
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interpretation of the auto-mutual information rate of decrease in
the context of biomedical signal analysis

Citation for published version:
Escudero, J, Hornero, R & Abasolo, D 2009, 'Interpretation of the auto-mutual information rate of decrease
in the context of biomedical signal analysis: Application to electroencephalogram recordings' Physiological
Measurement, vol 30, no. 2, pp. 187-199., 10.1088/0967-3334/30/2/006

Digital Object Identifier (DOI):
10.1088/0967-3334/30/2/006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
Physiological Measurement

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/0967-3334/30/2/006
http://www.research.ed.ac.uk/portal/en/publications/interpretation-of-the-automutual-information-rate-of-decrease-in-the-context-of-biomedical-signal-analysis(0a80676f-ee94-45e8-ac1e-cbb587e8d7c8).html


Interpretation of the auto mutual information rate of 
decrease in the context of biomedical signal analysis. 

Application to electroencephalogram recordings 

Javier Escudero, Roberto Hornero and Daniel Abásolo 
 
Biomedical Engineering Group, E.T.S.I. Telecomunicación, University of Valladolid, 
Camino del Cementerio s/n, 47011, Valladolid (Spain) 
 
 
E-mail: javier.escudero@ieee.org 
 
Abstract 
The mutual information (MI) is a measure of both linear and non-linear dependences. It 
can be applied to a time series and a time-delayed version of the same sequence to 
compute the auto mutual information function (AMIF). Moreover, the AMIF rate of 
decrease (AMIFRD) with increasing time delay in a signal is correlated with its entropy 
and has been used to characterise biomedical data. In this paper, we aimed at gaining 
insight into the dependence of the AMIFRD on several signal processing concepts and 
at illustrating its application to biomedical time series analysis. Thus, we have analysed 
a set of synthetic sequences with the AMIFRD. The results show that the AMIF 
decreases more quickly as bandwidth increases and that the AMIFRD becomes more 
negative as there is more white noise contaminating the time series. Additionally, this 
metric detected changes in the non-linear dynamics of a signal. Finally, in order to 
illustrate the analysis of real biomedical signals with the AMIFRD, this metric was 
applied to electroencephalogram (EEG) signals acquired with eyes open and closed and 
to ictal and non-ictal intracranial EEG recordings. 
 
Keywords: Auto mutual information, biomedical signal analysis, electroencephalogram, 
non-linear analysis, signal regularity 
 
PACS number(s): 05.45.Tp; 87.10.Vg; 87.85.Ng 

1. Introduction 

Several physiological signals, including cardiovascular and brain activity recordings, exhibit a 
partially non-linear behaviour (Andrzejak et al 2001, Hoyer et al 2002, Palacios et al 2007). 
Additionally, some authors have suggested that healthy systems have non-linear complex 
relationships that fail with ageing and disease (Costa et al 2005, Goldberger et al 2002). In this 
context, Information theory (Shannon and Weaver 1949) may provide a unique framework to 
statistically assess information taking into account non-linear features. One of the concepts 
derived from this theory is mutual information (MI). MI measures statistical dependence 
between and within signals and can be useful to characterise and analyse time series. This 
statistic estimates the information gained from observations of one random event on another 
(Cellucci et al 2005, Fraser and Swinney 1986, Pompe et al 1998). It evaluates both linear and 
non-linear dependences between two time series (Fraser and Swinney 1986, Pompe et al 1998). 
Hence, this metric is a non-linear, complementary counterpart to the classical correlation 
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(Abarbanel et al 1993, Hoyer et al 2005, Pompe et al 1998). As function of a time delay, τ , the 
MI can be applied to time-delayed versions of two different signals (cross mutual information 
function) or from the same sequence (auto mutual information function) (Hoyer et al 2005, 
Pompe et al 1998). Following the notation by Pompe et al (1998) and Hoyer et al (2002), these 
functions will be denoted CMIF and AMIF, respectively. 

The concept of MI has been widely applied in biomedical signal analysis to evaluate the 
dependence between different biomedical recordings (Hinrichs et al 2008, Hoyer et al 2005, 
2007, Palacios et al 2007, Pompe et al 1998). This application is based on the fact that the MI 
quantifies the linear and non-linear statistical coupling between signals. Thus, it can be a useful 
tool to quantify synchronization (David et al 2004, Pompe et al 1998, Quian Quiroga et al 
2002). In biomedical signal analysis, the CMIF of respiratory and heart rate variability 
recordings provides useful information to detect cardiac and respiratory diseases (Alonso et al 
2007, Hoyer et al 2002). The statistical dependences between different brain regions have also 
been assessed with MI techniques in several brain states (Hinrichs et al 2008, Huang et al 2003, 
Min et al 2003, Teplan et al 2006, Xu et al 1997) and neurological disorders, like Alzheimer's 
disease (Benedetti et al 2006, Jeong et al 2001) or schizophrenia (Na et al 2002). 

The AMIF rate of decrease (AMIFRD) with increasing time delay is correlated with signal 
entropy (Paluš 1996). Thus, the decay of the AMIF may be considered a measure of signal 
predictability (Fraser and Swinney 1986, Jeong et al 2001, Palacios et al 2007). It has been 
previously shown that the AMIFRD provides relevant information about the underlying 
physiological systems (Hoyer et al 2005). This metric has been applied to study several patho-
physiological conditions. For example, the AMIFRD of electroencephalogram (EEG) and 
magnetoencephalogram (MEG) recordings characterised patients with Alzheimer's disease in 
contrast to control subjects (Abásolo et al 2008, Jeong et al 2001, Gómez et al 2007). This 
metric also shows differences between the EEG of schizophrenic patients and that recorded 
from control subjects (Na et al 2002). In addition, different AMIF decay parameters can help to 
detect several cardiomyopathies from cardiac data (Hoyer et al 2002, 2005, Palacios et al 2007). 

Due to the relevance and the possible usefulness of the AMIFRD in various biomedical 
analyses, it is important to understand and exemplify the behaviour of this metric for diverse 
kinds of signals. It is worth mentioning that several studies have illustrated the behaviour of the 
CMIF for some test sequences in contrast to the correlation function (David et al 2004, Hoyer et 

al 2002, Paluš et al 1993, Pompe et al 1998, Quian Quiroga et al 2002). Moreover, the decay of 
the AMIF has been compared with other entropic measures (Abásolo et al 2008, Hoyer et al 
2005). Following these research works, this study aims at pointing out the relationships between 
the AMIFRD and straightforward signal characteristics like noise power or non-linear dynamics 
to gain a better understanding of this metric. Furthermore, we want to illustrate the application 
of the AMIFRD to biomedical signals by analyzing real surface and intracranial EEG data. 

2. Auto mutual information function rate of decrease (AMIFRD) 

MI is based on concepts from Information theory (Shannon and Weaver 1949). Let 
( ) ( ) ( ) ( ){ }TxxxtX ,,2,1 K=  be a sequence acquired from a stochastic process (Alonso et al 2007). 

If the amplitude values of the variable ( )tX  are partitioned into I bins, a probability 

Tnp
X
i

X
i =  can be assigned to each possible partition ( )IiX i ,,1K= , where X

in  is the number 

of samples in Xi (David et al 2004, Gómez et al 2007). Shannon's entropy for ( )tX , which is 

denoted by H(X), is the average amount of information gained from any observation of ( )tX  
(Shannon and Weaver 1949): 

( ) ( ).log 2∑−=
i

X
i

X
i ppXH  (1) 
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Let ( )tX  be coupled with another signal, ( )tY , which was measured and found in a 

partition bin ( )JjY j ,,1 K=  with an associated probability Tnp
Y
j

Y
j = , where Y

jn  is the 

number of samples in Yj. Then, the uncertainty about ( )tX  is (Jeong et al 2001): 

( ) ,log 2 












−= ∑ Y

j

XY
ij

i
Y
j

XY
ij

j
p

p

p

p
YXH  (2) 

where XY
ijp  is the joint probability for the partitions Xi and Yj of the variables ( )tX  and ( )tY , 

in that order. The mean uncertainty of ( )tX , under the condition that ( )tY  is known, is 

computed averaging ( )jYXH  over Y
jp  (Min et al 2003): 

( ) ( ) ( ) ( )YHYXH
p

p
pYXHpYXH

Y
j

XY
ij

ji

XY
ij

j

j
Y
j −=


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







−== ∑∑ ,log

,
2 (3) 

where 

( ) ( ).log,
,

2∑−=
ji

XY
ij

XY
ij ppYXH  (4) 

MI estimates the information obtained from measurements of one event on another – i.e., 
the reduction in the uncertainty of ( )tX  when ( )tY  is known – (Cellucci et al 2005, Fraser and 
Swinney 1986, Pompe et al 1998): 

( ) ( ) ( ) ( ) ( ) ( ),,, YXHYHXHYXHXHYXMI −+=−=  (5) 

which can be rewritten as (Gómez et al 2007, Jeong et al 2001, Na et al 2002): 

( ) .log,
,

2∑ 












=

ji
Y
j

X
i

XY
ijXY

ij
pp

p
pYXMI  (6) 

This expression represents the cross mutual information between ( )tX  and ( )tY . It is 

zero when ( )tX  and ( )tY  are statistically independent (Chapeau-Blondeau 2007, Hoyer et al 

2002). The ( )τCMIF  is obtained estimating XY
ijp  and Y

jp  from successive time-delayed 

versions of ( )tY : ( )τ+tY  (Hoyer et al 2002, Jeong et al 2001, Na et al 2002, Xu et al 1997). 

Similarly, ( )τAMIF  is computed replacing ( )τ+tY  with time-delayed versions of ( )tX , 

( )τ+tX  (Gómez et al 2007, Jeong et al 2001): 

( ) ( ) ( )
( ) ( )

( ) ( ) .log
,

2∑ 












=

+

+
+

ji
tX

j
tX

i

tXtX
ijtXtX

ij
pp

p
pAMIF

τ

τ
ττ  (7) 

The ( )τAMIF  measures statistical predictability within a signal, that is, the predictability 

of ( )τ+tX  from ( )tX  (Gómez et al 2007, Jeong et al 2001). It is based on the amplitude 

distributions of ( )tX  on different time scales, τ  (David et al 2004). These amplitude 
distributions are estimated from histograms (Abásolo et al 2008, Alonso et al 2007, Gómez et al 
2007, Jeong et al 2001). 

Before estimating the histograms, a ranking transformation was applied to the time series 
( )tX  and ( )τ+tX  (Alonso et al 2007, Hoyer et al 2002, Pompe et al 1998). This ranking 

transformation from ( )tX  to ( )tX
*  is given by: 



J Escudero et al 

 

( ) ( ) ( ){ },,,2,1,:
1 ****

TttXtXtN
T

tX K=<=  (8) 

where {}⋅N  denotes the cardinality (the number of elements) in the set (Alonso et al 2007, 

Pompe et al 1998). This transformation replaces the real values of ( )tX  with their ranks, that is, 

T times ( )tX
*  is the number of values in the original time series that are less than ( )tX . Then, 

these values are divided by T, so that the transformed sequence is always uniformly distributed 
in the interval [ )1,0  (unit interval) (Pompe et al 1998). However, if and only if the multivariate 

ranked series ( ( )tX
* , ( )τ+tX

* ) have a uniform 2D-distribution, ( )tX
*  and ( )τ+tX

* , and thus 

the original sequences ( )tX  and ( )τ+tX , are statistically independent (Pompe et al 1998). 

Thanks to this partition of the plane ( ( )tX , ( )τ+tX ), the estimation of the MI is more robust 
against outliers and artefacts in data (Alonso et al 2007, Cellucci et al 2005). 

For a fixed sequence length, the estimations of the average probabilities are more 
accurate when larger bins are used to construct the histograms. However, the joint probability 
distribution could be too flat and the MI may be underestimated. On the other hand, smaller 
partitions may enhance the changes in the joint probability distribution over short distances, but 
they produce fluctuations due to the small sample size. Thus, MI may be overestimated (Fraser 
and Swinney 1986, Jeong et al 2001). Very different criteria have been suggested in the 
literature to estimate the partition size used to construct the histograms (Cellucci et al 2005). In 
this study, the influence of the number of bins in the AMIFRD was inspected by computing this 
metric for the synthetic signals described in Section 3.1 using histograms with I = 8, 16, 32, 64 
and 128 partitions. 

The ( )τAMIF  was estimated over a time delay from τ  = 0 to τ  = 0.5 s. This time lag has 
been previously used in several analyses of brain activity (Abásolo et al 2008, Gómez et al 
2007, Jeong et al 2001, Min et al 2003, Na et al 2002). Moreover, the ( )τAMIF  was normalized 

so that ( )0=τAMIF  = 1 before computing the AMIFRD (Abásolo et al 2008, Gómez et al 2007, 
Jeong et al 2001, Na et al 2002). It should be noticed that for 0=τ  the ( )0=τAMIF  is 

computed between two identical sequences: ( )tX  and ( )0+tX . Thus, regardless of the 
analysed time series, it is fulfilled that (Hoyer et al 2002, Quian Quiroga et al 2002): 

( ) ( ).0 XHAMIF ==τ  (9) 

Moreover, given the fact that a ranking transformation was applied to uniformly distribute the 
signal samples in the unit interval: 

( ) ( ),log0 2 IAMIF ==τ  (10) 

where, as mentioned earlier, I denotes the number of partitions used to estimate the histogram of 
( )tX  (Hoyer et al 2002, 2005, 2006). 

The AMIFRD between τ  = 0 and the first relative minimum value was calculated as the 
slope of the line that fits the ( )τAMIF  in a least-squares sense (Abásolo et al 2008, Gómez et al 
2007, Jeong et al 2001). Therefore, different time scales were simultaneously considered when 
analysing the signal. This methodology can be useful when no information is known in advance 
about the prominent time scales of a signal, as it often occurs in biomedical applications (Hoyer 
et al 2005, Palacios et al 2007). This rate of decrease measures the information loss versus τ  
(Hoyer et al 2002) and it is correlated with signal entropy (Abásolo et al 2008, Paluš 1996). 

3. Study and application of the AMIFRD 

3.1. Synthetic signals 
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This section describes the simulated signals used to study the AMIFRD in terms of simple 
concepts like additive noise power or non-linear dynamics. All these synthetic signals had a 
length of 150 s and their sampling frequency (fs) was 150 Hz. Hence, they had 22500 sample 
points. These simulated time series are illustrated in figure 1, which shows their spectrogram, 
time plot and two zooms on the first and last time intervals to illustrate the changes in the signal 
characteristics. 
 

3.1.1. Test a: MIX process 

This test analysed how the evolution from a stochastic signal to a periodic deterministic 
sequence affected the AMIFRD. For this purpose, we created a MIX process used in previous 
studies (Ferrario et al 2006, Pincus 1991). It is defined as: 

( ) ,1 yzxzMIX +−=  (11) 

where z is a random variable which is equal to 1 with probability p and equal to 0 with 

probability 1 – p, x is a periodic sequence generated by ( )122sin2 kxk π= , and y is a 

uniformly distributed variable on [ ]3,3−  (Ferrario et al 2006, Pincus 1991). The synthetic 
signal was based on a MIX process whose parameter p varied from 0.9 to 0.1 linearly. Hence, 
this sequence, which is shown in figure 1(a), evolved from randomness to orderliness. 
 

3.1.2. Test b: Quasi-periodic signal plus noise 

The objective of this test was to find out whether the AMIFRD is sensitive to changes in power 
of noise added to quasi-periodic signals. Thus, we generated an amplitude-modulated quasi-
periodic signal with additive white Gaussian noise of diverse power. This sequence is similar to 
that used in Aboy et al (2006) or Hornero et al (2005). The time series was created as an 
amplitude-modulated sum of two sine waves with frequencies at 0.61 Hz and 1 Hz. The first 30 
s of this sequence were noise-free. Afterwards, white Gaussian noise was added to the signal, 
with the noise power increasing every 15 s. Figure 1(b) plots this time series. 
 

3.1.3. Test c: Autoregressive process 

In this test, the dependence between the AMIFRD and the spectral content of coloured noise was 
studied. An autoregressive process of order 1 – ( )1AR  – was created varying the model 
parameter, ρ, from +0.9 to –0.9 linearly. Thus, its energy moved from low to high frequencies. 
When ρ was equal to 0, the sequence corresponded to Gaussian white noise. Figure 1(c) depicts 
the corresponding spectrogram, time plot and zoom views. 
 

3.1.4. Test d: Logistic map 

This test aimed at determining whether the AMIFRD is able to detect changes from periodic to 
chaotic behaviour in a signal. This analysis was based on the logistic map, which depends on 
the model parameter µ  (Ferrario et al 2006, Pincus 1991): 

( ).1 11 −− −= kkk xxx µ  (12) 

The synthetic signal was composed by 2 segments of 11250 data points. The first one was 
generated with µ  = 3.55. With this parameter, the time series oscillated among 8 values (Baker 
and Gollub 1990). The second segment was computed with µ  = 3.60 in order to create chaotic 
oscillations (Baker and Gollub 1990). Figure 1(d) exemplifies this simulated signal. 

 

3.1.5. Test e: Lorenz system 
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In this test, we studied whether the AMIFRD detects changes in the behaviour of a non-linear 
system like the Lorenz attractor, which is given by: 

( )
( )

zxyz

yzxy

xyx

β

ρ

σ

−=

−−=

−=

&

&

&

 (13) 

where σ, β and ρ are the system parameters (Baker and Gollub 1990, Kantz and Schreiber 1997). 
The first segment of this synthetic sequence had a length of 11250 samples and it was generated 
with σ = 10, β = 8/3 and ρ = 28. Thus, it exhibited a chaotic behaviour. The second segment also 
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(e) 

Figure 1. Spectrograms, time plots and zoom views on the first and last time intervals of the synthetic 
signals. (a) Test a: MIX process which evolves from randomness to periodic oscillations. (b) Test b: 
Quasi-periodic signal with increasing additive noise power. (c) Test c: AR(1) process with variable 

parameter. (d) Test d: Logistic map divided into periodical and chaotic parts. (e) Test e: Lorenz system 
with two different non-linear dynamics. 
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had 11250 points and was created with σ = 10, β = 8/3 and ρ = 99.96, which produced a torus 
knot (Baker and Gollub 1990, Kantz and Schreiber 1997). Both parts were generated using a 
fixed step-size first order integration method without pre-integration and with the step-size set 
to 1/fs. After the two parts had been created, they were normalized so that their standard 
deviation was equal to 1. Figure 1(e) displays the coordinate x, which was the time series 
analysed in this study. 

 
3.2. Evolution with signal parameters 

For every kind of synthetic signal, 250 independent realizations of the time series were 
created with different initial phases or random seeds. Then, for each of these independent 
realizations, the AMIFRD was computed in a moving window of 30 s (4500 data samples) with 
90% overlap and I = 8, 16, 32, 64 and 128 partitions to construct the histograms. The 250 rates 
of decrease were averaged for each window. Therefore, we could test whether the AMIFRD is 
sensitive to changes in the signal parameters varied in this study. 

 
3.3. Distribution of the AMIFRD for different kinds of signals 

In addition to test how the AMIFRD changes with some signal parameters, we also 
studied its variability for three different kinds of sequence. We generated 10000 independent 
realizations of: 1) a logistic map with µ  = 4 (non-linear oscillator) (Hoyer et al 2002); 2) an 

( )1AR  process with ρ = +0.9 (low-frequency linear oscillator) and 3) an ( )1AR  process with ρ = 
–0.9 (high-frequency linear oscillator). All these time series had a length of 30 s with fs = 150 
Hz (4500 sample points). The AMIF was computed with the number of bins that provided the 
most sensitive estimations to the changes in the synthetic signal parameters. 

 
3.4. Application to real EEG recordings 

Finally, the AMIFRD was applied to five groups of real EEG signals in order to illustrate the 
analysis of real biomedical time series with this metric. These recordings belong to the EEG 
database made available online by Andrzejak et al (2001) at the Department of Epileptology, 
University of Bonn. This section only describes these signals briefly. 

Each of the five datasets contains 100 single-channel EEG signals of 23.6 s recorded with 
fs = 173.61 Hz (4096 sample points). Subsets A and B contain surface EEG signals recorded 
from five healthy volunteers who were relaxed in an awake state. Whereas the subjects had their 
eyes open during the recording of the EEG in dataset A, the EEG signals of dataset B were 
acquired with eyes closed (Andrzejak et al 2001). The AMIFRD was also computed for three 
subsets (C, D and E) of intracranial EEG recordings from five epileptic patients, who had 
achieved complete seizure control after a surgical procedure (Andrzejak et al 2001). Signals in 
set D were recorded within the epileptogenic zone, whereas the EEGs of set C were acquired 
from the opposite brain hemisphere. Sets C and D contained only activity measured during 
seizure free intervals. On the other hand, set E was only composed of seizure activity recorded 
from all sites exhibiting ictal activity. Additional details can be found in Andrzejak et al (2001). 

The AMIFRD was calculated using the number of partitions considered optimal after the 
simulated signals analyses. Prior to these computations, all EEG epochs were digitally filtered 
using a FIR band-pass filter with cut-off frequencies at 0.5 Hz and 40 Hz. 

4. Results and discussion 

This study aimed at characterising the behaviour of the AMIFRD in terms of straightforward 
signal processing concepts. In order to do so, we analysed different kinds of synthetic signals 
with the AMIFRD using I = 8, 16, 32, 64 and 128 bins to calculate the histograms. These results 
are depicted in figure 2. Despite the fact that the MI value may be under- or over-estimated 
depending on the number of bins used to construct the histograms, figure 2 shows that the 
average AMIFRDs are relatively stable for a range of I values. On the one hand, the AMIFRD 
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computed with 8 partitions was unable to show the changes in signal parameters in tests a and 
test d. On the other hand, in tests c and e, this metric provided less differences with I = 128 than 
with I = 16, 32 or 64 bins. Furthermore, the evolution of the AMIFRD for the studied signal 
parameters was similar when 16, 32 and 64 partitions were used to build the histograms. Thus, 
considering the results obtained with these test signals, the remaining analyses will be carried 
out using histograms of 32 bins. 

The results of the test that aimed to determine whether the evolution from randomness to 
deterministic oscillations affects the AMIFRD are plotted in figure 2(a). This parameter detects 
changes in the content of a signal when it changes from randomness to orderliness. 

In figure 2(b), it can be seen that the AMIFRD is sensitive to changes in additive noise 
power, becoming more negative as noise power increases. Despite the fact that the ranking 
transformation made the AMIFRD robust to artefacts in the signals (Alonso et al 2007), figure 
2(b) indicates that this parameter depends on the signal-to-noise ratio (SNR) for quasi-periodic 
signals. Consequently, we can infer that the AMIFRD, even when the ranking transformation is 
applied, tends to saturate for low SNRs, offering the most negative values for completely noisy 
signals. 

Using an ( )1AR  process, we studied how the AMIFRD changed with the signal spectral 
content. The results are depicted in figure 2(c). This analysis proves that time series with wider 
spectra (e.g., white noise) produce more negative AMIFRDs. On the other hand, time series with 
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Figure 2. Average results of the AMIFRD computed from the tests signals using I = 8, 16, 32, 64 and 
128 bins to construct the histograms. (a) Test a: AMIFRD versus signal randomness. (b) Test b: 

Evolution of the AMIFRD with additive noise power. (c) Test c: Evolution of the AMIFRD with signal 
spectral content. (d) Test d: Relationship between the AMIFRD and periodic or chaotic behaviour. (e) 

Test e: AMIFRD versus two different types of non-linear dynamics. 
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narrower spectral content provide a smoother AMIF decay, irrespective of whether their spectra 
are centred at low or high frequencies. These results agree with a previous study that showed 
that white noise is more irregular than coloured noise (Hornero et al 2005). Figure 2(c) also 
suggests that the AMIF rate of decrease does not clearly distinguish between low or high-
frequency noises. 

Figure 2(d) shows the results of the test designed to assess how the change from a 
periodic to a chaotic signal affects the AMIFRD. The time series was composed of two segments 
generated using a logistic map. There is a sudden fluctuation in the AMIFRD values when the 
behaviour of the logistic map becomes chaotic. This fluctuation appears when both kinds of 
dynamics (periodic oscillations and chaos) are included in the moving window from which the 
AMIFRD is computed. When the moving window comprises only one kind of dynamics, the 
values of this metric are stable. In agreement with Hoyer et al (2002), it can be seen that the 
AMIFRD for white noise is more negative than that related to the logistic map since the former 
loses more information with τ. 

Using the Lorenz system, we could explore whether the AMIFRD detects changes in the 
non-linear equations that govern this system. Figure 2(e) represents our results. It can be 
observed that the AMIFRD values are less negative than those of white noise. Nevertheless, this 
parameter shows a sudden change between both kinds of non-linear dynamics. 

Figure 3 depicts the boxplots of the AMIFRD values for 10000 independent realizations 
of a non-linear (logistic map with µ = 4) and two linear oscillators – ( )1AR  processes with ρ = 
+0.9 and ρ = –0.9. These boxplots show that the ability of the AMIFRD to distinguish low- and 
high-frequency coloured noises is limited. This is due to the fact that the distributions of 
AMIFRD values for the ( )1AR  processes with ρ = +0.9 and ρ = –0.9 are similar (p-value = 
0.0572, Mann-Whitney U-test). Additionally, it can be noted that the distribution of the 
AMIFRD for the non-linear chaotic oscillator is different from those of the linear ( )1AR  

processes (p-value << 0.0001, Mann-Whitney U-test for the logistic map and the two ( )1AR  
processes). 

Figure 4(a) shows the boxplots for the distributions of the AMIFRD values obtained from 
real EEG signals acquired with eyes open and eyes closed. It is well-known that the closed-eyes 
condition produces certain changes in the EEG. One of the most remarkable alterations is the 
rise in the power of the alpha rhythm (oscillations between 8 Hz and 13 Hz) (Andrzejak et al 
2001). Thus, the EEG spectrum is modified in comparison to the eyes-open case. This can be 
visually observed or studied with spectral analysis methods. Additionally, the boxplots depicted 
in figure 4(a) show that more negative AMIFRD values are related to the eyes-closed state (p-
value << 0.0001, Mann-Whitney U-test for subsets A and B of the EEG database). Therefore, 
we can infer that the closing of eyes is associated with significantly more irregular EEG signals. 
Multichannel EEG signals recorded with eyes open and closed have also been analysed with 
other measures based on concepts like complexity and information transfer (Rapp et al 2005, 
Watanabe et al 2003). Those results associated the eyes open condition with an increase in 
algorithmic complexity and a decrease in the Tononi-Edelman complexity, which provided the 
greatest between-condition statistical significance (Rapp et al 2005). However, the diverse 
results obtained with these measures should be interpreted with care due to the different 
definitions of the complexity measures applied and the use of multichannel recordings in 
contrast to the single channel EEG signals analysed here with the AMIFRD. Figure 4(b) 
represents the boxplots for the AMIFRD values obtained from the subsets C, D and E of the 
EEG database. Similarly to the clear visual and spectral changes between ictal and non-ictal 
activity, there are very significant differences between the AMIFRD values computed for these 
states (p-value << 0.0001, Mann-Whitney U-test for subsets C, D and E of the EEG database). 
The differences are much more subtle between the inter-ictal EEG activity recorded from the 
epilogenetic zone and from the opposite brain hemisphere (p-value = 0.0343, Mann-Whitney U-
test for subsets C and D). 
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In this study, the AMIFRD was estimated using a first-order least-squares fitting method 
(Abásolo et al 2008, Gómez et al 2007, Jeong et al 2001). Thus, we could assess the 
information loss on several time scales simultaneously. In contrast, other researchers have 
estimated AMIF decay parameters drawing a straight line between τ = 0 and a certain τ1 (Na et 

al 2002, Palacios et al 2007). In the context of biomedical signal analysis, considering different 
time scales at the same time can be advantageous in comparison to the use of other non-linear 
measures based on one time scale only (Costa et al 2005). This is due to the fact that 
physiological mechanisms interoperate at different time scales simultaneously and it is difficult 
to define a priori a prominent time scale (Hoyer et al 2005, Costa et al 2005). Furthermore, 
analysing several time scales may be especially relevant when there is no clear knowledge about 
the specific time scales associated with the time series (Hoyer et al 2005). Thus, variables 
related to the time evolution of MI may be more helpful to characterise a recording than its 
absolute values (Alonso et al 2007). 

Our results support the idea that the AMIFRD, which is correlated with signal entropy 
(Abásolo et al 2008, Paluš 1996), is an irregularity estimator instead of a complexity measure, 
as some authors have previously suggested (Jeong et al 2001, Na et al 2002, Palacios et al 
2007). From a strict point of view, a quantitative measure of complexity should vanish for both 
completely ordered and completely random signals like white noise, which is very unpredictable 
but not structurally complex (Costa et al 2005). However, this does not occur with the 
AMIFRD. A steeper decline of the AMIF for a given time series (implying a rise in irregularity) 
does not necessarily point out that physiologic complexity has increased (Goldberger et al 
2002). However, a decreased irregularity can be found in several diseases (Abásolo et al 2008, 
Gómez et al 2007, Jeong et al 2001, Hoyer et al 2007). Similarly to previous studies, our EEG 
analysis shows that the AMIFRD may characterise biomedical signals acquired under diverse 
states. Examples of this application are the more negative AMIFRD distribution associated with 
the eyes-closed state in comparison to the eyes-open condition and the differences found 
between the ictal and non-ictal EEG activities. Furthermore, the use of the AMIFRD as a 
characterising metric in the analysis of experimental recordings has some advantages. Firstly, it 
can be applied to short time series in comparison to other non-linear classical analysis methods, 
such as the correlation dimension (Abásolo et al 2008, Gómez et al 2007, Jeong et al 2001). 
Secondly, the only input parameter for the AMIF is the number of histogram partitions (Jeong et 

al 2001, Na et al 2002). Finally, the MI is invariant under strictly monotone transformations of 
the input sequences (Pompe et al 1998). 

It should be noted that, in contrast to other studies (Hoyer et al 2005, Quian Quiroga et al 
2002, Xu et al 1997), signals were not embedded in a phase space before computing MI. This 
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Figure 3. Boxplots representing the distributions of the AMIFRD values obtained for 10000 independent 

realizations of several kinds of signals: a logistic map with µ = 4, an AR(1) model with ρ = +0.9 (low 
frequency) and an AR(1) model with ρ = –0.9 (high frequency). A boxplot is composed of a box with three 
horizontal lines at the lower quartile, median, and upper quartile values and two whiskers, which are lines 
extending from each end of the boxes to show the extent of the rest of the data. Values beyond the end of 

the whiskers are considered outliers, which are marked with a “+”. 
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embedding should be carried out in order to consider higher dimensional relationships (David et 

al 2004, Pompe et al 1998). However, it would require larger signals, something that is not 
always possible, especially for biological recordings. Additionally, some advanced strategies 
can be applied to estimate MI, like the recursive algorithm by Fraser and Swinney (1986) or the 
recently proposed techniques by Cellucci et al (2005). Nevertheless, we have found that the 
straightforward computation of the histograms using 32 equal bins after applying a ranking 
transformation to the data (Pompe et al 1998) provided stable estimations of the AMIFRD. 

5. Conclusions 

In recent years, the AMIFRD has been widely used in biomedical signal analysis (Abásolo et al 
2008, Gómez et al 2007, Hoyer et al 2002, 2005, 2007, Jeong et al 2001, Na et al 2002, Pompe 
et al 1998). Due to the increasing relevance of the metric in this field, we aimed at gaining a 
better understanding of the AMIFRD in terms of signal processing concepts and at illustrating 
its application to the signal analysis of biomedical recordings. Hence, we performed a series of 
simulations where this method was tested using synthetic signals. 

Our study has indicated that the AMIFRD becomes more negative as the signal is more 
dominated by white noise. Additionally, noises with wider spectra provide more negative values 
of the AMIFRD, and this parameter is able to detect changes in the non-linear dynamics of a 
time series. Additionally, we illustrated the application of the AMIFRD to real EEGs recorded 
under different conditions. Nevertheless, it should be noticed that many other non-linear 
analysis methods are available, and similar studies should be carried out to properly understand 
the results provided by other analysis techniques. 
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Figure 4. Boxplots representing the distributions of the AMIFRD values computed from real EEG signals. 
(a) Surface EEGs acquired with eyes open and eyes closed. (b) Intracraneal EEG recordings of ictal 

activity and inter-ictal activity recorded from within the epileptogenic zone and from the opposite brain 
hemisphere.  
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