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Abstract 

The aim of the present study was to analyse the magnetoencephalogram (MEG) 

background activity in patients with Alzheimer’s disease (AD), one of the most frequent 

disorders among elderly population. For this pilot study, we recorded the MEGs with a 

148-channel whole-head magnetometer in 20 patients with probable AD and 21 age-

matched control subjects. Artefact-free epochs of 3392 samples were analysed with auto 

mutual information (AMI). Average AMI decline rates were lower for the AD patients’ 

recordings than for control subjects’ ones. Statistically significant differences were 

found using a Student’s t-test (p < 0.01) in 144 channels. Mean AMI values were 

analysed with a receiver operating characteristic curve. Sensitivity, specificity and 

accuracy values of 75%, 90.5% and 82.9% were obtained. Our results show that AMI 

estimations of the magnetic brain activity are different in both groups, hence indicating 

an abnormal type of dynamics associated with AD. This study suggests that AMI might 

help medical doctors in the diagnosis of the disease. 

 

Keywords: Alzheimer’s disease; Magnetoencephalogram; Auto mutual information; 

Non-linear analysis. 



1. Introduction 

Magnetoencephalography (MEG) is a non-invasive technique that allows recording the 

magnetic fields generated by the human brain. To detect the extremely weak brain 

magnetic signals (femtotesla range), a SQUID (Superconducting QUantum Interference 

Device) sensor immersed in liquid helium at 4.2 K is used. MEG provides an excellent 

temporal resolution, orders of magnitude better than in other methods for measuring 

cerebral activity, as magnetic resonance imaging, single-photon-emission computed 

tomography and positron-emission tomography [1]. A reasonable spatial resolution on 

the scalp can also be achieved, although it drastically depends on the source 

configuration [2]. In addition, magnetic fields are not distorted by the resistive 

properties of the skull [1]. Nevertheless, the recordings are very sensitive to external 

artefacts. Thus, the measures must be carried out in a magnetically shielded room. 

Alzheimer’s disease (AD) is one of the most frequent disorders among elderly 

population [3] and it is considered the main cause of dementia in western countries [4]. 

This irreversible brain disorder is characterized by neural loss and the appearance of 

neurofibrillary tangles and senile plaques. Symptoms of AD are memory loss, 

confusion, disorientation and speech problems. Although a definite diagnosis is only 

possible by necropsy, a differential diagnosis with other types of dementia should be 

attempted. It includes exhaustive medical, neurological, psychiatric and 

neuropsychological examinations. Diagnostic tools and criteria make possible for 

physicians to pursue a positive clinical diagnosis of AD with an accuracy of round 80 to 

88% [5]. Given the fact that non-linearity is present in the brain, even at the cellular 

level [6], non-linear analysis of the MEG background activity might be another tool to 

help physicians in the diagnosis of the disease. 



Several authors have analysed EEG/MEG activity in AD patients with non-linear 

methods. Correlation dimension (D2) and the first Lyapunov exponent (L1) are the most 

widely used. The first one is a static measure of system complexity and characterizes 

the distribution of points in the phase space [7]. On the other hand, L1 is a dynamic 

complexity measure that describes the divergence of trajectories starting at nearby 

initial states [3]. EEG studies showed that D2 and L1 values obtained from AD patients’ 

EEGs were significantly lower than those estimated from control subjects’ ones at most 

electrodes [8, 9]. D2 was also applied to multichannel MEG data of AD patients in 

different frequency bands [10]. Other research work suggested that the D2 reduction is 

correlated with the dementia severity [11]. Nevertheless, both measures D2 and L1 have 

some drawbacks. First, the algorithms require the time series to be stationary and noise 

free [12], something that cannot be achieved for physiological data. Moreover, a large 

quantity of data is necessary to obtain meaningful results [13]. Therefore, other non-

linear methods are necessary to analyse the electrical and magnetic brain activity in AD 

patients. For example, Lempel-Ziv complexity has been applied to EEG and MEG data 

[14, 15]. With almost the same data set of the current study, p-values lower than 0.01 

(Student’s t-test) were achieved in all MEG channels [14]. Abásolo et al. [15] found 

significant differences in the EEG electrodes P3, P4, O1 and T5 with this complexity 

measure. Other authors analysed AD patients’ EEGs with synchronization likelihood 

and detrended fluctuation analysis [16]. They concluded that spontaneous fluctuations 

of synchronization were diminished in AD patients in the lower alpha and beta bands. 

Moreover, an increased regularity was found in the EEG of AD patients using 

approximate and sample entropies [17, 18]. Approximate entropy was significantly 

lower in the AD patients at electrodes P3 and P4 [17], whereas significant differences 



were found at P3, P4, O1 and O2 with sample entropy [18]. These studies show a 

neuronal dysfunction associated with AD.  

In this paper, MEG activity has been analysed by means of mutual information 

(MI), a measure of the linear and non-linear statistical dependencies between two time 

series [19]. MI and other indexes derived from information theory have been computed 

to study the brain activity in several physiological and pathological states. Chen et al. 

[20] suggested that the complexities of almost all information transmissions between 

different brain areas drop significantly just before and after generalized seizures. Na et 

al. [21] have investigated the EEG information transmission in schizophrenic patients 

using cross mutual information (CMI). In [22], Lempel-Ziv complexity measures were 

extracted from the MI time series of EEGs in order to predict response during isoflurane 

anaesthesia. These measures have also been used to investigate evoked activity. CMI 

has been applied to professional perfume researchers, perfume salespersons and general 

workers’ EEGs to investigate the changes of cortico-cortical connectivity during odour 

stimulation [23]. Furthermore, it has been used to analyse the EEG responses to long-

term audio-visual stimulation [24]. AD has also been investigated using some indexes 

derived from information theory. Benedetti et al. [25] have studied the functional 

connectivity among different brain regions in AD patients computing MI of EEGs. 

Finally, Jeong el al. [19] have used auto mutual information (AMI) and CMI to classify 

AD patients and control subjects’ EEGs.  

The present study was undertaken to examine the MEG background activity in 20 

AD patients and 21 age-matched control subjects with AMI, the MI between a signal x(t) 

and the time-delayed time series x(t+τ). The AMI decrease rate with increasing time 

delays is a measure of the time series regularity [19]. Accepting the notion that the 

cognitive dysfunction in AD is related to an irregularity loss in the patients’ brains [17-



19], our purpose was to test the hypothesis that the MEG regularity is higher in AD 

patients than in the control group, hence indicating an abnormal type of dynamics 

associated with this dementia. 

 

2. Methods 

MI quantifies the amount of information gained about one signal from the measurement 

of another. Furthermore, MI between two time series is zero when those series are 

completely independent, while MI has a maximum value if both series are equal.  This 

measure is based upon concepts from information theory [26]. Let X be a signal with a 

probability distribution PX(x). The classical entropy H of this signal is the average 

amount of information gained from any observation of X. H(X) is known as Shannon’s 

entropy and can be calculated as: 
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Given a general coupled system (X,Y), the uncertainty in a measurement of X 

under the condition that Y has been measured and found to be yj is: 
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where PXY(xi,yj) is the joint probability density for the measures X = xi and Y = yj. The 

uncertainty of X, under the condition that Y is known, is obtained by averaging the 

equation (2) over yj: 
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MI can be defined as the reduction of the uncertainty of X when Y is known [27]: 
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Using the definition of Shannon’s entropy, the previous equation can be rewritten 

as follows: 
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This expression is the cross mutual information (CMI) and quantifies the 

information transmitted from one signal to another [19]. Applied to MEG signals, the 

CMI measures the amount of information transmitted between certain areas of the brain. 

In our study, we have computed the auto mutual information (AMI), the MI between one 

signal x(t) and its time-delayed version x(t +τ): 
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In order to calculate AMI from experimental data, it is necessary to estimate the 

joint probability density and the probability distributions of X and Xτ. In this study, we 



have estimated these probabilities from histograms. For a given epoch length, the use of 

larger sampling bins to construct the histograms produces more accurate estimates of 

the average probability, but the estimate of the joint probability distribution is too flat, 

underestimating the AMI. On the other hand, the use of smaller bins is better to indicate 

changes in the joint probability over short distances, but it produces fluctuations due to 

the small sample size, overestimating the AMI [19]. We have used 64 bins to construct 

the histograms as this value provides stable estimations [19, 21, 23]. The procedure to 

estimate the probability densities is as follows: 

• Histograms of the signal x(t) (Fig. 1a) and its time-delayed version x(t+τ) were 

constructed. 

• Probability distributions of X and Xτ were obtained as the ratio between the 

number of samples in each of the 64 bins and the total number of samples [27], 

as Fig. 1b shows.  

• To calculate the joint probability distribution, the (X, Xτ) plane was partitioned 

into a 64x64 matrix. The joint probability density was obtained dividing the 

number of samples in each cell of the aforementioned plane by the total number 

of samples (Fig. 1c). 

---------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 1 AROUND HERE 

---------------------------------------------------------------------------------------------------------- 

In our research, AMI was estimated in all channels over a time delay from 0 to 0.5 

seconds. In order to normalize the AMI profiles, they were divided by the AMI value at τ 

= 0. Hence, values are in the range between 0 and 1 and AMI value at a zero time delay 

is always one. Finally, the slope of this normalized profile was estimated by a line that 

fits the data in a least-squares sense. This slope was calculated from τ = 0 to the first 



relative minimum value of the profile. Due to the fact that the decline rate of the AMI is 

positively correlated with the entropy [29], this metric might be used to measure the 

signal regularity. 

 

3. MEG recording 

The signals were acquired with a 148-channel whole-head magnetometer (MAGNES 

2500 WH, 4D Neuroimaging, San Diego, USA) placed in a magnetically shielded room, 

during a 5-minute resting period. The subjects lay on a patient bed, in a relaxed state 

and with their eyes closed. They were asked to stay awake and to avoid making 

movements. In order to control subjects’ performance and to avoid drowsiness effects, 

their behaviour and level of consciousness was controlled during the whole recording 

by means of a video-camera. Additionally, technicians may communicate with subjects 

during measurements using a loud-speaking intercom. Participants included in the final 

sample did not exhibit significant difficulties in maintaining their immobility. 

For each subject, MEGs were recorded with a 678.17 Hz sampling frequency, 

using a hardware band-pass filter of 0.1-200 Hz. Afterwards, these recordings were 

decimated, what consisted of filtering the data to respect Nyquist criterion [30], 

following by a down-sampling by a factor of 4 (169.549 Hz, 50863 samples). Artefact-

free epochs of 20 seconds (3392 data points) were selected. Finally, these epochs were 

filtered between 0.5 and 40 Hz and were copied to a computer as ASCII files for further 

non-linear analysis. 

In the present study, MEG signals were recorded from 41 subjects. Cognitive 

status was screened in both groups with the Spanish version [31] of Mini Mental State 

Examination (MMSE) of Folstein et al. [32]. MEGs were obtained from twenty patients 

(7 men and 13 women; age = 73.05 ± 8.65 years, mean ± standard deviation, SD) 



fulfilling the criteria of probable AD. They were recruited from the Asociación de 

Enfermos de Alzheimer (AFAL). Diagnosis for all patients was made according to the 

criteria of the National Institute of Neurological and Communicative Disorders and 

Stroke–Alzheimer’s Disease and Related Disorders Association (NINCDS–ADRDA) 

[33]. The MMSE score for these patients was 17.85 ± 3.91 (mean ± SD). One of them 

had a score of less than 12 points, indicating a severe degree of dementia. Patients were 

free of other significant medical, neurological and psychiatric diseases than AD. 

Moreover, they were not using drugs which could affect MEG activity when the signals 

were recorded. 

The control group consisted of 21 elderly control subjects without past or present 

neurological disorders (9 men and 12 women; age = 70.29 ± 7.07 years, MMSE score = 

29.10 ± 1.00 points, mean ± SD). The difference in the mean age of both populations 

was not statistically significant (p = 0.26 > 0.01, Student’s t-test). Prior to the MEG 

recording, all control subjects and all caregivers of the patients signed an informed 

consent for the participation in this research work. The local Ethics Committee 

approved this study. 

 

4. Results 

In this study, AMI profiles were estimated for the 148 MEG channels, with a maximum 

time delay of 500 milliseconds. For the construction of the histograms, 64 bins were 

used. Afterwards, these profiles were normalized and their decline rates were calculated 

from τ = 0 to the first minimum value. Fig. 2a illustrates two of these profiles, one 

obtained from an AD patient’s MEG epoch and other from a control subject’s one. This 

figure shows that AMI values decrease quickly for low τ values, then exhibit a transitory 

oscillation and finally become stable when the time delay values increase. 



Enhancements round 0.03 s (control subject) and 0.07 s (AD patient) can be observed in 

the oscillation part of both profiles. An increase at the inverse of the dominant 

frequency of each group (6.63 Hz in healthy subjects and 12.17 Hz in AD patients [34]) 

may be expected if the AMI method measures only the lineal statistical dependencies. 

Nevertheless, as AMI provides access to both linear and nonlinear interdependencies, 

these increases in the profiles are not straightforwardly related to the mean frequency. 

For each channel, these profiles were averaged, obtaining a normalized AMI profile for 

each group. Fig. 2b represents the normalized profiles for both groups at channel A1. As 

it can be noticed, absolute values of the AMI decrease rate are lower in the AD patients 

group than in the control subject group. This behaviour is similar for all channels, as 

Fig. 3 shows. The absolute values of the decline rate were lower in the AD patients 

group, indicating differences between the non-linear dynamics of AD patients and 

control subjects’ MEGs. Moreover, the differences between AD patients and elderly 

control subjects were statistically significant in 144 channels (p < 0.01, Student’s t-test). 

Only in the edge channels A136, A137, A138 and A139, the result of the Student’s t-

test was higher than 0.01.  

---------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 2 AROUND HERE 

---------------------------------------------------------------------------------------------------------- 

---------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 3 AROUND HERE 

---------------------------------------------------------------------------------------------------------- 

After the estimation of the AMI decline rate, it was necessary to analyse 148 

values for each subject. In this study, the dimensionality of our results has been reduced 

via principal components analysis (PCA), a well-known technique for dimensionality 



reduction [35]. The first principal component provides 83.6% of the total variance 

explained. Moreover, each of the remaining components explains less than 5%. 

Therefore, only the first principal component was retained and the first score, projection 

of the original data onto the first principal component axes, calculated. We analysed the 

relationship between the first score and the mean AMI values, calculated averaging the 

decline rate from the 148 channels for each subject. With this aim, we computed 

Pearson’s linear correlation coefficient between the first score and the mean AMI 

values. We obtained a 0.999 value, indicating that the strength of association between 

the variables is very high. Furthermore, as the first principal score provides similar 

information that the mean AMI value, the last one was analysed. Moreover, the 

evaluation of these mean values allows us an easier interpretation of the results. 

The mean AMI values were analysed with a ROC curve [36], which summarizes 

the performance of a two-class classifier across the range of possible thresholds. It is a 

graphical representation of the trade-offs between sensitivity and specificity. Sensitivity 

is the true positive rate while specificity is equal to the true negative rate: 

FNTP
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=  (8) 
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where false negatives (FN) are the AD patients classified as control subjects, and false 

positives (FP) are the controls classified as patients. True positives (TP) and true 

negatives (TN) are the patients and control subjects correctly recognized, respectively. 

Accuracy is a related parameter that quantifies the total number of subjects (AD patients 

and control subjects) precisely classified:  
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Moreover, ROC curves can be used to select the optimal threshold, the best trade-

off between specificity and sensitivity. The optimal threshold in our diagnostic test was 

-0.116, the decrease rate value in which the highest accuracy was obtained. At that 

point, we obtained accuracy, specificity and sensitivity values of 82.9%, 90.5% and 

75% respectively, as it can be noticed in Fig. 4. The area under the ROC curve (AROC) 

is a single number summary of performance. For a perfect test the area is 1 while an 

AROC of 0.5 represents a worthless test. We achieved an AROC of 0.883. 

---------------------------------------------------------------------------------------------------------- 

INSERT FIGURE 4 AROUND HERE 

---------------------------------------------------------------------------------------------------------- 

 

5. Discussion and conclusions 

In this study, we have used the AMI to study the MEG background activity in 20 

patients with probable AD and 21 age-matched control subjects. We have used a value 

of τmax = 500 milliseconds and 64 bins to construct the histograms. Our purpose was to 

check the hypothesis that the brain activity recorded in MEG signals is different in AD 

patients than in control subjects.  

The absolute values of the AMI decline rate were significantly lower for AD 

patients in most channels (Student’s t-test, p < 0.01), indicating an abnormal type of 

dynamics associated with the disease. Given the fact that the decline rate of the AMI is 

positively correlated with the entropy [29] and that entropy measures quantify the 

regularity of a signal [37, 38], our study suggests that brains affected by AD show a 

more regular physiological behaviour. Our results are in agreement with previous 

research works that have applied non-linear methods to study the brain activity in AD 

patients. These studies revealed less complexity and irregularity in brain recordings of 



AD patients than in controls. Most of them were carried out estimating D2 and L1, 

reporting a loss of complexity on brain background activity in AD patients’ recordings. 

Jeong et al. [8] estimated D2 and L1 using a method proposed by Kennel et al. [39]. 

Their results showed significant differences between AD patients and control subjects in 

almost all EEG channels. Using a larger database, Besthorn et al. [11] suggested that a 

lower D2 value was correlated with increased severity of dementia. This measure was 

also calculated from EEG data and from phase-randomized surrogate data [9]. D2 values 

derived from original and surrogate data sets differed significantly in both groups, 

indicating that this non-linear measure is not simply reflecting spectral properties of the 

data. Finally, van Cappellen van Walsum et al. [10] estimated the D2 in different MEG 

frequency bands. Statistical differences between AD patients and age-matched controls 

were found in delta, theta and beta bands. A broad band 0.5-40 Hz was also analysed, 

although this measure revealed no significant differences between both groups. 

However, for a suitable estimation of D2 and L1, stationary and noise-free signals and a 

large number of data points are needed [12, 13]. These assumptions cannot be fulfilled 

for physiological data, as EEG and MEG. On the other hand, AMI does not require a 

large number of data points to be reliably estimated and can be applied to non-stationary 

time series [19]. Thus, this measure is much better suited for MEG analysis than 

traditional non-linear techniques as L1 or D2. 

Nowadays, other non-linear methods, which also avoid the drawbacks of classical 

non-linear measures, have been used to study the EEG/MEG activity. In order to study 

the regularity of the EEG, approximate and sample entropies have been used. 

Approximate entropy values were significantly lower in the EEG of AD patients at P3 

and P4 electrodes [17]. With sample entropy, significant differences were found at 

parietal and occipital regions [18]. Jeong et al. [19] found that AMI profiles decrease 



with time delay slower in the EEGs acquired from severe AD patients than in control 

subjects’ EEGs. These studies showed an increase of the EEG regularity in AD patients 

compared with control subjects. Our work is in agreement with these EEG studies, but 

this is the first time that AMI and a ROC curve have been used to differentiate the 

MEGs from AD patients and control subjects. 

In addition to D2 and L1, other complexity non-linear methods have been used to 

classify AD patients versus control subjects. The EEG complexity in the Kolmogorov’s 

sense was computed with Lempel-Ziv complexity. Abásolo et al. [15] found that AD 

patients had significantly lower Lempel-Ziv complexity values at electrodes P3 and O2 

with a two-symbol sequence conversion, and at P3, P4, O1 and T5 using three symbols. 

Their results suggested that a three-symbol conversion might give more detailed insight 

of the differences between the AD patients and control subjects’ EEGs. This complexity 

measure was also applied to MEG data, obtaining statistically significant differences in 

all channels [14]. Using multiscale entropy, Escudero et al. [40] concluded that the EEG 

background activity is less complex in AD patients than control subjects. The results of 

these studies suggest that the increase in the regularity of the AD patients’ brain 

recordings is associated with a complexity reduction of the brain activity. 

Stam et al. [16] examined the fluctuation of the EEG synchronization level of AD 

patients with detrended fluctuation analysis. They concluded that AD is characterized 

by diminished fluctuations in the level of synchronization. In other paper, the 

interdependencies between MEG signals in six frequency bands were studied with 

synchronization likelihood and coherence [41]. They found changes of long and short 

distances interaction in the theta, alpha1, beta and gamma bands. These changes may 

reflect loss of anatomical connections and/or reduced central cholinergic activity and 

could underlie part of the cognitive impairment [41]. Thus, AD may be characterized 



not only by changes in the complexity/irregularity of the brain activity, but also by a 

lower mean level of functional connectivity as well as by changes in the spontaneous 

fluctuations of synchronization [16].  

Table 1 shows a summary of the papers concerning the classification of AD 

patients versus control subjects. Nevertheless, the results of these studies cannot be 

compared because the data sets and the brain recordings (EEG or MEG) are different. 

---------------------------------------------------------------------------------------------------------- 

INSERT TABLE 1 AROUND HERE 

---------------------------------------------------------------------------------------------------------- 

In addition to these non-linear studies, AD patients’ brain activity has been also 

analysed with spectral measures. Spectral analysis seems to discriminate AD patients 

from control subjects through an increased EEG/MEG activity in lower frequency bands 

associated with AD.  Signorino et al. [42] found a raise in the EEG powers of delta and 

theta bands in AD patients compared with control subjects. Other study showed 

increased slower and reduced faster activity in AD patients’ MEGs [43]. Poza et al. [34] 

analysed MEG recordings from AD patients and healthy controls with five parameters 

estimated from the power spectral density, finding statistically significant differences 

with all of them. These results may suggest that the regularity increase in the AD 

patients’ MEGs, found using AMI, could be related to a slowing of the brain activity in 

AD. 

A ROC curve was used to assess the ability of the mean AMI values to classify 

AD patients and control subjects. An AROC of 0.883 was obtained. This value indicates 

the probability that a randomly selected AD patient of our study has a mean AMI value 

higher than a control subject chosen randomly. The ROC curve was also used to select 

the optimal threshold (-0.116), the AMI decrease rate that provides the highest accuracy. 



At this value, specificity of 90.5% (ratio of control subjects properly classified), and 

sensitivity of 75% (percentage of AD patients correctly identified), were obtained. Our 

results show that AMI method and ROC curves could be used to help physicians in AD 

diagnosis. Nevertheless, this is a pilot study and further analyses are necessary to 

confirm our results. 

In previous studies, non-linear methods and ROC curves have been used to 

distinguish AD patients and control subjects. With almost the same data set (21 AD 

patients and 21 control subjects), the first principal score from Lempel-Ziv complexity 

results was analysed with a ROC curve [14]. Accuracy values achieved in both studies 

are very similar (82.9% with AMI and 83.3% with Lempel-Ziv complexity). In EEG 

studies the accuracies obtained are lower in most papers: 81.8% using Lempel-Ziv 

complexity [15], 77.3% with sample entropy [18] and 69.5% using D2 [44]. On the 

other hand, the highest accuracy value (90.1%) was obtained at EEG electrode Fp1 with 

multiscale entropy [40]. Nevertheless, these values should be taken with caution due to 

the small sample sizes. 

The regularity increase in the MEG of AD patients could be explained by a 

decreased of dynamic complexity of part of the brain. Nevertheless, the implications of 

this decreased irregularity in AD patients are not clear. It might be due to neuronal 

death, a loss of dynamical brain responsivity to stimuli, a general effect of 

neurotransmitter deficiency or a loss of connectivity of local neural networks as a result 

of nerve cell death [3, 9]. Because both groups were carefully matched for age, the 

significantly reduced AMI decline rate may represent the cognitive dysfunction in AD.  

Our study shows that AMI may be an adequate and fast method to differentiate the 

MEG activity from AD patients and control subjects. Nevertheless, some limitations of 

our study merit consideration. Firstly, the sample size is small to obtain decisive results. 



Thus, a larger database is needed to confirm the performance of our method. Secondly, 

our results do not show if AMI can detect a gradation of the disease process. Therefore, 

future studies are necessary to analyse MEGs from patients with different stages of AD 

and with Mild Cognitive Impairment. Finally, changes in EEG/MEG activity also 

appear in other pathological states as schizophrenia [21], vascular dementia [45] and 

epilepsy [46]. 

In summary, this paper presents the AMI as a method to study the MEG 

background activity. We have obtained significant differences between AD patients’ 

recordings and elderly control subjects’ MEGs. Our findings show the usefulness of this 

measure to detect changes in the dynamical behaviour of brains injured by the 

development of AD. 
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TABLES 

Table 1. Summary of the papers, in alphabetical order, concerning the classification of 

AD patients versus control subjects with non-linear methods: approximate entropy 

(ApEn), Lempel-Ziv complexity (LZC), sample entropy (SampEn), correlation 

dimension (D2), multiscale entropy (MSE), first Lyapunov exponent (L1), auto mutual 

information (AMI), cross-mutual information (CMI), synchronization likelihood (SL) 

and detrended fluctuation analysis (DFA). 

 
Paper 

 
Data set 

 
Method 

 
Results 
 

Abásolo et 
al. 2005 
[17] 

10 AD patients and 8 
control subjects 
(EEG) 

ApEn AD patients’ EEGs showed significantly lower ApEn 
values than control subjects at P3 and P4 (p<0.01). 
They obtained 70% sensitivity and 100% specificity at 
P3, and 80% sensitivity and 75% specificity at P4. 
 

Abásolo et 
al. 2006 
[15] 

11 patients with AD 
and 11 control 
subjects (EEG) 

LZC Significant differences were found at P3 and O2 with 
a two-symbol sequence conversion (accuracy values 
of 81.8% at both electrodes), and at P3, P4, O1 and T5 
using three symbols (accuracy of 81.8% at P3, P4 and 
O1, and of 72.7% at T5). 
 

Abásolo et 
al. 2006 
[18] 

11 AD patients and 
11 control subjects 
(EEG) 

SampEn SampEn was significantly lower in the AD patients at 
electrodes P3, P4, O1 and O2 (p<0.01). Accuracy 
values of 77.3% were obtained at those electrodes. 
 

Besthorn et 
al. 1995 
[11] 

50 AD patients and 
42 controls (EEG) 

D2  This study showed that a lower D2 was correlated with 
increased severity of dementia. 
 

Besthorn et 
al. 1997 
[44] 

50 AD patients and 
42 control subjects 
(EEG) 
 

D2 Using D2, AD patients and control subjects were 
correctly classified with an accuracy of 69.5%. 

Escudero et 
al. 2006 
[40] 

11 AD patients and 
11 control subjects 
(EEG) 

MSE Using MSE, AD patients had significantly lower 
complexity than control subjects at F3, F7, Fp1, Fp2, 
T5, T6, P3, P4, O1 and O2 (p<0.01). The highest 
accuracy value was obtained at electrode Fp1: 90.9%. 
 

Gómez et 
al. 2006 
[14] 

21 patients with AD 
and 21 elderly control 
subjects (MEG) 

LZC MEG signals from AD patients had significantly lower 
LZ complexity than control subjects’ MEGs at all 
channels (p<0.01). Specificity of 85.7%, sensitivity of 
80.9% and accuracy of 83.3% were obtained when the 
first principal score from PCA was analysed with a 
ROC curve. 
 

Jelles et al. 
1999 [9] 

24 AD patients and 
22 controls (EEG) 

D2 D2 was significantly lower in the AD patients 
compared to control subjects. 
 

Jeong et al. 
1998 [8] 

12 AD patients and 
12 control subjects 
(EEG) 

D2 and 
L1 

L1 average values of the EEGs were higher for the 
normal controls than for the AD patients at all 
electrodes with the exception of the occipital ones. 



Using D2, statistically differences were found at all 
channels excluding F7 and O1. 
 

Jeong et al. 
2001 [19] 

15 patients with AD 
and 15 control 
subjects (EEG) 

AMI and 
CMI 

The AMI profiles decreased more slowly in AD 
patients than in controls. Differences were statistically 
significant in all channels with the exception of O2. 
Moreover, the local CMI in AD patients was lower 
than control subjects. 
 

Stam et al. 
2005 [16] 

24 AD patients and 
19 control subjects 
(EEG) 

SL and 
DFA 

AD is characterized both by a lower mean level of 
functional connectivity as well as by diminished 
fluctuations in the level of synchronization.  
 

Stam et al. 
2006 [41] 

18 AD patients and 
18 control subjects 
(MEG) 

SL In the α-1 and β bands, AD patients showed a loss of 
long distance intrahemispheric interactions, with a 
focus on left fronto-temporal/ parietal connections. 
Functional connectivity was increased in AD patients 
locally in the θ band (centro-parietal regions) and in 
the β and γ bands (occipito-parietal regions). 
 

Van 
Cappellen 
van Walsum 
et al. 2003 
[10] 
 

20 AD patients and 
20 control subjects 
(MEG) 

D2 Mean D2 was lower in AD patients compared with 
control subjects at 2–4 and 4–8 Hz frequency bands 
(p<0.01), whereas in the 14–20 and 20–30 Hz bands 
the mean D2 was higher in AD patients (p<0.01). 
 

Current 
study 

20 patients with AD 
and 21 elderly control 
subjects (MEG) 

AMI The absolute values of the AMI decline rate were 
significantly lower for AD patients in most channels. 
An accuracy value of 82.9% was obtained when the 
mean AMI values were analysed with a ROC curve.  
 

 



FIGURE LEGENDS 

Fig. 1. (a) Example of MEG epoch: time series x(t); (b) Probability distributions of X 

and Xτ from histograms; (c) Histogram of the joint probability distribution. 

 



Fig. 2. Normalized AMI profiles for (a) one AD patient’s epoch and a control subject’s 

epoch and (b) for the 20 AD patients and the 21 control subjects at channel A1 (Central 

region). 

 



Fig. 3. Averaged AMI decrease rate values for the patients with AD and the control 

subjects in all channels (from A1 to A148). 

 



Fig. 4. ROC curve for the mean AMI values, obtained from the AMI decrease rates at all 

channels. The optimum cut-off point is marked with a solid circle. 

 


