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Abstract−−−−The aim of the present study was to analyze the magnetoencephalogram (MEG) 

background activity from 20 patients with probable Alzheimer’s disease (AD) and 21 control 

subjects using two non-linear methods: sample entropy (SampEn) and Lempel-Ziv complexity 

(LZC). The former quantifies the signal regularity, while the latter is a complexity measure. The 

signals were acquired with a 148-channel whole-head magnetometer placed in a magnetically 

shielded room. Our results show that MEG recordings are less complex and more regular in AD 

patients than in control subjects. Significant differences between both groups were found in 16 

MEG channels with SampEn and in 134 with LZC (p < 0.01, Student’s t-test with Bonferroni’s 

correction). Using receiver operating characteristic curves with a leave-one-out cross-validation 

procedure, accuracies of 70.73% and 78.05% were reached with SampEn and LZC, respectively. 

Additionally, we wanted to assess whether both non-linear methods and an adaptive-network-

based fuzzy interference system (ANFIS) could improve AD diagnosis. With this classifier, an 

accuracy of 85.37% was achieved. Our findings suggest the usefulness of our methodology to 

increase our insight into AD. 

 

Keywords−−−−Adaptive-network-based fuzzy interference system (ANFIS), Alzheimer’s disease, 

Lempel-Ziv complexity, magnetoencephalogram, sample entropy 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is a progressive and irreversible brain disorder of unknown 

aetiology. It affects 1% of the population aged 60-64 years, but the prevalence increases 

exponentially with age, so around 30% of people over 85 years suffer from this disease.24 

Additionally, due to the fact that life expectancy has increased significantly in western countries 

during the last decades, it is expected that the number of people with dementia will increase to 

81 million in 2040.24 Clinically, this degenerative neurological disease manifests itself as a 

slowly progressive impairment of mental functions whose course lasts several years prior to 

death. AD patients may wander, be unable to engage in conversation, appear non-responsive, 

become helpless and need complete care and attention.7,22 The clinical characteristics at the 

microscopic level include senile plaques containing amyloid-beta-peptide and neurofibrillary 

tangles in the medial temporal lobe structures and cortical areas of the brain.6 AD is also 

characterized by loss of neurons and synapses. 

The criteria of the National Institute of Neurological and Communicative Disorders and 

Stroke–Alzheimer’s Disease and Related Disorders Association (NINCDS–ADRDA)29 are 

commonly used for the clinical diagnosis of AD. According to NINCDS–ADRDA, AD can be 

classified as definite (clinical diagnosis with histologic confirmation), probable (typical clinical 

syndrome without necropsy confirmation) or possible (atypical clinical features but no 

alternative diagnosis apparent).7 In order to reduce the damage suffered by the patient’s brain 

and to adopt more efficient drug taking strategies, an early diagnosis is needed. The differential 

diagnosis with other types of dementia and with major depression includes medical history, 

physical and neurological evaluation, laboratory studies and neuroimaging techniques. Mental 

status tests are also used to assess the severity of cognitive deficit. However, a definite diagnosis 

is only possible by necropsy. Hence, new approaches are needed to improve AD detection. 

Nowadays, electroencephalography (EEG) and magnetoencephalography (MEG) recordings 

are not used in AD clinical diagnosis. Nevertheless, several studies have demonstrated that the 
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analysis of EEG/MEG signals could help physicians in the diagnosis of this dementia (extensive 

reviews can be found in Jeong22 and Stam39). Both EEG and MEG are non-invasive techniques 

that allow to record the electromagnetic fields produced by brain activity with good temporal 

resolution. The use of MEG recordings to study the background brain activity offers some 

advantages over EEG. MEG provides reference-free recordings, which are not distorted by the 

resistive properties of the skull.14 Additionally, MEG offers higher spatial resolution than 

conventional EEG.14 On the other hand, the magnetic signals generated by the human brain are 

extremely weak. Thus, SQUID (Superconducting QUantum Interference Device) sensors are 

necessary to detect them and MEGs must be recorded in a magnetically shielded room. 

Therefore, MEG is characterized by limited availability and high equipment cost. 

Until the introduction of methods derived from non-linear dynamics, AD patients’ brain 

recordings were analyzed visually or with linear techniques based on coherence and spectral 

calculations.22 These analyses seem to discriminate AD patients from control subjects through 

an increased EEG/MEG activity in lower frequency bands associated with AD.10,37 On the other 

hand, non-linear methods have also demonstrated their usefulness in the analysis of the 

EEG/MEG background activity in AD.22,39 The first non-linear methods used to study the brain 

recordings from AD patients were correlation dimension (D2) and the first Lyapunov exponent 

(L1). Jeong et al.
20 showed that AD patients exhibit significantly lower D2 and L1 values than 

controls in most EEG channels. Using D2, another study revealed a decreased complexity of the 

MEG background activity in AD patients in the low frequency bands, and an increase in the 

high bands.40 However, these classical measures for complexity estimation have some 

drawbacks. Reliable estimation of L1 and D2 requires a large number of data points and 

stationary and noise-free time series.8,20 These requirements are difficult to fulfill for 

physiological data. Hence, other non-linear methods are necessary to study brain recordings. For 

instance, Abásolo et al.
2 found significant differences in some EEG channels with sample 

entropy (SampEn), concluding that the EEG background activity is more regular in AD patients 

than in control subjects. EEG/MEG studies demonstrated that AD patients have significantly 
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lower Lempel-Ziv complexity (LZC) values than elderly control subjects.3,11 

The application of neural networks and fuzzy logic techniques to classify AD patients’ brain 

recordings has not received much attention. Besthorn et al.
5 employed a neural network to 

recognize the EEGs from AD patients and controls. Petrosian et al.
32 reached a sensitivity of 

80% at 100% specificity using a recurrent multi-layer perceptron. In the current work, the 

classification task is performed by an adaptive-network-based fuzzy interference system 

(ANFIS).36 ANFIS combines the adaptive capabilities of neural networks and the qualitative 

approach of fuzzy logic.13 Moreover, it has already been successfully applied for the 

classification of biological time series, such as EEG13 or electromyographic recordings.18 

In this study, we have examined the MEG background activity in 20 patients with probable 

AD and 21 control subjects with two non-linear methods: SampEn and LZC. The former 

quantifies the signal regularity, while the latter is a complexity measure. Thus, SampEn and 

LZC could provide complementary information to improve the AD diagnosis. Our goal was to 

test the hypothesis that AD patients’ recordings are more regular and less complex than 

controls’ MEGs, indicating the presence of abnormal brain dynamics associated with AD. 

Furthermore, we wanted to asses whether the use of an ANFIS classifier yields a higher 

diagnostic accuracy than the sole non-linear methods. 

2. MATERIALS AND METHODS 

2.1. Subjects 

In the present study, MEG signals were recorded from 41 subjects. All patients and controls 

underwent an exhaustive neuropsychological evaluation including the Spanish versions of the 

following scales and batteries: Wechsler Memory Scale 3rd Edition (WMS-III), Boston Naming 

Test (BNT), Stroop Test, Wisconsin Card Sorting Test (WCST), Silhouettes Test of the Visual 

Object and Space Battery (VOSP), and tests for constructive and ideatory apraxia. Cognitive 

status was screened in both groups with Mini Mental State Examination (MMSE).  

MEGs were obtained from twenty patients (7 men and 13 women; age = 73.05 ± 8.65 years, 
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mean ± standard deviation, SD) fulfilling the criteria of probable AD. They were recruited from 

the “Asociación de Familiares de Enfermos de Alzheimer” in Spain. Diagnosis for all patients 

was made according to the NINCDS–ADRDA criteria.29 The mean MMSE score for these 

patients was 17.85 ± 3.91 (mean ± SD). Patients were free of significant medical, neurological 

and psychiatric diseases other than AD and they were not taking drugs which could affect MEG 

activity. 

The control group consisted of 21 elderly control subjects without past or present 

neurological disorders (9 men and 12 women; age = 70.29 ± 7.07 years, MMSE score = 29.10 ± 

1.00 points, mean ± SD). The difference in age between both populations was not statistically 

significant (p-value = 0.2752, Student’s t-test). All control subjects and patients’ caregivers 

signed an informed consent for the participation in this research work. The local Ethics 

Committee approved this study. 

2.2. Magnetoencephalogram recordings 

MEGs were acquired with a 148-channel whole-head magnetometer (MAGNES 2500 WH, 

4D Neuroimaging) placed in a magnetically shielded room at “Centro de Magnetoencefalografía 

Dr. Pérez-Modrego” (Spain). The subjects lay on a patient bed, in a relaxed state and with their 

eyes closed. For each subject, five minutes of recording were acquired at a sampling frequency 

of 678.17 Hz, using a hardware band-pass filter from 0.1 to 200 Hz. Then, the equipment 

decimated each 5 minute data set. This process consisted of filtering the data to satisfy the 

Nyquist criterion, following by a down-sampling by a factor of 4, thus obtaining a sampling rate 

of 169.549 Hz. Finally, artifact-free epochs of 10 seconds were processed using a band-pass 

filter with a Hamming window and cut-off frequencies at 0.5 and 40 Hz. 

2.3. Methods 

MEG epochs were analyzed by means of two non-linear methods: SampEn and LZC. 

Afterward, statistical analyses were used to determine if there were any differences between the 
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values obtained in both groups: AD patients and elderly control subjects. Finally, the results of 

both non-linear methods were used as input to an ANFIS classifier. In fig. 1, we present the 

steps followed in this study. 

DISPLAY FIGURE 1 AROUND HERE 
 

2.3.1. Sample entropy (SampEn) 

SampEn is an embedding entropy that quantifies the signal irregularity: more irregularity in 

the data produces larger SampEn values.35 SampEn is the negative natural logarithm of the 

conditional probability that two sequences similar for m points remain similar at the next 

point.35 This metric solves some problems associated with approximate entropy (ApEn), a non-

linear method introduced by Pincus33 to quantify the regularity of time series, initially motivated 

by applications to relatively short, noisy data sets. SampEn is largely independent of the signal 

length and displays relative consistency under circumstances where ApEn does not. 

Additionally, the algorithm used to compute the SampEn is simpler than the ApEn algorithm.35  

To calculate SampEn, two input parameters must be specified: a run length m and a tolerance 

window r. The values of m and r are critical in the performance of SampEn and comparisons 

between time series can be done only with fixed values of m, r and N, where N is the number of 

samples in the time series. In order to avoid a significant contribution of noise in the SampEn 

estimation, r must be higher than most of the noise.33 Additionally, if r is too small, the entropy 

estimation might fail.9 In addition to this, the accuracy and confidence of the SampEn estimate 

improve for low m values and large r values, since the number of matches of length m and m + 1 

increases.27 The existing rules lead to the use of r values between 0.1 and 0.25 times the 

standard deviation of the original time series and m values of 1 or 2, for signals from 100 to 

5000 data points.27 In our study, we have chosen m = 1 and r = 0.25 times the standard deviation 

of the original time series. These values follow the aforementioned guidelines and have been 

used in a previous AD study.2 This measure has already been used to study some biological 
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signals, such as heart rate time series27 and EEG data.2  

Given a one dimensional time series X = x(1), x(2),..., x(N), the algorithm to compute the 

SampEn can be described as:35  

• Form N − m + 1 vectors Xm(i) defined by: Xm(i) = x(i), x(i + 1),..., x(i + m − 1),   with 1 ≤ i 

≤ N − m + 1. 

• The distance between two of these vectors, Xm(i) and Xm(j), is the maximum absolute 

difference between their respective scalar components: 

|))()(max(|)](),([ kjxkixjXiXd mm +−+= ,        (1) 

for 0 ≤ k ≤ m − 1. 

• Define Bi
m(r) as 1/(N − m − 1) times the number of vectors Xm(j) within r of Xm(i), where 1 

≤ j ≤ N − m, (j ≠ i). Then, set Bm(r) as: 
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• Similarly, calculate Ai
m(r) as 1/(N − m − 1) times the number of j (1 ≤ j ≤ N − m; j ≠ i), 

such that the distance between Xm+1(j) and Xm+1(i) is less than or equal to r. Set Am(r) as: 
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2.3.2. Lempel-Ziv complexity (LZC) 

The LZC algorithm was proposed by Lempel and Ziv to evaluate the randomness of finite 

sequences.28 It is a nonparametric and simple-to-compute measure of complexity for one-
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dimensional signals that does not require long data segments to be calculated.41 Larger LZC 

values correspond to more complex data. LZC has been widely applied to EEG/MEG data and 

other biomedical signals.3,11, 31,41 

LZC analysis is based on a coarse-graining of the measurements, so the MEG time series 

must be transformed into a finite symbol sequence. In this study, we used the simplest way: a 

binary sequence conversion (zeros and ones), since previous studies suggested that this kind of 

conversion may keep enough signal information.41 The median value is used as the threshold Td, 

due to the fact that partitioning about the median is robust to outliers.31 By comparison with Td, 

the original data are converted into a 0-1 sequence P = s(1), s(2),…, s(N), with s(i) defined by:41 
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The string P is scanned from left to right and a complexity counter c(N) is increased by one 

unit every time a new subsequence of consecutive characters is encountered in the scanning 

process. The detailed algorithm for the measure of LZC is as follows:41  

• Let S and Q denote two subsequences of the original sequence P. SQ is the concatenation 

of S and Q, while SQπ is a string derived from SQ after its last character is deleted (π 

means the operation to delete the last character). Let v(SQπ) denote the vocabulary of all 

different substrings of SQπ. 

• At the beginning, the complexity counter c(n) = 1, S = s(1), Q = s(2), SQ = s(1), s(2) and 

SQπ = s(1). 

• For generalization, suppose that S = s(1), s(2),…, s(r), Q = s(r+1) and, therefore, SQπ = 

s(1), s(2),…, s(r). If Q ∈ v(SQπ), then Q is a subsequence of SQπ, not a new sequence. 

• S does not change and renew Q to be s(r+1), s(r+2), then judge if Q belongs to v(SQπ) or 

not. 

• The previous steps are repeated until Q does not belong to v(SQπ). Now Q = s(r+1), 

s(r+2),…, s(r+i) is not a subsequence of SQπ = s(1), s(2),…, s(r+i-1), so increase the 
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counter by one. 

• Thereafter, S and Q are combined and renewed to be s(1), s(2),…, s(r+i), and s(r+i+1), 

respectively.  

• Repeat the previous steps until Q is the last character. At this time, the number of 

different substrings is c(N), the measure of complexity. 

In order to obtain a complexity measure independent of the sequence length, c(N) should be 

normalized. If the length of the sequence is N and α is the number of different symbols, it has 

been proved that the upper bound of c(N) is given by:28 

( ) )(log1
)(

N

N
Nc

N αε−
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where εN is a small quantity and εN → 0 (N → ∞). In general, N/logα(N) is the upper limit of 

c(N), i.e., 
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For a binary conversion α = 2, b(N) ≡ N/log2(N) and c(N) can be normalized via b(N): 
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)(
)(

Nb

Nc
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The normalized LZC reflects the arising rate of new patterns along with the sequence. 

2.3.3. Adaptive-Network-Based Fuzzy Interference System (ANFIS) 

ANFIS is an adaptive network originally described by Roger Jang.36 It is functionally 

equivalent to a fuzzy interference system consisting of a rules set. ANFIS architecture consists 

of five layers: fuzzy layer, product layer, normalized layer, defuzzy layer and total output layer. 

The entire system architecture chosen for this study is shown in fig. 2 and is described below 

(Note that j
iO denotes the output of the i-th node in the j-th layer):36  

• The first layer contains three adaptive nodes for each input,16,25 with node functions: 
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where x (or y) is the input to node i, and Ai (or Bi) are the membership functions. These 

functions map the input x (or y) into the output 
iAµ  (or 

iBµ ). As membership function, 

Roger Jang36 suggests the use of a Gaussian bell-shaped, with maximum equal to 1 and 

minimum equal to 0: 
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where ai, bi and ci are called premise parameters. 

• In the second layer, every node is identified as M. They are fixed nodes whose outputs are 

the product of the incoming signals:  

)()(2
yxO

nm BAii µµω ×== ,            (12) 

for i = 1, 2, ..., 9, m = 1, 2, 3, and n = 1, 2, 3. The output of each node represents the firing 

strength of a rule. 

• Layer 3 contains nodes labeled as N. The i-th node calculates the ratio of the i-th rule 

firing strength to the sum of all firing strengths: 
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The outputs of this layer are called normalized firing strengths. 

• Layer 4 is formed by adaptive nodes with node functions:  

)(4
iiiiiii ryqxpfO ++== ωω ,            (14) 

where iω  is the output of the i-th node of layer 3 and pi, qi and ri is a parameter set. These 

parameters are termed consequent parameters. 

• The single node of layer 5 computes the overall output as the summation of all incoming 

signals: 
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On the contrary to a conventional fuzzy interference system, the parameters of the 

membership functions are not determined manually by an expert, but automatically based on a 

training set of input/output data.16 ANFIS were trained with a hybrid learning algorithm that 

combines the gradient descent method and the least squares method to identify the parameter 

sets of layers 1 and 4.36  

In our study, a leave-one-out procedure was used to asses the classification performance of 

ANFIS. In this procedure, the mean SampEn and LZC values obtained from one subject’s 

epochs are left out, and the non-linear results from the remaining subjects’ epochs are used as 

training data. ANFIS learns features in this data set and adjusts automatically the parameter sets 

according to a given error criterion.36 The left-out subject is then classified by this trained 

network. This procedure is repeated for all subjects. 

DISPLAY FIGURE 2 AROUND HERE 
 

3. RESULTS 

The SampEn algorithm was applied to all 148 MEG channels with m = 1 and r = 0.25 times 

the SD of the original time series. The average SampEn value for the control group was 1.24 ± 

0.14 (mean ± SD), whereas it reached 0.97 ± 0.26 for the AD patients. Our results showed that 

SampEn values were higher in the control subjects than in the AD patients’ group for all 

channels, which suggests that AD is accompanied by a MEG irregularity decrease. Moreover, 

we calculated the p-values of the Student’s t-test with Bonferroni’s correction to determine 

whether there were significant differences between both groups. Statistically significant 

differences (p < 0.01) were found in 16 channels. 

We also computed the LZC and calculated the p-values of the Student’s t-test (Bonferroni’s 

correction) for each MEG channel. AD patients had lower LZC values than control subjects at 

all MEG channels. Average LZC values were 0.69 ± 0.04 for the control group and 0.57 ± 0.08 
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in AD patients. These results show MEG background activity of AD patients is less complex 

than in a normal brain. Moreover, the differences between AD patients and elderly control 

subjects were statistically significant in 134 channels (p < 0.01, Student’s t-test with 

Bonferroni’s correction). 

Additionally, ROC curves were used to assess the ability of SampEn and LZC to discriminate 

AD patients from control subjects. This statistical method summarizes the performance of a 

two-class classifier across the range of possible thresholds. It is a graphical representation of the 

trade-offs between sensitivity and specificity. Sensitivity is the true positive rate while 

specificity is equal to the true negative rate. Accuracy is the percentage of subjects (AD patients 

and controls) correctly recognized. A leave-one-out cross-validation procedure was used to 

calculate sensitivity, specificity, and accuracy values. In the leave-one-out method, the data 

from one subject are excluded from the training set one at a time and then classified on the basis 

of the threshold calculated from the data of all other subjects. The leave-one-out cross-

validation procedure provides a nearly unbiased estimate of the true error rate of the 

classification procedure.38 Mean values, obtained averaging the results of all channels, were 

used to plot the ROC curves shown in Fig. 3. With SampEn results, a sensitivity of 80% and a 

specificity of 61.9% were achieved. The results were better when the mean LZC values were 

analyzed: an accuracy of 78.05% was reached. Sensitivity, specificity, and accuracy values for 

each non-linear measure (SampEn and LZC) are shown in Table 1. 

DISPLAY FIGURE 3 AROUND HERE 
 

Finally, the results of both non-linear methods were used as the inputs to the ANFIS 

classifier shown in Fig. 2. A leave-one-out procedure was used to asses the classification 

performance of ANFIS. An accuracy of 85.37% (85.0%, sensitivity; 85.71% specificity) was 

achieved. An increase of 7.32% in the accuracy with respect to the results obtained using only 

the LZC was reached, as can be noticed in Table 1. 

INSERT TABLE 1 AROUND HERE 
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4. DISCUSSION AND CONCLUSIONS 

We analyzed the MEG background activity from 20 patients with probable AD and 21 

elderly control subjects by means of two non-linear methods: SampEn and LZC. Our purpose 

was to check the hypothesis that MEG background activity is different in AD patients and 

control subjects. 

SampEn has proven to be effective in discriminating AD patients from controls subjects. Our 

study revealed that AD patients have lower SampEn values than controls at all channels. These 

results are in agreement with previous research works that have applied non-linear methods to 

estimate the regularity of the AD patients’ brain activity.1,2,12,17 ApEn values were significantly 

lower in the EEG of AD patients at electrodes P3 and P4,1 whereas statistically significant 

differences were found at P3, P4, O1 and O2 using SampEn.2 

Our results also showed that AD patients have lower LZC values than controls. Moreover, 

significant statistical differences were found in most MEG channels. These results agree with 

other studies that showed a decreased complexity in the brain recordings from AD patients. For 

instance, Escudero et al.
9 found significant differences in some EEG channels with multiscale 

entropy. Other EEG/MEG studies demonstrated that AD patients had lower LZC values than 

controls.3,11 Despite their drawbacks, traditional non-linear methods, like D2 and L1, also have 

been used to estimate the complexity of EEG/MEG recordings.5,20,40 Previous studies have 

suggested that D2 and L1 values are lower in AD patients’ EEGs than in controls’ ones.20 

Besides, significant differences between AD patients and control subjects were found in almost 

all EEG channels.20 Van Cappellen van Walsum et al.
40 estimated D2 in different MEG 

frequency bands, finding statistical differences between AD patients and age-matched controls 

in delta, theta and beta bands. 

Our findings support the notion that AD involves an overall loss of irregularity and 

complexity in the electromagnetic brain activity. Although this complexity/irregularity 

reduction seems to be associated with the deficiencies in information processing suffered by AD 
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patients, its pathophysiological implications are not clear. It might be due to neuronal death, a 

loss of synaptic connections, a general effect of neurotransmitter deficiency or a loss of 

dynamical brain responsivity to stimuli.19,20 Although a loss of physiological complexity and 

irregularity often accompanies ageing,26 in the present study the groups were matched for age. 

Furthermore, the significantly reduced complexity/irregularity may represent the cognitive 

dysfunction in AD. 

ROC curves with a leave-one-out cross-validation procedure were used to assess the ability 

of SampEn and LZC to classify AD patients and control subjects. Using SampEn, an accuracy of 

70.73% (80%, sensitivity; 61.9% specificity) was achieved. With LZC, specificity of 76.19%, 

sensitivity of 80%, and accuracy of 78.05% were reached. In previous papers, spectral 

parameters and non-linear methods have been used to distinguish AD patients and control 

subjects. The accuracy values achieved in the aforementioned studies are shown in Table 2. 

Nevertheless, all these values should be taken with caution due to the small sample sizes. 

Moreover, it is noteworthy that a leave-one-out cross-validation procedure has been used in our 

study and in Hornero et al.
17, but not in the other ones. Despite the fact that the accuracy 

decreases with this procedure, it provides a nearly unbiased estimate of the true error rate of the 

classification method.38  

INSERT TABLE 2 AROUND HERE 
 

SampEn and LZC values were used as input to an ANFIS classifier with a leave-one-out 

cross-validation procedure. An accuracy of 85.37% was achieved with this adaptive network. In 

order to demonstrate the usefulness of ANFIS in differentiating AD patients from controls, this 

value was compared with the accuracies obtained using the non-linear methods described in 

previous AD studies: auto-mutual information,12 spectral entropy,2,17 ApEn,1,17 SampEn
2 and 

LZC.3,11 These methods were applied to the same MEG database of the current study and a 

leave-one-out cross-validation procedure was used. The accuracy values reached were: 73.17% 

with auto-mutual information, 73.17% when spectral entropy was used, 60.98% with ApEn, 
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70.73% using SampEn and, finally, 78.05% with LZC. These values show that the use of an 

ANFIS classifier, together with SampEn and LZC, may be more useful in detection of AD than 

the methodologies based on a single parameter. To the best of our knowledge, there are no 

papers available on AD diagnosis using non-linear methods and ANFIS. Therefore, we have 

presented a new technique that might be useful in the diagnosis of this dementia. 

Our results show that SampEn and LZC are adequate methods to differentiate the MEG 

activity from AD patients and control subjects. Nevertheless, some limitations of our study 

merit consideration. Firstly, the sample size is small to obtain decisive results. Moreover, the 

detected decrease in irregularity and complexity is not specific to AD. It appears in other brain 

disorders, like epilepsy,23 schizophrenia30 or vascular dementia.21 Future efforts will be 

addressed to explore other non-linear measures to characterize MEG background activity in AD 

and in other pathologies. It is particularly interesting to study MEGs from patients with mild 

cognitive impairment, since several authors have considered this disease as a prodromal phase 

of AD.22 Furthermore, our results do not show if SampEn and LZC can detect a gradation of the 

disease process. Finally, the results obtained from each parameter were averaged to simplify the 

analyses. This issue involves a loss of spatial information, which could be partially avoided by 

computing the mean of each parameter for a number of brain regions. 

In conclusion, non-linear analysis of the MEG background activity with SampEn and LZC 

revealed an increased regularity and a decreased complexity of the AD patients’ MEGs. Our 

results suggest that neuronal dysfunction in AD is associated with differences in the MEG 

background activity. Additionally, we have demonstrated the usefulness of an ANFIS classifier 

in order to improve AD diagnosis.  
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TABLE CAPTIONS 

Table 1. Sensitivity, specificity, and accuracy values obtained with SampEn, LZC and ANFIS, 

using a leave-one-out cross-validation procedure. 

Table 2. Summary of articles concerning the classification of AD patients versus control 

subjects. The highest accuracy values reached in each paper are shown. 
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TABLE 1 

 
 

 
Sensitivity 

 
Specificity 

 
Accuracy 

 
 

SampEn 

 

 
80.00% 

 
61.90% 

 
70.73% 

LZC 

 
80.00% 76.19% 78.05% 

ANFIS 
 

85.00% 85.71% 85.37% 
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TABLE 2 

 

Paper 
 

Data set 
 

Method 
 

Highest accuracy values (%) 
 

 

Abásolo et 

al. 20051  

 

10 AD patients and 8 
controls (EEG) 
 

 

Approximate 
entropy 

 

83.3% (ROC curve at electrode P3) 
 

Abásolo et 

al. 20062  
11 AD patients and 11 
controls (EEG) 
 

Sample entropy 72.3% (ROC curve at EEG 
electrodes P3, P4, O1 and O2) 

Abásolo et 

al. 20063  
11 patients with AD 
and 11 control 
subjects (EEG) 

Lempel-Ziv 
complexity 

81.8% (ROC curve at P3 and O1 
with a two-symbol sequence 
conversion, and at P3, P4 and O1 
with a three-symbol conversion) 
 

Bennys et 

al. 20014 
35 patients with AD 
and 35 controls (EEG) 
 

Spectral ratios 82.8% (Ratio theta/(alpha+beta1) 
at the left temporal cerebral region 
analyzed with a ROC curve) 
 

Besthorn et 

al. 19975  
50 AD patients and 42 
control subjects (EEG) 
 

Correlation 
dimension 

69.5% (Neural network) 

Escudero et 

al. 20069  
11 AD patients and 11 
control subjects (EEG) 
 

Multiscale entropy 90.9% (ROC curve at EEG 
electrode Fp1) 
 

Gómez et 

al. 200611  
21 patients with AD 
and 21 elderly 
controls (MEG) 
 

Lempel-Ziv 
complexity 

83.3% (First principal score from 
principal component analysis 
examined with a ROC curve) 

Gómez et 

al. 200712 
20 AD patients and 21 
controls (MEG) 
 

Auto mutual 
information 

82.9% (Mean values analyzed with 
a ROC curve)  

Henderson 
et al. 2006 15 

17 patients with 
probable AD and 24 
control subjects (EEG) 

Fractal dimension 
and cumulative 
density of zero-
crossing intervals 

Sensitivities of 67% (fractal 
dimension) and 78.8% (zero-
crossing method) with a specificity 
fixed to 99.9% 
 

Hornero at 

al. 200817 
20 patients with AD 
and 21 elderly 
controls (MEG) 

Spectral and non-
linear methods 

80.5% with a linear discriminant 
analysis (median frequency and 
ApEn) 
 

Petrosian et 

al. 200132 
10 AD patients and 10 
control subjects (EEG) 
 

Wavelets 85.7% (Three layer recurrent 
neural network) 

Poza et al. 
200734 

20 patients with AD 
and 21 controls 
(MEG) 
 

Five spectral 
parameters 

85.4% (First principal component 
from mean frequency values 
analyzed with a ROC curve) 

Current 
study 

20 patients with AD 
and 21 controls 
(MEG) 

Sample entropy, 
Lempel-Ziv 
complexity and 
ANFIS 

70.7% (Mean SampEn values and a 
ROC curve) 
78.0% (Mean LZC values and a 
ROC curve) 
85.4% (ANFIS classifier) 
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FIGURE LEGENDS 

Figure 1. Block diagram of the steps followed in the MEG analysis: signal pre-processing, 

regularity and complexity analysis with SampEn and LZC, and classification using ANFIS. 

Figure 2. ANFIS architecture used in this study. The inputs to the adaptive network are the 

mean values obtained with SampEn (x) and with LZC (y). 

Figure 3. ROC curves showing the discrimination between AD patients and control subjects 

with the mean values of SampEn and LZC. 
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FIGURE 1 
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FIGURE 2 

 



 28

FIGURE 3 

 


