG recordings 

from AD patients and control subjects. Two spectral variables (median 

frequency and spectral entropy, denoted by fmedian and SpecEn, respectively) 

were used to characterise every MEG channel and BSS component. The BSS 

components of both groups were analysed to assess how fmedian and SpecEn 
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varied within them and to decide which provided the most relevant 

information to classify the subjects. In addition, the classification accuracies 

achieved with and without the BSS preprocessing were compared. We 

wanted to test the hypothesis that this procedure of BSS and subsequent 

selection of AD-relevant components might improve the classification of AD 

patients versus control subjects based on MEG background activity. 

 

2. Subjects and signals 

2.1. Subjects 

Twenty-one AD patients participated in this study. The average age of this 

subject group, which was formed by 13 women and 8 men, was 73.19 ± 

9.22 years – mean ± standard deviation (SD) –. All AD patients were 

recruited from the “Asociación de Familiares de Enfermos de Alzheimer” 

(Spain) and fulfilled the criteria of probable AD according to the guidelines 

provided by the National institute of neurological and communicative 

disorders and stroke – Alzheimer's disease and related disorders association 

(NINCDS-ADRDA) [41]. The diagnosis was based on brain scans and 

thorough medical, physical, neurological, psychiatric and neurophysiological 

examinations. MMSE was used to assess the severity of AD [4]. The 

patients' average MMSE score was 17.95 ± 3.97 (mean ± SD). The MEG 

recording was carried out when AD was diagnosed. No patient received 

medication that could affect the MEG signals. 

In addition, 21 control subjects (age = 70.19 ± 6.96 years, mean ± SD; 

13 women) without past or present neurological or psychiatric diseases 

were recruited to participate in this study. The difference in age between 

both subject groups was not significant (p-value = 0.1861, Mann-Whitney 
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U-test). The average MMSE score for the controls was 29.05 ± 0.97 (mean 

± SD). 

All AD patients' caregivers and all control subjects gave their informed 

consent to participate in this study, which was approved by the local ethics 

committee. 

 

2.2. Magnetoencephalogram recording 

MEGs were recorded in a magnetically shielded room using a 148-channel 

whole-head magnetometer (MAGNES 2500 WH, 4D Neuroimaging). During 

the recording process, the subjects lay on a patient bed with eyes closed. In 

order to avoid artefactual contamination, they were asked to stay awake 

and not to move eyes and head. Five minutes of MEG recording were 

acquired from each subject at a sampling frequency of 678.17 Hz using a 

hardware band-pass filter with cut-off frequencies at 0.1 Hz and 200 Hz. To 

reduce data length, these recordings were decimated to 169.55 Hz. This 

procedure consisted of filtering the recordings according to the Nyquist 

criterion and down-sampling them by a factor of four. Then, the recordings 

were copied as ASCII files to a personal computer. They were processed 

with a 50 Hz notch filter and a band-pass finite impulse response filter 

designed with a Hamming window with cut-off frequencies at 1.5 Hz and 40 

Hz. MEG epochs of 20 s (3390 samples) that were simultaneously artefact-

free at all channels were selected for analysis. 

 

3. Methods 

3.1. Blind source separation 
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Briefly, BSS techniques attempt to find the set of n unknown underlying 

components, ( ) [ ]T21 )(,),(),( tststst nK=s , where T  denotes the transpose of a 

vector or matrix and t  is the discrete time index, which form the m 

temporally and spatially correlated measured signals, 

( ) [ ]T
21 )(,),(),( txtxtxt mK=x  [28,29,32]. Hence, in this study, ( )ts  represents 

the BSS components, whereas the MEG recordings are denoted by ( )tx . The 

mixing process is assumed to be linear [28,34,35]. Mathematically: 

( ) ( ),tt Asx =  (1) 

where A  is a full rank m×n mixing matrix and ( )tx  and ( )ts  are centred 

[28,29]. 

External noise may be included in the model [36,38]. However, for the 

sake of simplicity, the noise term has not been incorporated in this study 

[34,35]. In addition, the number of BSS components must be less than or 

equal to the number of recorded signals (m≥n) [29]. Taking into account 

that only the most relevant components will be retained for further MEG 

reconstruction and classification analysis, we set m=n instead of applying a 

dimensionality reduction technique in advance. 

In order to estimate ( )ts  and A , several hypotheses are made [28,29]. 

The most important assumption may be that the BSS components are 

mutually independent or, on the other hand, that they should be 

decorrelated at any time delay. In addition, it is hypothesised that the 

mixing process is linear and instantaneous. All these requirements are 

suitably met by EEG and MEG data [29]. 

Under these hypotheses, some BSS algorithms use the temporal 

dependences of the recordings to find a demixing matrix, W , [28,29]. 
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Using W , the recovered BSS components vector, 

( ) [ ]T21 )(,),(),( tytytyt mK=y , which estimates ( )ts , is computed by: 

( ) ( ).tt Wxy =  (2) 

Some BSS components of the MEG recordings may be more affected by 

AD than others [27]. Thus, a vector formed by the subset of the most 

sensitive components – ( )tsubsety  – could be used to compute a partial 

reconstruction of the MEG recordings – ( )tpartialx : 

( ) ( ).1
tt subsetpartial yWx

−
=  (3) 

Hence, it could be assumed that some remarkable features of AD may be 

enhanced in ( )tpartialx  by comparison with the raw recordings, ( )tx  [27]. 

However, it should be noted that a certain order or clustering is needed 

to compare BSS components extracted from different MEG epochs and 

subjects [27,30]. Thus, among the BSS algorithms available, we used the 

algorithm for multiple unknown signals extraction (AMUSE) [28,42] to 

decompose the MEGs. This algorithm orders the extracted components by 

decreasing linear predictability [27]. 

 

3.2. Algorithm for multiple unknown signals extraction 

Several BSS algorithms are based on the hypothesis that BSS 

components should have no temporal and spatial correlations [28]. 

Consequently, this kind of algorithms find W  by minimising the cross-

correlations between components at certain time delays [29]. One of these 

algorithms is AMUSE, which decorrelates the signals at two time lags 

(typically, 0=τ  and 1=τ ) [27,29,36,42]. Since only two time delays are 

considered in AMUSE, its computational complexity is low [27,28]. 
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Furthermore, AMUSE always offers the same separation when it is applied 

to the same input data set and it orders the components by decreasing 

linear predictability [27]. This inherent order enables us to compare AMUSE 

components from different epochs and subjects straightforwardly. Thus, the 

definition of the subsets ( )tsubsety  can be done by removing the AMUSE 

components whose index is higher and/or lower than certain thresholds. 

First of all, AMUSE applies a principal component analysis to the input 

data, ( )tx , in order to whiten them [27,42]. Let { }·E  be the expectation 

value of a variable. Then, the covariance matrix of ( )tx  is: 

( ) ( ) ( ){ }.0
T

ttEx xxR =  (4) 

The whitened data, ( )tz , are computed by [27]: 

( ) ( ),tt Qxz =  (5) 

where ( )[ ] 2
1

0
−

= xRQ . 

Afterwards, the signals are decorrelated at a particular time delay, τ  

(usually 1=τ ) [27,28,36]. A time-delayed covariance matrix is computed 

[42] as: 

( ) ( ) ( ){ }T
ττ −= ttEz zzR  (6) 

and the eigenvalue decomposition of ( ) ( )( ) 2
T

ττ zz RR +  is calculated. If V  

denotes the eigenmatrix computed from this decomposition, the demixing 

matrix W  is estimated as [42]: 

.
T
QVW =  (7) 

As it has been described, AMUSE consists of a whitening process 

followed by a singular value decomposition. Thus, the computational 

complexity of this algorithm is low [27]. In a Matlab® 7.0 environment 
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running on a personal computer with a Intel Pentium Duo® 2.80 GHz 

processor and 2 GB RAM, the decomposition of the 148 MEG channels into 

the 148 AMUSE components took 0.4023 ± 0.0088 seconds per epoch 

(mean ± SD). 

 

3.3. Feature extraction 

Two spectral features were used to characterise the MEG signals and the 

AMUSE components: fmedian and SpecEn. Firstly, we computed the PSD of 

each MEG channel or AMUSE component for every epoch. PSDs were 

calculated as the Fourier transforms of the corresponding autocorrelation 

functions. Then, the PSDs estimated from the epochs available were 

averaged for each subject and MEG channel or AMUSE component. Finally, 

fmedian and SpecEn values were computed from the mean PSDs. 

fmedian is accepted as a simple way to summarise the spectral content of 

the PSD [16]. It has been used to study the spectra of AD, mild cognitive 

impairment (MCI) or vascular dementia patients' brain recordings [11,13–

16], among other mental diseases. fmedian is defined as the frequency which 

contains half the PSD power. Taking into consideration the cut-off 

frequencies of the band-pass filter applied to the MEG signals (1.5 Hz and 

40 Hz), fmedian was computed as: 

( ) ( ).
2

1

Hz5.1

Hz40

Hz5.1

∑∑
==

=










 medianf

ff

fPSDfPSD  (8) 

Additionally, we estimated the SpecEn in order to quantify the flatness of 

the PSD. SpecEn is computed applying the Shannon's entropy to the 

normalised PSD (PSDn) [18,19]: 
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( )
( ) ( )[ ],log

log

1 0Hz4

Hz5.1

∑
=

−=
f

nn fPSDfPSD
N

SpecEn  (9) 

where N  is the number of frequency bins and the division by ( )Nlog  

normalises the SpecEn to a scale from 0 to 1.  

High SpecEn values are due to broad and flat spectra (e.g., white noise), 

whereas this entropy estimator provides low values for spectra whose 

energy is mainly focused round a narrow frequency band (e.g., a sine 

wave). Thus, SpecEn measures the disorder of the spectrum, estimating the 

signal irregularity [18]. Several studies have applied SpecEn to 

electromagnetic brain signals [18,19], including the analysis of AD patients' 

EEGs [17] and MEGs [16]. 

 

3.4. Statistical analysis 

Mann-Whitney U-test was used to decide whether there were statistically 

significant differences between both subject groups in the fmedian and SpecEn 

values of the AMUSE components. The Bonferroni correction was applied to 

the Mann-Whitney U-test p-values in order to avoid spurious positives. 

Previously, homoscedasticity was verified with the Brown-Forsythe test, and 

Kolmogorov-Smirnov test assessed whether the differences in the shape of 

the distributions were negligible. 

A leave-one-out cross-validation procedure, together with receiver 

operating characteristics (ROC) curves [43], was used to measure the 

ability of fmedian and SpecEn to distinguish AD patients from control subjects 

when different AMUSE component subsets were retained. ROC plots analyse 

the performance of a certain variable in classifying two groups. In this 

study, sensitivity is defined as the rate of AD patients properly classified, 
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whereas specificity represents the percentage of control subjects correctly 

detected. Accuracy denotes the total fraction of subjects precisely identified. 

ROC curves also offer visual information about the quality of the 

classification rule, as they plot the sensitivity/{1-specificity} pair of values 

for all possible cut-off points. Furthermore, leave-one-out cross-validation 

avoids the appearance of over-fitting and bias in the analysis. The leave-

one-out cross-validation classifies each single case using the decision rule 

obtained from the ROC analysis of all remaining data. Then, this process is 

repeated for all cases. Although this procedure typically reduces the 

sensitivity, specificity and accuracy values, it increases the reproducibility of 

the results [27]. 

In addition, correlations between AD patients and control subjects' MMSE 

scores and their average values of fmedian and SpecEn were assessed with 

Spearman's rank correlation coefficient (ρ) when different AMUSE 

component subsets were retained. The corresponding p-values for testing 

the hypothesis of no correlation against the alternative that there is a non-

zero correlation were also estimated. Correlation was considered significant 

when the p-value was below 0.01. 

 

4. Results 

First of all, we used AMUSE to decompose MEG background activity epochs 

of 20 s (3390 samples) from 21 AD patients and 21 control subjects. 

Thanks to the inherent order of the AMUSE components, it was 

straightforward to compare them between groups. Thus, mean PSDs were 

calculated for each subject and each AMUSE component index. These 

average PSDs were characterised with fmedian and SpecEn. Fig. 1 shows the 
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average fmedian values for each AMUSE component and subject group. The 

fmedian increased with the AMUSE component index. This suggests that the 

decreasing linear predictability order provided by AMUSE is indeed 

determined arranging the components by their spectral content, from low to 

high frequency oscillations. Moreover, the typical slowing of AD patients' 

brain recordings can also be observed in Fig. 1, since the average fmedian 

values were lower for the demented patients' components than for those of 

the control subjects. In addition, Fig. 2 depicts the mean SpecEn values of 

both groups for each AMUSE component. SpecEn evolved similarly for both 

kinds of subjects. Moreover, since this entropy estimator measures the 

spectral irregularity and AMUSE orders the components by decreasing linear 

predictability, the SpecEn of the components rose with the AMUSE index, 

until it reached values close to 1. In addition, SpecEn values were usually 

higher in control subjects than in AD patients. This illustrates that AD 

patients have a MEG background activity with a narrower spectral content 

than control subjects. 

Visual inspection of both Fig. 1 and 2 suggested that the most AD-

sensitive components had indexes which varied from 5 to 60, 

approximately. In order to evaluate the statistical significance of the 

differences between groups, we carried out a Mann-Whitney U-test with a 

Bonferroni correction. Fig. 3 summarises the results of this analysis. 

Differences were usually more significant using fmedian than SpecEn. 

Moreover, it can be seen that the largest differences were focused around 

indexes ranging from 10 to 40 with SpecEn and from 15 to 55 using fmedian. 

Taking this into consideration, we chose two small subsets of AMUSE 

components to partially reconstruct the MEG recordings. The first one 
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contained 21 components (15 to 35), and it was denoted by BSS-{15,35}. 

The second subset was formed by 11 AMUSE components: from 20 to 30 

(BSS-{20,30}). The classification results achieved with the selection of 

these two subsets were compared to those provided by the MEG recordings 

without BSS. 

For each of the three cases (without BSS, BSS-{15,35} and BSS-

{20,30}), an average PSD per channel and subject was computed. Two 

variables, fmedian and SpecEn, were calculated from the PSD functions. After 

computing them, we obtained 148 values for each of the 21 AD patients and 

21 healthy controls. Owing to the high spatial density of the MEG channels, 

it may be helpful to reduce the problem dimensionality in order to simplify 

the analysis and the interpretation of the results. Thus, we averaged the 

148 fmedian or SpecEn variables for each subject. Hence, the classification 

analysis was carried out using one mean value of fmedian or SpecEn per 

subject. 

A ROC analysis combined with a leave-one-out cross-validation 

procedure was used to evaluate the classification achieved by fmedian and 

SpecEn in each of the three cases (without BSS, BSS-{15,35} and BSS-

{20,30}). Table 1 shows the sensitivity, specificity and accuracy values 

obtained with fmedian. The average values for each subject group are also 

displayed. AD patients had lower fmedian values than control subjects. It can 

be noticed that the SD was larger for the case where no BSS was used than 

for BSS-{15,35} or BSS-{20,30}. This suggests that the component 

selection procedure reduced the inter-subject group variability of fmedian. 

Furthermore, both cases, BSS-{15,35} and BSS-{20,30}, improved the 

accuracy of the subject classification more than 11%. The accuracy without 
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BSS was 69.05%. In contrast, it reached 80.95% for BSS-{20,30} and 

83.33% when the subset BSS-{15,35} was used. In addition, Fig. 4 

illustrates the average ROC curves associated with these analyses. The ROC 

plots related to BSS-{15,35} and BSS-{20,30} are akin. The areas under 

their ROC curves are larger than that obtained without BSS, indicating a 

better diagnostic test when the component selection preprocessing is used. 

The ability of SpecEn to distinguish AD patients from control subjects 

was also evaluated in the three studied cases. The classification results 

(sensitivity, specificity, accuracy and mean ± SD for both groups) are 

summarised in Table 2. AD patients' MEG background activity is more 

regular than control subjects' one, as the SpecEn values were lower for the 

former. Likewise fmedian, the SD of the SpecEn values decreased when the 

MEG was partially reconstructed. For this variable, the BSS and component 

selection procedure provided an accuracy improvement about 10% (71.43% 

and 73.81% for BSS-{15,35} and BSS-{20,30}, in that order, against 

61.91% for raw MEG recordings). Furthermore, the corresponding ROC 

plots are depicted in Fig. 5. They confirm the higher quality of the 

diagnostic test applied to BSS-processed signals than that based on MEG 

recordings without the BSS preprocessing. 

Finally, we assessed whether the severity of the dementia, measured 

with the MMSE, was correlated with the average values of fmedian and SpecEn 

for each case. All the computed ρ values, which are shown in Table 3, were 

significant (p-value < 0.01). There were slight increases in the correlation 

coeficients when the BSS and partial reconstruction was applied (BSS-

{15,35} and BSS-{20,30}) in comparison with the case where no BSS was 

used. 
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5. Discussion and conclusions 

In this study, we used the AMUSE algorithm [28,42] to decompose artefact-

free MEG epochs of 21 AD patients and 21 control subjects. Every AMUSE 

component was characterised with fmedian [16] and SpecEn [18,19], and the 

evolution of these spectral features with the AMUSE component index was 

analysed. Mann-Whitney U-test determined which components offered the 

most significant differences between both subject groups. Afterwards, two 

component subsets were selected to partially reconstruct the MEG 

recordings. These subsets were formed by the components BSS-{15,35} 

and BSS-{20,30}. Finally, the accuracy achieved in each of these two 

cases, when either fmedian or SpecEn was used to classify the subjects, was 

compared to that obtained from the MEG recordings without BSS. 

BSS techniques estimate the set of components that originated the 

recorded brain activity blindly [28]. It should be noted that the BSS 

components are not equivalent generator dipoles, but mutually independent 

and simultaneous electromagnetic activity measured over the scalp [29,33]. 

In the last years, BSS algorithms have been increasingly applied to EEG and 

MEG data in order to isolate the artefacts that usually appear in these 

signals [29,33–38]. Once the artefacts have been identified and detached, 

the brain components are projected back to the channels to obtain the clean 

recordings [34,38]. On the other hand, the approach taken in this study is 

different. We did not aim to remove artefacts from MEG recordings with 

minimal brain activity distortion. Instead, we attempted to emphasise the 

differences between AD patients and control subjects' MEG recordings by 

retaining only the components which account for the most relevant 
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differences between groups. Thus, the partially reconstructed MEG 

recordings do not reflect the brain activity accurately, but they should have 

more different values of fmedian and SpecEn than the MEG data without BSS. 

Moreover, it is worth noting that, previously to the BSS, the MEG epochs 

with clear artefacts were rejected. We applied the epoch rejection method in 

order to avoid surplus complexity and to assess the classification 

improvement without any other kind of preprocessing. Moreover, the same 

artefact-free raw MEG recordings were used to compute the fmedian and 

SpecEn with and without the BSS and component selection procedure. 

Therefore, the diverse classification results could be directly compared to 

evaluate the relative classification improvement. 

There is a wide range of BSS algorithms that can be applied to 

decompose EEGs or MEGs [29]. Among these, we employed AMUSE 

[27,36,42], which is based on second order statistics [29] likewise other 

BSS algorithms, such as the second order blind identification (SOBI) 

algorithm [28,32]. SOBI minimises the cross-correlations at a much denser 

set of time delays than AMUSE [32]. Although AMUSE might not separate 

the components as completely as SOBI [32], the computational complexity 

of AMUSE is lower than in most BSS algorithms [36]. Furthermore, AMUSE 

has other advantages: it always offers the same separation when applied to 

the same input data set and orders the components by decreasing linear 

predictability [27,42]. This inherent order is one of the key points of this 

component selection procedure, since it enables us to straightforwardly 

compare AMUSE components from different epochs and subjects. On the 

other hand, due to the fact that AMUSE only uses two time delays to 

decorrelate the signals, the AMUSE decomposition may be less robust to 
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additive white noise than that computed using SOBI or other BSS 

algorithms [32,36]. Nevertheless, the simplicity of AMUSE makes the 

interpretation of the component order in terms of fmedian or SpecEn plain. 

The features used for classification were fmedian and SpecEn. Both 

variables try to characterise the whole spectrum with a single value. The 

former assesses the slowing of the PSD [16], whereas the latter measures 

the flatness of the spectrum [19]. Moreover, both fmedian and SpecEn have 

already been applied to the analysis of AD patients' EEG and MEG data. Our 

results were in agreement with these previous studies [13–17]. Firstly, the 

fmedian values were lower for AD patients than for control subjects in both 

AMUSE components and MEG channels. This slowing was also found when 

different frequency bands and severity degrees of AD were analysed 

[11,13,14]. Secondly, AD patients had lower SpecEn than control subjects. 

This suggests that the AD patients' brain activity is more regular than in 

control subjects. This result was also found in EEG [17] and MEG data [16], 

although the differences between both groups were not significant in the 

EEG study. Moreover, other non-linear analysis methods support the 

hypothesis of decreased irregularity and complexity in AD patients' EEGs 

and MEGs [5,6,17,20,22–24]. Nevertheless, the origin of these changes is 

not yet clear, due to the heterogeneity of AD [1,5]. 

The Mann-Whitney U-test showed that the differences between both 

groups were more significant for fmedian than for SpecEn. These results agree 

with a previous study where these variables were applied to MEG recordings 

[16]. Nevertheless, the p-values evolved in a similar way with the AMUSE 

index for both fmedian and SpecEn. Furthermore, the most significant 

components were gathered together. Inspecting the p-values, we could 
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evaluate the ability of every AMUSE component to distinguish AD patients 

from control subjects. We decided to keep the subsets BSS-{15,35} (21 

components) and BSS-{20,30} (11 components) to partially reconstruct the 

MEGs. Moreover, the projection of a component subset implies a kind of 

model order selection in the BSS methodology. Furthermore, we did not 

estimate a fixed value for n a priori to reduce the dimensionality [29]. 

Instead, the most significant components were projected to rebuild the 

recordings. In addition, we classified the subjects using the average value 

of fmedian or SpecEn for the 148 MEG channels. 

Whereas the significance of each component was evaluated with a Mann-

Whitney U-test, the classification rate improvement was measured using a 

ROC analysis with a leave-one-out cross-validation process. We found that 

the BSS and component selection procedure provided an accuracy 

improvement between 9.52% and 14.28%. Additionally, this procedure also 

increased the correlation between the MMSE scores and the average values 

of fmedian and SpecEn slightly. This suggests that the partial reconstruction of 

MEG recordings may increase the concordance between the severity of the 

mental impairments described by MMSE and the fmedian and SpecEn values. 

A previous study where a subset of five AMUSE components extracted 

from 21 EEG channels were retained reported maximum accuracy 

improvements of 10% [27]. They tried to classify 22 MCI patients who later 

proceeded to AD against 38 control subjects. Our selection of the subsets 

BSS-{15,35} and BSS-{20,30} contrasts with their division [27], since in 

that previous work only the components below a certain index were taken 

into account for projection. Nevertheless, observing the p-values plotted in 

Fig. 3, it is clear that our first components provided little differentiation 



 23

between groups. Thus, as it was also suggested in [27], retaining an 

intermediate component subset, rather than just selecting the first AMUSE 

components, was beneficial in our case. A linear discriminant analysis with a 

cross-validation procedure applied to the relative power in six frequency 

bands was used to classify the 22 MCI patients and the 38 control subjects 

in [27]. Thus, the settings of that study are different from ours, as a more 

elaborated classification rule was used to distinguish the MCI patients. 

Nevertheless, that research work did not measure the improvement in each 

variable separately [27]. In contrast, our straightforward classification 

method helps to assess the improvement in each variable, fmedian or SpecEn. 

However, both studies have reported a promising accuracy increase of 

about 10%. In addition, a later study used the partially reconstructed EEGs 

obtained in [27] to further improve the classification of the MCI patients 

[40]. This subsequent study achieved an additional raise of about 13% over 

the accuracy reported in [27] using a “bump modelling” of the EEG wavelet 

time-frequency transform and a neural network classifier [40]. Therefore, it 

can be seen that the component selection procedure not only improves the 

results of simple classification methods, but it also may provide high 

classification rates when complex discriminant techniques are used. 

This procedure based on BSS and subsequent partial reconstruction of 

the electromagnetic brain recordings has been tested using only spectral 

and time-frequency features [27,40]. Nevertheless, this component 

selection procedure could also be applied when the brain activity is 

characterised with other kinds of measures, such as complexity or 

connectivity estimators. Non-linear complexity parameters may complement 

the information provided by spectral features about the brain signals [5,6]. 
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Abnormal patterns have been found in AD patients' EEGs and MEGs with 

different complexity estimators [21–23]. Additionally, since AD is thought to 

be a syndrome of neocortical disconnection [5,6], connectivity measures 

may reflect an impairment of functional connectivity among cortical areas 

[24,25]. Consequently, future research should assess whether these or 

other measures could be suitably introduced into the component selection 

procedure. Additionally, it should be studied whether the subset of 

components with significant differences between AD patients and controls 

changes when different features are used to characterise the signals. These 

studies might contribute to help in clinical AD diagnosis and to increase our 

insight into this dementia. 

Certain limitations of our study merit attention. Firstly, the sample size 

was small. In addition, other mental diseases, such as MCI [13,15] or other 

types of dementia [10,14], can produce a similar slowing in the brain 

activity. Thus, additional analyses with a larger database including MEG 

recordings from patients with other mental diseases should be carried out to 

confirm our results. Secondly, although the epochs used in this study have 

a length similar to that analysed in previous works [27,36], it should be 

evaluated if different epoch lengths affect the performance of our 

methodology. Finally, due to the simplicity of the BSS algorithm and the 

spectral features studied, the classification performance might be further 

improved using other BSS algorithms to decompose the recordings or 

features to characterise them. 

In summary, this paper proposes a method to improve the classification 

of AD patients and control subjects when MEG background activity 

recordings are analysed. This method is based on a simple BSS algorithm –
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AMUSE – [42] which orders the extracted components by decreasing linear 

predictability [27]. Afterwards, the components which may offer a 

significant differentiation between subject groups are projected back to the 

MEG channels, and these partially reconstructed signals are characterised 

with fmedian [16] and SpecEn [18,19]. The improvement in the classification 

performance was compared to the case where no BSS preprocessing was 

applied to the same MEG signals. Although this methodology must be 

applied to a larger database in order to validate our preliminary findings, 

the results showed that the classification accuracy increased between 

9.52% and 14.28%, suggesting the possible usefulness of this approach to 

help in the AD diagnosis. 
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Table captions 

 

Table 1 Results from the ROC analysis with a leave-one-out cross-

validation procedure for the average fmedian values 

 Without BSS BSS-{15,35} BSS-{20,30} 

Control subjects 

(mean ± SD) 
13.08 ± 2.95 Hz 12.60 ± 1.32 Hz 12.57 ± 1.24 Hz 

AD patients 

(mean ± SD) 
8.98 ± 2.32 Hz 9.76 ± 1.69 Hz 9.83 ± 1.71 Hz 

Sensitivity (%) 71.43 85.71 80.95 

Specificity (%) 66.67 80.95 80.95 

Accuracy (%) 69.05 83.33 80.95 

 

Table 2 Results from the ROC analysis with a leave-one-out cross-

validation procedure for the average SpecEn values 

 Without BSS BSS-{15,35} BSS-{20,30} 

Control subjects 

(mean ± SD) 
0.9346 ± 0.0281 0.9549 ± 0.0127 0.9585 ± 0.0111 

AD patients 

(mean ± SD) 
0.8962 ± 0.0539 0.9303 ± 0.0203 0.9351 ± 0.0189 

Sensitivity (%) 66.67 80.95 76.19 

Specificity (%) 57.14 61.91 71.43 

Accuracy (%) 61.91 71.43 73.81 

 

Table 3 Spearman's rank correlation coefficients (ρ) between the MMSE 

scores and the average values of fmedian and SpecEn for each case: “Without 

BSS”, “BSS-{15,35}” and “BSS-{20,30}” 
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 Without BSS BSS-{15,35} BSS-{20,30} 

 fmedian SpecEn fmedian SpecEn fmedian
 SpecEn 

ρ 0.5414* 0.3933* 0.6176* 0.4934* 0.6068* 0.5485* 

* Correlation was significant (p-value < 0.01). 
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Figure captions 

 

Figure 1 Average fmedian values of every AMUSE component for AD patients 

and control subjects. 

 
 

Figure 2 Average SpecEn values of every AMUSE component for AD 

patients and control subjects. 

 

 

Figure 3 Bonferroni-corrected p-values of fmedian and SpecEn for every 

AMUSE component. 
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Figure 4 ROC curves computed with a leave-one-out cross-validation 

procedure for AD patients versus control subjects classification with fmedian. 

The comparison between MEG epochs with and without the BSS component 

selection procedure is shown. 

 

 

Figure 5 ROC curves computed with a leave-one-out cross-validation 

procedure for AD patients versus control subjects classification with SpecEn. 
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The comparison between MEG epochs with and without the BSS component 

selection procedure is shown. 

 

 


