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Abstract 

The seasonal cycle of tree leaf display in the savannas and woodlands of the 

seasonally dry tropics is complex, and robust observations are required to illuminate the 

processes at play. Here we evaluate three types of data for this purpose, comparing 

scatterometry (QuikSCAT σ0) and optical/NIR (MODIS EVI)) remotely sensed data 

against field observations in the woodlands of southern Africa. At a site in 

Mozambique, the seasonal cycles from both space-borne sensors are in close agreement 

with each other and estimates of plant area index estimates derived from hemispherical 

photography (correlation coefficients > 0.88). This agreement results in very similar 

estimates of the start of the growing season across different data types (range 13 days). 30 

Ku-band scatterometry may therefore be a useful complement to vegetation indices 

such as EVI for estimating the start of the growing season for trees in tropical 

woodlands. More broadly, across southern tropical Africa there is close agreement 

between scatterometry and EVI time series in woody ecosystems (>25% tree cover), but 

in areas of < 25% tree cover the two time series diverge and produce markedly different 

start of season dates (difference > 50 days). This is due to increases in σ0 during the dry 

season, which were not matched by increase in EVI. The reasons for these increases are 

not obvious, but might relate to soil moisture, flowering, fruiting or grass dynamics. 

Further observations and modelling of this phenomenon is warranted to fully 

understand the causes of these dry season changes in σ0. Finally, three different 40 

definitions of the start of season were examined, and found to produce only small 

differences in estimated dates, across all types of data. 
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Introduction 

The timing of leaf display in tree species determines the duration of major fluxes 

of water, energy and carbon between the biosphere and atmosphere (Reich 1995; Chase 

et al. 1996; Baldocchi et al. 2005). In the seasonally dry tropics, trees are highly 

variable in their phenological behaviour, ranging from deciduous to briefly-deciduous 

to evergreen (Williams et al. 1997; de Bie et al. 1998; Singh and Kushwaha 2005). In 

the tropics, environmental control of leaf emergence is presumed to be related not to 50 

temperature (as in temperate and boreal regions), but neither is it simply related to 

patterns of precipitation and soil moisture (Myers et al. 1998; Borchert et al. 2002; 

Archibald and Scholes 2007; Higgins et al. 2011). 

Improved understanding of tropical tree phenology is contingent upon accurate 

measurements of phenological behaviour. Such measurements can be ground-based, 

often involving the recording of a phenological event of interest in the canopy such as 

bud burst, or the collection of time series data such as carbon fluxes or leaf area index. 

Ground-based phenological data are however very sparse in many regions, particularly 

in tropical Africa (Schwartz 2003). A complementary approach is to use Earth 

observation (EO) data from satellites to record (bio)physical properties of the Earth 60 

surface that relate to phenological patterns of interest. Such measures of land surface 

phenology (LSP, (Liang and Schwartz 2009)), offer advantages in terms of regular and 

global data acquisition, but difficulties remain in linking LSP to ecologically relevant 

measure of canopy phenology (Studer et al. 2007; Doktor et al. 2009; Liang and 

Schwartz 2009; Liang et al. 2011). 
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Optical and infrared reflectances have been the workhorses of LSP studies to 

date (Liang and Schwartz 2009), often combined into a single “greenness’ index such as 

NDVI (Normalised difference vegetation index) or EVI (enhanced vegetation index, 

(Huete et al. 2002)).  However, such data acquisition is not without its difficulties: 

darkness, atmospheric composition, clouds and off-nadir viewing angle all reduce the 70 

availability of high quality, consistent measures of the land surface. Low or medium 

resolution active microwave remote sensing from scatterometry can also be used as 

source of LSP data and provides some relief from these constraints (Wagner et al. 1999; 

Woodhouse and Hoekman 2000b; Hardin and Jackson 2003; Frolking et al. 2006). It is 

however less widely used in monitoring vegetation phenology, and scatterometry LSP 

time series has not been widely related to ground-based canopy phenology data (Hardin 

and Jackson 2003). Ku-band scatterometry from the SeaWinds-on-QuikSCAT sensor 

has been shown to give comparable information to EVI in some vegetation types 

(Frolking et al. 2006), and to be useful for monitoring tropical grasslands (Hardin and 

Jackson 2003; Frolking et al. 2005). Ku-band wavelength (2.1 cm) is similar to many 80 

leaf lengths, and so a strong interaction between the microwave radiation and the leaves 

is expected (Ulaby et al. 1984) suggesting that these data could be a useful source of 

information on tree leaf phenology, and might provide a useful complement to optical 

LSP data. However, the two data sources respond to fundamentally different aspects of 

the land surface: scatterometry data are likely to respond to vegetation structure and 

moisture contents, as well being influenced by soil moisture, whereas EVI data will 

respond to chlorophyll content and amount of green leaf material. 
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A further issue in comparing LSP to canopy phenology is the method for 

extracting dates of phenological events from time series of LSP data (Reed et al. 1994; 

White et al. 2009; Schwartz and Hanes 2010). For instance, a common date of interest 90 

is the start of (growing) season date (SoS), the point at which tree leaf expansion starts. 

This date has been estimated from time series of LSP data in many ways, all of which 

are heuristic and have only limited relation to the biological event of interest, e.g. SoS is 

often defined as the point at which the EO quantity reaches half its annual maximum. 

The various definitions of SoS are often tangential to the canopy phenological processes 

of interest and the relationship between the two needs to be established empirically. In 

this study we evaluate this relationship between LSP and canopy phenology, and in 

particular how this relationship depends on both the type of LSP data (optical or 

scatterometry) and the definition of SoS. This is the first study to investigate the 

relationship between different SoS definitions derived from ground-based 100 

measurements, optical and microwave EO data. 

Our study uses a detailed ground-based data set from a well-studied site in the 

woodlands of central Mozambique. We complement this with a regional study across all 

of southern tropical Africa, a region with complex climatology (Nicholson 2000), 

topography and vegetation (White 1983). 

Key Questions 

1. How does land surface phenology derived from different EO data types 

(optical and microwave) compare to ground-based estimates of canopy 

phenology? 
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2. In which ecosystems of southern tropical Africa are microwave-, and 110 

optical-derived phenologies congruent and what are the biophysical 

characteristics of areas where the two data sets diverge? 

3. How similar are SoS dates derived from the different data types, and how is 

this affected by the specific way in which SoS is identified in the time series 

data? 

Methods 

Our methods consist of four components: 1) Collection of ground-based plant 

area index (PAI) data at a site in the woodlands of central Mozambique over 4 years; 2) 

processing of satellite LSP data at the Mozambique site and for all of southern tropical 

Africa over ten years; 3) analysis of the time series data including: cross correlation 120 

analysis; estimation of SoS dates based on different definitions; and 4) comparison of 

the regional EO phenologies to land cover and vegetation maps. 

1) Data collection for Mozambique site 

Site details 

Fifteen square 1-ha permanent sample plots were installed in a range of 

woodland types in the Nhambita area of Gorongosa District, Sofala province, 

Mozambique in June 2004 (Ryan et al. 2011). The plots are spread across an area 

approximately 20 km by 30 km (centred on 18.979°S, 34.176°E), adjacent to the 

Gorongosa National Park (Tinley 1977). The vegetation on the plots included: (i) dry 

miombo woodland regrowing after clearance for agriculture; (ii) dry miombo degraded 130 
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by the removal of large stems for charcoal production; (iii) relatively undisturbed 

miombo in the National Park, both fenced and unfenced; and (iv) Combretum savanna 

on more hydromorphic soils (Mitchard et al. 2012; Ryan et al. 2012). The plots were 

randomly located along the track and road network in the area, and were all ≥ 250 m 

from a road or track. The location of the plots, on the western flank of the Rift Valley, 

means that they span a range of altitudes from 36-300 m, with corresponding changes in 

drainage and soil type.  

Plant area index (PAI) 

We monitored the seasonal cycle of plant area index (PAI) of trees using 

monthly hemispherical photography (Fuller 1999) for 48 months from June 2004 to 140 

May 2008 (inclusive) on the plots. On each plot, each month, we acquired nine images 

on a 20 x 20 m grid. Images were obtained under diffuse light conditions – either at 

dawn or dusk, or during overcast conditions – and from identical positions with the 

camera body oriented to the north and the lens rotated to the vertical. We used a Nikon 

Coolpix 4500 with a FC-E8 fisheye converter on a levelled tripod at 1.5 m height. The 

image is fully hemispheric. For logistical reasons we were unable to collect photos in 

seven months of the 48 month period of this study. A total of 4718 photos were 

acquired, coded with date and location and stored in a database (FileMaker Pro, Apple 

Computer Inc, CA). Each image was visually inspected and badly exposed or directly 

illuminated images were discarded (380 images). The images were then analysed to 150 

estimate PAI using the method of Ryan and Williams (2011). 

Precipitation 
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Rain gauge data for the Nhambita study area were obtained from three sources: 

1) daily rainfall totals from a manual rain gauge at the Gorongosa National Park 

headquarters at Chitengo, 25 km from the study site (Oct 2000-Nov 2005, provided by 

ARA CENTRO); 2) half hourly totals of rainfall from an automated weather station 

(Skye Instruments, UK) installed as part of this study adjacent to the Park gauge (Nov 

2005-May 2008); 3) a manual gauge operated by Mr Piet van Zyl, at the centre of our 

study area. Data from 3) were used for a 4 month period (Nov 2007-Feb 2008) when the 

automatic gauge failed. For a five month period (November 2006-March 2007) when all 160 

three data sets are available, they show cumulative rainfall of 860, 860, and 878 mm, 

respectively. As these values are similar, we did not adjust the data from the different 

sources, and they were combined into one, daily resolution, time series.  

2) EO land surface phenology data 

Enhanced Vegetation Index (EVI) 

Nine MODIS (Moderate Resolution Imaging Spectroradiometer) pixels of 

ground size 0.05° (~5.6 km) cover the 15 plots. Enhanced vegetation index (EVI) data 

(Huete et al. 2002) was obtained for these 9 pixels from both MODIS platforms, Terra 

and Aqua, and were provided as 16-day composites, 8 days out of synchrony with each 

other. The 0.05° resolution data is, although not the highest resolution available, 170 

suitable for extension to the regional scale analyses, and we extracted the full time 

series available at the time of processing (2000-2010). The 16-day composite product 

processes daily acquisitions using one of three compositing techniques (Huete et al. 

2002) to minimise problems associated with clouds and off-nadir views.  
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We discarded all EVI data not flagged as ‘good’ or ‘marginal’ quality in the 

MODIS QA scheme and linearly interpolated over missing data values. The Terra and 

Aqua products were interleaved to create a time series of nominal 8 day resolution, 

although the real acquisition dates are a combination of dates from the higher resolution 

data. A smoothed time series was created using a second order Savitzky-Golay filter 

with a window of five data points. This relatively short window minimises the problem 180 

of shifting the time series as an artefact of the filtering. 

Scatterometry data 

Scatterometry data in the form of Ku-band normalised radar cross-section (σ0) 

measurements from the SeaWinds instrument aboard QuikSCAT were obtained from 

the NASA Scatterometer Climate Record Pathfinder project (Long et al. 1993; Long 

2010). The SeaWinds instrument makes dual polarization measurements of σ0 at both 

vertical (VV, 54.1° nominal incidence angle) and horizontal (HH, 46°) polarizations 

using a conically scanning pencil-beam antenna. The Scatterometer Climate Record 

Pathfinder project provides enhanced resolution products, improving the relatively 

coarse scale (25km) of the original data using the Scatterometer Image Reconstruction 190 

(SIR) algorithm (Long et al. 1993; Spencer et al. 2000; Early and Long 2001). This 

method is based on utilising the frequent overpasses and wide swath to improve spatial 

resolution at the expense of temporal resolution, assuming no change in land surface 

properties over 4 days. The 4-day composite “egg” images were used, which have a 

nominal image pixel resolution of 4.45 km/pixel but an effective resolution of ~8-10 km 

in most areas. The images were interpolated to a 0.05° grid (~5.5 km) using Delaunay 

triangulation. Significant deviation from the “no change” assumption is expected to 
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occur only during the early part of the onset of the rainy season, where specific rain 

events will change the surface characteristics (in terms of soil moisture) over a short 

period of time. The impact will be added uncertainty when using data at highest 200 

resolution.  The data smoothing applied within the SIR algorithm is expected to 

minimise the impact of this issue.  

The σ0 data had a different signal to noise ratio and a more consistent magnitude 

of high frequency variation, compared to the EVI data. A Savitzky-Golay filter with a 

17 data point window removed the high frequency variations and again did not 

noticeably ‘shift’ the time series. Raw and smoothed data are shown in Fig 1. There 

were no missing σ0 data.  

Regional data 

For the regional analysis we used the EO products described above, acquiring the full 

data sets for the area bounded by 2° to 26° S and 10° to 41° E. Regional rainfall data 210 

from the Tropical Rainfall Measuring Mission (TRMM, Kummerow et al. 1998) were 

acquired from the NASA Goddard Earth Sciences Data and Information Services 

Center. We used the 3B42 daily product which uses a combination of infra-red and 

microwave observations scaled to match monthly rain gauge analyses (Huffman et al. 

2007). Data were obtained at 0.25° spatial resolution and linearly interpolated to 0.05°. 

Vegetation types and tree cover 

The regional phenology data were analysed by vegetation type based on the map 

of White (1983), which is based on pre-satellite era maps and expert interpretation and 

is thus independent of our EO data. We further analysed the regional phenology using 
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the 2005 MODIS vegetation continuous fields product (VCF, collection 4, version 3) 220 

(Hansen et al. 2003; Hansen et al. 2006). The 500 m product was reprojected and 

interpolated using a bicubic spline to match the 0.05° lat/long grid of the other datasets. 

We note that the tree cover data are not fully independent of the EVI time series data as 

some of the same reflectance data are used in the generation of the tree cover product, 

however the data used in the tree cover product only represent a small portion of the 

time series of EVI. 

3) Analysis methods 

Start of Season (SoS) definitions 

We developed a set of definitions and related methods to convert time series of 

data into estimates of SoS. Many definitions and techniques have been used to derive 230 

LSP SoS from reflectance data (Reed et al. 1994; Kang et al. 2003; Zhang et al. 2003; 

Archibald and Scholes 2007; Bachoo and Archibald 2007; White et al. 2009), but with 

no consensus as to the optimum technique. The challenge is to avoid spuriously classing 

noise in the signal as SoS, whist detecting SoS as accurately as possible. Here we define 

the SoS as the time point where tree leaf bud break begins. For a given time series of 

phenology data, p, the SoS must postdate or equal the annual minimum of p, pmin, and 

of course, predate the following annual maximum. Many existing approaches define 

SoS as the mid point between annual minima and maxima (Higgins et al. 2011). 

However, here we are concerned with the start of the growing season, not some mid 

point. Two such definitions were found in the literature, the first (Zhang et al. 2003) is 240 

based on fitting logistic functions to phenological transitions, but these functions did not 
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yield useable fits to our data. The second, which did work effectively, utilised a 

backward-looking moving average (by Reed et al. (1994) modified by Archibald and 

Scholes (2007)). We term the resulting start of season date SoSAS. To complement this 

definition, we developed two new ones: SoSLT which looks for the start point of the first 

significant (p>0.05) positive linear trend in p and; SoSON which looks for the first 3 

values of p to be significantly (2 SD of the noise) above the minimum. A full 

description of the three definitions is provided in Appendix 1. We also refer to p10, 

which is 10% of the maximum of p for that growing season. This value provides a 

benchmark for assessing the reliability of SoS dates, and we assume that SoS should fall 250 

between pmin and p10. 

Estimates of start of season day-of-year (SoS) are subscripted with the SoS 

definition (one of AS, LT or ON described above) and the source of the data used for the 

estimate, e.g. SoSAS,PAI indicates the SoS date from the backward-looking moving 

average derived from the PAI data,  SoSAS,EVI for the SoS defined by the same method 

from the EVI data and SoSAS,VV and SoSAS,HH for the scatterometry data in each 

polarisation. 

Comparison between ground data and EO data in Mozambique 

To assess the congruence of the time series of EVI, PAI, σ0
HH, and σ0

VV, 

correlation coefficients were determined for the relationship of each time series against 260 

the other (denoted r). We also used cross correlation analysis to look for evidence of 

lags between the data series. SoS dates were derived for all the years when data were 
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available and compared between data sources (PAI, EVI, σ0
HH and σ0

VV) and the three 

SoS definitions (LT, AS, ON). 

Results  

Local observations 

Based on the PAI, EVI and σ0 data, leaf display on the Nhambita plots had a 

seasonal cycle with little inter-annual variability. PAI peaked in February/March and 

then fell to a minimum in September/October (Fig. 1) rising directly after the minimum 

in a brevi-deciduous manner. Small rain events were observed after October each year, 270 

with the main rains arriving from Oct 17- Dec 9. 

The time series of PAI, σ0 and EVI showed good agreement (Fig 1a b c) with 

significant correlations between each data source. PAI was best correlated to EVI (r = 

0.94), and σ0
VV (r = 0.90) followed by σ0

HH (r = 0.88). The EO time series (EVI and σ0) 

were also all very well correlated to each other (all r>0.95). 

Judged by the cross-correlation coefficients, the seasonal cycle of PAI was 

shifted earlier that the LSP time series. σ0
VV lagged PAI by 10 days, σ0

HH lagged PAI by 

15 days and EVI lagged PAI by 18 days. These lags should be viewed in the context of 

the monthly time step of the PAI data. The HH polarisation always returned a higher σ0 

than the VV (a difference of around 1.4 to 1.8 dB, which is expected due to the smaller 280 

incidence angle of the HH) and the HH:VV ratio varied with the seasonal cycle from 

0.84 to 0.88, broadly in synchrony with leaf display. 

Start of season in Nhambita (Table 1), based on PAI data and the LT definition 

(SoSLT,PAI), occurred on similar dates each year:  25 Sept 2004, 21 Sept 2005, 6 Oct 
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2006 and 26 Sept 2007. The range of these dates is well within the one month resolution 

of the time series. It should be noted that in 2005, PAI data were missing near the SoS 

date. Mean SoS dates using the AS definition occurred 2 days later on average than with 

the LT definition (27 Sept±6 vs 29 Sept ±6 days). These SoS dates substantially 

preceded the point at which the time series reached 10% of its maximum each year 

(p10,PAI = 26 Oct ± 14). 290 

Mean SoS estimates ranged over 28 days for all definitions and data sources 

(Table 1). Of the definitions, LT was generally the earliest, followed by AS and then 

ON. The scatterometry-derived SoS were always later than the EVI or PAI SoS dates. 

The range of SoS dates between definitions was slightly greater than the difference 

caused by the different data sources, and the relative difference caused by the data 

sources were consistent across SoS definitions. SoS dates derived from scatterometry 

were more variable between years than those from EVI, with PAI data giving the most 

consistent results. 

Regional analysis 

Looking across our regional study area and using SoSEVI, AS as an example, SoS 300 

arrived earliest in Angola and the Congo basin, spreading south and then east into 

Zambia, Botswana, Zimbabwe and Mozambique by day of year (DOY) 275 and 

arriving last on the east cost of Tanzania and Mozambique (DOY 300-350) (Figure 2). 

The correlation between the two EO data types, EVI and σ0 varied considerably 

across the study area but was high for most areas (Fig. 2): 76% of the study area showed 

r > 0.8 and 52% had r>0.9 (r is reported at zero lag). The HH polarised scatterometry 
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data were slightly better correlated to EVI than the VV, but both polarisations showed 

very similar patterns. For the remainder of the paper we discuss only the σ0
HH results 

Locations with markedly low EVI vs σ0
HH correlation are generally areas with 

seasonally inundated floodplains of large drainage systems such as the Zambezi, 310 

sparsely vegetated areas in the SW, and the equatorial forests of the Congo basin. The 

highest correlations were found in the woodland land cover types (Table 2) and in areas 

of intermediate tree cover (Fig. 5a). The sparsely wooded savannas in the SW of 

Botswana showed lower r compared to the more tree dominated systems to the north 

and east. 

The strong correlations between scatterometry and EVI time series did not 

translate to similar SoS dates in many parts of the study area (Figure 4). Areas where 

SoS dates (mean of the three definitions) agreed well included most of the miombo 

woodlands and areas with moderate woody cover. In contrast, SoS dates diverged 

markedly in the south of the study area, including all of Botswana and most of 320 

Zimbabwe and the Zambezi valley. Vegetation types (Table 3) with a large difference in 

mean SoSEVI compared to SoSHH included Kalahari Acacia wooded grassland (mean 

difference -57 days [negative indicates SoSHH is earlier), Undifferentiated woodland (-

30), the transition between the two (-55) and Mopane woodland (-47). Dry miombo (-

11) showed better agreement as did wet miombo (-5). No major vegetation types had 

SoSHH later than SoSEVI. Areas where the SoS differed between data types by > 10 days 

were restricted to areas with < 25% tree cover (Fig 5b). In areas with tree cover > 25%, 

SoSEVI never differed from SoSHH by more than 9 days. 
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Looking in more detail at the areas where SoS dates diverged markedly, the 

times series of EO data showed an anomalous pattern (Fig 6). σ0
 fell to a minimum at 330 

the start of the dry season but started increasing up to a month before the EVI and 

before any rainfall. This feature is widespread in Botswana and Zimbabwe and causes 

the much earlier SoSHH values compared to SoSEVI.  

At the level of vegetation types, the three SoS definitions produce mean SoS 

dates that diverged by 5-12 days when using EVI data and 14-23 days using the 

scatterometry data (considering the 10 largest vegetation types). In the more wooded, 

northern part of the study area, the variability between SoS definitions exceeded the 

variability between data sources. However in the southern, sparse savanna areas, the 

previously noted large variation between EVI and σ0
- derived SoS dates greatly 

exceeded the variation between SoS definitions. The three SoS definitions produced 340 

more variable results using σ0
 compared to EVI.  

The SoS dates fell within the range pmin < SoS < p10 in >83% of pixel-years 

Table 2). No SoS dates were recorded prior to pmin for any SoS definition or data type. 

However, the ability to detect SoS prior to p10 varied considerable between definition 

and data type. Notably, the LT definition when used with EVI data, and the ON 

definition when used with scatterometry data failed to detect SoS prior to p10 in 11 and 

17% of pixel-years (Table 1). The AS definition performed best, in that it reliably 

detected SoS after pmin and before p10, with both data sources. 

Discussion 

1. How does land surface phenology derived from different EO data types 350 
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(optical and microwave) compare to ground-based estimates of canopy 

phenology? 

Our results from a woodland site in Mozambique show that Ku-band 

scatterometry and EVI data record a land surface phenology (LSP) that is closely linked 

to the canopy phenology recorded by monthly hemispherical photos. Start of season 

(SoS) dates based on scatterometry data were on average 5-11 days later than those 

derived from hemispherical photos, depending on the definition of SoS, which given the 

monthly resolution of the ground data, suggests no substantive difference. The 

scatterometry LSP was also very similar to the EVI LSP, both in terms of SoS dates (2-

11 days later, depending on SoS definition) and the correlation between time series 360 

(r>0.94). 

The close agreement between σ0 of both polarisations and EVI is expected to be 

due to several processes (Hardin and Jackson 2003), including increased soil moisture 

and green vegetation in the wet season. The green vegetation includes both grass and 

tree canopy elements, and is important due to its higher dielectric constant compared to 

dry vegetation (therefore increasing volume scattering), and the seasonal dynamics of 

chlorophyll content, growth and die-back (which influence both volume scattering and 

EVI). Soil moisture is the trigger of grass growth, which leads to greater leaf display 

(and hence EVI), and also increases surface scattering, which increases σ0 (Woodhouse 

and Hoekman 2000a; Frolking et al. 2011). 370 

To our knowledge, no previous studies have compared ground-based tree 

canopy observations to scatterometry LSP in mixed tree-grass ecosystems. However, at 

several grassland sites in South America, Hardin and Jackson (2003) concluded that 
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changes in σ0
HH and σ0

VV were largely a function of grass biomass or LAI and Frolking 

et al. (2005) showed that interannual variability in grass biomass in the USA was 

related to variability in Ku-band scatterometry. As the Mozambique site has a 

substantial grass understory (Ryan 2009), grass dynamics are likely contributing to 

seasonal variations in σ0 in our study. However, prior to the commencement of the 

rains, increases in σ0
, EVI, and PAI are observed (Fig 1). Grass biomass cannot develop 

before the start of the rainy season (Chidumayo 2001; Hoffmann et al. 2005; Archibald 380 

and Scholes 2007), but in contrast tree leaf expansion can start weeks or months before 

the rains (Frost 1996; de Bie et al. 1998; Devineau 1999; Chidumayo 2001; Simioni et 

al. 2004; Do et al. 2005 ; Archibald and Scholes 2007; Higgins et al. 2011). Changes in 

σ0
 of ~2 dB are observed prior to the onset of the rainy season, suggesting that, in 

wooded areas, tree canopy phenology drives most of the change in σ0, a conclusion that 

is supported by modelling studies (Ulaby et al. 1984). These observations, coupled with 

the close correlation between PAI (which records only tree phenology, not grass) and σ0
 

time series suggest that σ0
 is responding to the development of the tree canopy, perhaps 

with a further contribution from the grass. Ku-band scatterometry may therefore be 

useful in determining the start of the growing season for trees in miombo woodland 390 

ecosystems. 

Hardin and Jackson (2003) also found that σ0
HH was more sensitive to soil 

moisture than σ0
VV, resulting in a relationship between the difference, σ0

HH – σ0
VV, and 

rainfall/soil moisture. We have not standardised the two polarisations to a similar 

incidence angle, but still see a seasonal variation in the difference that is linked to the 

pattern of dry and wet seasons, with particularly high values in very intense rainy 
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seasons (2005 and 2007, Fig 1). However the magnitude of this variation is small (~0.2 

dB) and variations are observed outwith the rainy season (e.g. Aug 05, Aug 07 in Fig 1). 

2. In which ecosystems of southern tropical Africa are microwave - and 

optical-derived phenologies congruent and what are the characteristics of 400 

areas where the two data types diverge? 

In line with the findings at the Mozambique site, the scatterometry and EVI data were 

very well correlated (r2 >0.8), and produced similar SoS dates, across the miombo 

woodlands and in regions with >25% tree cover. Previous studies have observed a close 

link (r2 >0.57) between MODIS-estimated LAI and σ0 in some deciduous broadleaf 

forests in North America, savannas in Benin and Sudan, shrublands in Botswana and 

grasslands in N America (Frolking et al. 2006). We find similar or stronger correlations 

between EVI and σ0
 in much of Southern Tropical Africa, including all woodlands, dry 

forests, sparse savannas and grasslands. Areas where EVI and σ0 are not significantly 

correlated included seasonally inundated grasslands and areas with little seasonality 410 

(deserts and rain forests). However, in the areas that do exhibit a strong correlation, it is 

clear that r provides only a crude measure of the similarity of the LSP signals and when 

SoS dates were extracted, a much more complicated picture emerges. 

Firstly, even in areas with very high correlation (r>0.91), scatterometry-derived 

SoS was often earlier than EVI-derived SoS: by one week in wet miombo and two 

weeks in dry miombo (Table 3). This may reflect the fact that new miombo leaves are 

not normally green and new leaves increase in chlorophyll content for up to several 

weeks after bud burst (Tuohy and Choinski 1990; Choinski and Johnson 1993). Thus 

the EVI may be lower for a given leaf area than later in the season. The structural and 
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moisture-related information provided by the scatterometry may thus be decoupled from 420 

the biochemical information in the EVI reflectance data. However it may also be that 

the signal-to-noise ratio and temporal resolution of the σ0 data are better suited to earlier 

detection of SoS. In particular, the more frequent observations of σ0 make the linear 

trend method more powerful and may enable significant trends to be detected earlier 

compared to the quasi 8-day intervals between the MODIS products used here. 

Secondly, the more moderate strength of correlation (0.65 < r < 0.88) in areas of 

sparse savanna (tree cover < 25%) in the south of the study area (e.g. Mopane, Acacia 

savanna and transition woodlands) belies major discrepancies in LSP during the dry 

season and the start of the growing season (Figs 4 & 6). These discrepancies result in 

very large (20-47 days) differences in SoS dates derived from the two sources of LSP 430 

data (Fig 4). The divergence of σ0 and EVI in areas of sparse woody cover is interesting 

and we now speculate on what could cause the observed transient increase in σ0 prior to 

the rains (Fig 6). Increases in soil moisture can probably be ruled out as there is no 

rainfall recorded during the divergence event (and, although TRMM data may miss 

small rain events, we have found that in Nhambita TRMM overestimates early season 

rainfall compared to ground observations, data not shown). However as the soil dries 

out, the increased depth of penetration of the radar energy may allow it to interact with 

previously ‘hidden’ features, such as roots and impermeable pans, which may cause an 

increase in backscatter via surface scattering. Changes to the soil surface, perhaps due to 

cracking or fire might play a role, but it is difficult to envisage how these effects could 440 

be transient within the dry season. The senescence, structural changes, and changing 

moisture content of the substantial grass layer in these systems may well play a strong 
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role in altering σ0 (see above) and deserves further study. It is also possible that dry 

season fruiting or flowering in the tree canopy could increase σ0 in the transient manner 

observed, although whether the magnitude of this effect would corresponding to the ~ 

0.5 dB changes observed is questionable. Until this issue is understood, scatterometry-

derived LSP cannot be easily related to canopy phenology or other ecological 

phenomena with confidence in savannas with < 25% tree cover. 

 

3. How similar are SoS dates derived from the different data types, and how is 450 

this affected by the definition of SoS? 

The three SoS definitions produced more variable results using σ0
 compared to 

EVI. The range between the three SoS definitions was between 1 and 9 days when 

using EVI data and 15-19 days using the scatterometry data (considering the 10 most 

extensive vegetation types). In the northern part of the study area in the woodlands, the 

variability between SoS definitions exceeded the variability between data sources. 

However in the southern, sparse savanna areas, the previously noted large variation 

between EVI and σ0-derived SoS dates greatly exceeded the variation between SoS 

definitions.  

None of the SoS definitions produced SoS dates prior to pmin, but their ability to 460 

detect SoS before 10% of the season’s maximum (p10) varied both by definitions and 

data sources (Table 1). The LT definition, when used with EVI data, failed to detect 

SoS before p10 in 11% of pixel-years, whereas when used with scatterometry data, it 

only failed in this regard 5 % of the time, probably due to the power of more frequent 

observations. Conversely, the ON definition failed to detect SoS prior to p10 in 17-20% 
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of pixel-years when used with the scatterometry data, but this was reduced to 1% when 

used with EVI data. This can probably be attributed to the poorer signal to noise ratio of 

the scatterometry data. The AS method was successful in detecting SoS prior to p10 in > 

95% of pixel-years, regardless of data type, and is thus probably the most suitable for 

use with both data types, whereas the other methods were less useful with one or other 470 

of the data types. The AS method also produced intermediate SoS dates, later than LT 

but prior to ON. 

Conclusions 

• At a woodland site in central Mozambique, ground based plant area index 

measurements recorded a seasonal cycle of leaf display similar to that observed 

from scatterometry and optical remote sensing. Correlations between the data 

sources were strong (r>0.94), and start of season dates extracted from the time 

series were similar (mean difference < 11 days). 

• At a regional scale, the good agreement between QuikSCAT σ0 and MODIS EVI 

was found to extend across the woodlands of southern tropical Africa. In areas with 480 

tree cover > 25%, start of season dates estimated with EVI and scatterometry data 

never differed by > 9 days, suggesting that scatterometry data and EVI are both 

useful tools for assessing the land surface phenology in African woodland 

ecosystems. 

• In more sparsely wooded ecosystems (<25% tree cover) such as the Acacia 

woodlands and mopane, the σ0 and EVI time series diverged, with increases in σ0 in 

the dry season, months prior to EVI increases or TRMM-recorded rainfall. This 

anomalous σ0 increase resulted in much earlier start of season dates being recorded 
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from scatterometry data in comparison to EVI data (>30 days). Possible reasons for 

this difference include variations in soil moisture or soil roughness, the occurrence 490 

of tree flowering and fruiting, or grass dynamics. Further investigation of this 

phenomenon using ground-based observations and process-based modelling is 

warranted to fully understand the causes of these dry season changes in σ0. 

• Three different definitions of the start of season produced only modest differences 

in estimated start of season dates (<19 days), and produced similar results with both 

EVI and σ0 data. A backwards-looking running average method worked best with 

both σ0 and EVI data, in that it most often produced start of season dates between 

the minimum and 10% of each growing season’s maximum value of the time series. 



24 

Acknowledgements 500 

We gratefully acknowledge the NASA Scatterometer Climate Record Pathfinder 

project (www.scp.byu.edu), which provided the Resolution-enhanced SeaWinds 

backscatter data. Thanks to Meg Coates Palgrave for helpful comments and Tristan 

Quaife (NCEO and University of Exeter), Rob Clement, and Sophie Bertin (University 

of Edinburgh) for useful discussions. Fieldwork assistance from the following made this 

work possible: Envirotrade Ltd and the Nhambita community, including Piet van Zyl, 

Antonio Serra, Albasino ‘Joe’ Mucavel, Alphonso Journal, Romaio Saimone, Salomaõ 

‘Baba’ Nhangue. Special thanks to Joanne Pennie and Gary Goss.  

  



25 

Appendix 1: definitions of start of season 510 

Green up detection definitions 

All data were analysed on a per-pixel basis and in separate year-long sections 

starting from May 1. Each time series were normalised to a range of 0 -1 to avoid the 

influence of the amplitude of the time series in different ecosystems. Both raw and 

smoothed data (described in the main text) were used. pmin and p10 were estimated from 

the smoothed time series. For robustness, p10 was defined as 10% of the 95% percentile 

of the data for that year. 

1. Backwards looking running average (SoSAS) 

Archibald and Scholes (2007) defined the SoS as occurring at measurement i, 

when: 520 

!! > !!!!…!!! 

where pi is the EO quantity for measurement at time I and !!!!…!!! is the mean 

of the EO quantity of the past four observations. 

2. Linear Trend (SoSLT).  

The LT definition looks for the data point at which there is a significant, positive slope 

to the following values of p over two time periods. It fits (using linear least squares) two 

lines, starting at timepoint i and using all data points for the following tshort and tlong 

periods (default values 30 and 60 days, respectively). The slopes, sshort and slong, of the 

lines and the probabilities (Pshort and Plong) of obtaining a correlation as large as the 
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observed value by random chance were estimated using the polyfit and corrcoef 

functions of Matlab. SoSLT is indicated by all of the following being true: 530 

sshort >0, slong > 0, Pshort <Pcrit, Plong< Pcrit.  

Where the default value of Pcrit is 0.05. In addition, an extra constraint was 

added to ensure that local minima were avoided. Thus, the following must also be 

true: 

pi < pi+1 < pi+2 

3. Out of the noise (SoSON).  

This method estimates the noise (N) in the signal as the difference between the 

smoothed data (p) and the observed raw data (p*). It then defines SoS as the first point 

after pmin when n consecutive values (default n = 3) of p exceed pmin+N. SoSON occurs at 

timepoint i, when all of the following are true: 540 

p*i > pmin+N,  

p*i+1 > pmin+N,  

… 

p*i+n > pmin+N,  

Where, ! =   1.98 ∙ [!!!!!
∗]![!!!∗] !

!!!
  and n is the number of observations in 

the annual time series of raw data p* and smoothed data p. 



27 

Tables 

Table 1. Start of Season day-of-year (mean ±SD of 4 years) for a site in the miombo 
woodlands of Mozambique, estimated from both ground based hemispherical photos 550 
(PAI) and space borne optical/NIR data (EVI) and scatterometry data in two 
polarisations (σ0

VV and σ0
HH). Three different definitions of SoS are used, one based on 

the start point of a linear positive trend in the time series (LT), a backward looking 
moving average (AS), another based on the first significant difference from the 
minimum (ON). 
 
Data source SoS definition 

LT AS ON 

PAI  271±6  273±6  

EVI  267±8  283±12  282±10 

σ0
VV  277±17  285±17  295±14 

σ0
HH  276±19  284±17  293±14 
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Table 2. Percentage of pixel-years when Start of Season (SoS) was detected prior to the 
time series reaching 10% of its yearly maximum (p10). Three different definitions of 560 
SoS are used, one based on the start point of a linear positive gradient in the time series 
(LT), a backward looking moving average (AS), another based on the first significant 
difference from the minimum (ON). 
 

 
Data source SoS definition 

LT AS ON 

EVI 11% 5% 1% 

σ0
HH 5% 2% 20% 

σ0
VV 4% 2% 17% 
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Table 3. Summary of phenological characteristics of the major vegetation types of 
southern tropical Africa. The ten largest vegetation types are presented, which occupy 570 
76% of the land area of the study region. 
 

 Area 
(% of 
study 
area) 

Mean Start of Season date Correlation (r) 
between EVI and σ0 

timeseries 

% tree 
cover from 
MODIS 
VCF 

 EVI data Scatterometry (HH) 
data 

Vegetation type LT AS ON LT AS ON VV-pol HH-pol 

 Wetter Zambezian 
miombo woodland  20% 

240 248 249 233 237 249 0.91 0.91 35 

 Drier Zambezian 
miombo woodland  11% 

278 279 282 259 263 275 0.91 0.91 24 

 Mosaic of lowland rain 
forest & secondary 
grassland  9% 

229 237 236 228 235 244 0.69 0.73 36 

 Colophospermum 
mopane woodland & 
scrub woodland 8% 

285 283 289 226 235 242 0.78 0.79 12 

 Undifferentiated 
woodland  6% 

273 273 279 232 240 252 0.86 0.86 19 

 Kalahari Acacia wooded 
grassland & deciduous 
bushland 5% 

276 271 279 204 212 222 0.77 0.80 2 

 East African coastal 
mosaic  5% 

293 297 295 296 304 311 0.89 0.90 28 

 Transition from 
undifferentiated woodland 
to Acacia deciduous 
bushland & wooded 
grassland. 5% 

278 275 283 212 216 227 0.78 0.81 5 

 Guineo-Congolian rain 
forest: drier types 4% 

246 258 254 258 264 274 0.31 0.30 51 

 Mosaic of dry deciduous 
forest & secondary 
grassland  4% 

264 268 272 226 228 244 0.89 0.90 15 

 

  



30 

Figures 
Figure 1. Phenology of the woodland of Nhambita, Mozambique. A) Plant area 

index of the tree canopy derived from 14 permanent sample plots. Crosses show the full 
range of dates over which each observation was obtained and the mean ± 1 standard 
error of the PAI of the 14 plots. The line shows a smoothed fit using a cubic spline. B) 
MODIS EVI for the nine 0.05° pixels that cover the plots. The crosses show the time 580 
span over which each observation is composited and the standard error of the mean of 
the nine pixels. C) QuikSCAT σ0 for the nine pixels that cover the study area. Each 4-
day observation is marked with a symbol. The lines show a filtered time series using a 
Savitzky-Golay filter with a 21 day window. D) as C) but for the difference between 
HH and VV polarisations. Two smoothed lines are shown, one (thin) with a 21 day 
window, the other (thick) with a 31 day window. E) daily rainfall from a local 
rainguage. 
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 590 
Figure 2. Map of Start of Season based on EVI data and using the using the linear trend 
definition of SoS. Areas where no SoS could be estimated are shown in grey. 
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Figure 2. Map of agreement between the EVI and scatterometry (σ0
HH) time series. The 

square of the correlation coefficient (r2) between the two time series is shown. The 
Zambezi River is marked with a thick black line, and the areas of inundated grassland 
defined by the WWF eco-regions map (Olson et al. 2001) are marked with a dashed 
black line. 600 
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Figure 4. Difference between SoS dates derived from EVI and scatterometry data 
(σ0

HH). Blue shows areas where start of season (SoS) dates estimated with scatterometry 
data are earlier than EVI-derived SoS. In these areas, the seasonal cycle of vegetation 
‘greenness’, recorded by the EVI, diverges from the seasonal cycle of biophysical 
properties of the land surface recorded by the scatterometry data. The reasons for this 
are unclear (see discussion). SoS dates are the mean of 10 years and the three 
definitions of SoS. 610 
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Figure 5a. The strength of the relationship between the EVI and backscatter time series. 
Each bar shows the mean correlation coefficient (r) between the two data sources as a 
function of tree cover for all pixels in the tree cover bins. 

 
 
 
Figure 5b. The difference between scatterometry- and EVI-derived start of season dates, 620 
as a function of tree cover. Tree cover data is from the MODIS VCF product. 
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Figure 6. Time series of EVI and σ0 for two example locations in sparsely wooded 
southern Africa. Note the excursion of σ0 in the late dry season, whilst EVI is declining 
and prior to rainfall. Such excursions result in large differences between start of season 
dates derived from the two data sets. 
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