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Abstract— Applying MIMO technology in small

wireless devices leads to closely spaced antennas,

which results in antenna mutual coupling (MC) and

highly correlated signals. In this paper, we inves-

tigate the effect of the terminal load impedance of

the antennas on the MIMO capacity in the presence

of the mutual coupling. We use a new concept of

receiving mutual impedances to model the MC ef-

fect, which has been shown to have a much better

performance than the conventional open-circuit volt-

age method in different applications of array anten-

nas. Simulation results for a 2×2 MIMO system with

half-wavelength dipoles in different scattering distri-

bution scenarios, show that in our proposed method,

an optimum value of the terminal load impedance

ZL of the antennas can be obtained to maximise the

capacity for all scattering distributions, whereas the

conventional methods need to different ZL in different

scattering scenarios.

Keywords— MIMO; compact; capacity; impedance

matching; optimization; mutual coupling; receiving

mutual impedance.

1. Introduction

Multiple-Input Multiple-Output (MIMO) wireless sys-
tems, by using multiple antennas at both transmit and
receive wireless link ends, offer a better quality of ser-
vice and a linear increase in data rate with the number
of antennas in a rich scattering environment [1]. How-
ever, integration of multiple antennas into small personal
communication devices is faced by the well-known prob-
lem of antenna mutual coupling (MC) that degrades the
MIMO communication performance. Hence, character-
ising the behaviour of antennas and the antenna mutual
coupling is necessary to determine the compact MIMO
performance [2].

Different studies have modelled the coupled received
and/or transmitted signals of MIMO array antennas
[2–9]. Most of them are based on the open-circuit volt-
age method, suggested by Gupta and Ksienski [10]. This
method characterises the mutual coupling between two
antennas by the conventional mutual impedance, which

is defined as the ratio of induced open-circuit voltage of
one antenna to the exciting terminal current of the other
antenna [10, 11]. It is shown that the conventional defi-
nition of mutual impedance is not an accurate approach
to model the MC in realistic situations [12–14]. Some
others [2] use the scattering-parameter (S-parameter) to
describe the MC among the transmitting and receiving
array antennas. In [12] it is claimed that by using this
method, only the transmitting array is properly modelled
to compensate the MC effect, and it fails to correctly
model the receiving array.

Here, we use a new concept of the mutual coupling
modeling, called receiving mutual coupling impedance
method [14–16] which has been shown to have a better
performance than the conventional method in several an-
tenna array applications such as direction finding [13,15],
adaptive nulling [17], and in magnetic resonance imag-
ing [16].

Recent works [2, 5, 7] have shown that using a simple
matching network at the receive side can give a signif-
icant improvement for MIMO performance in the pres-
ence of MC. This paper investigate the terminal load
impedance effect on MIMO capacity in the presence of
the mutual coupling effect, by using the receiving mutual
coupling impedance method.

2. Receiving Mutual Impedance Method

In the conventional method, the mutual impedance be-
tween two antennas is the ratio of the induced open-
circuit voltage of one antenna to the current supplied to
the other antenna when the first one is open-circuited
[10,11]. For instance, the mutual impedance Z12 can be
calculated as

Z12 =
Voc1

I2
|I1=0 (1)

where Voc1 is the voltage induced across the open-
circuited terminal of antenna 1 (excited one), and I2 is
the current of the terminal of antenna 2 (exciting one)
when antenna 1 is open-circuited. It is clear that the
conventional method does not model a receiving array
properly, because one antenna should be in the trans-
mitting mode and the others in the receiving mode, and
the current distribution of antennas in transmit and re-



Fig. 1: Two dipole antennas in the receiving mode.

ceive modes are different [14]. Another problem with
the conventional impedance method is that the terminal
load effect is not taken into account, whereas it affects
the antenna current distribution and subsequently the
calculated mutual impedance.

To overcome the aforementioned problems, the new re-
ceiving mutual impedance method is introduced [15]. Let
us consider a closely spaced receive array of two dipole
antennas as shown in Figure 1. Both dipoles are passive
and connected to a terminal impedance ZL. The corre-
lation coefficient of the voltage received at the antenna
terminals is affected by the mutual coupling. The voltage
across the terminal load of any of these antennas consists
of two components [15]: the voltage due to the arrived
signal alone, and the induced voltage due to the current
distribution of the other antenna. The relationship be-
tween the terminal voltages V1 and V2, and the voltages
due to the signal alone, U1 and U2, can be written as

V1 = Z12I2 + U1 (2a)
V2 = Z21I1 + U2 (2b)

where Z12 and Z21 are the mutual impedances between
the antennas, and I1 and I2 are the terminal currents
flowing through the terminal loads ZL of the antennas.
The terminal voltages and currents are related by

V1 = ZLI1 (3a)
V2 = ZLI2 (3b)

where ZL is the terminal load impedance. It should
be noted that in this new method, equations (2a) and
(2b) are different from the conventional concept and
they do not use the open-circuit voltages which require
the knowledge of self-impedance of antennas. Here, the
mutual impedance Z12 is defined as the ratio of the
induced voltage across the terminal load of antenna 1
due to the terminal current I2 flowing through the ter-
minal load of antenna 2 to this terminal current, i.e.,
Z12 = (V1 − U1)/I2. Similarly, Z21 can be defined by
changing the position of antenna 1 and antenna 2 in the
previous expression for Z12.

In this method, instead of having one antenna in trans-
mitting mode and exciting the others by the field of this
antenna, a plane wave excitation from the horizontal di-
rection in the far field is used to obtain an estimated

current distribution over all the antennas. This approxi-
mation is accurate for the signals with low elevation an-
gles related to the horizon [14,15]. Substituting (3a)-(3b)
into (2a)-(2b) results in

[
V1

V2

]
=

[
1 Z12

ZL
Z21
ZL

1

]−1 [
U1

U2

]
(4)

Thus, by having the receiving mutual impedances, and
the coupled terminal voltages of antennas, the uncoupled
terminal voltages Ui can be obtained.

3. MIMO Model

Consider a MIMO system with MT transmit and MR

receive antennas including antenna mutual coupling at
both sides, shown in Figure 2. The receive array can be
considered as a coupled MR port network with MR ter-
minals, where VR = [VR1, VR2, . . . , VRMR

]T is the vector
of terminal voltages including antenna mutual coupling,
and UR = [UR1, UR2, . . . , URMR

]T represents the termi-
nal voltages at the receive array without the mutual cou-
pling effect. Using the new concept of receiving mutual
impedances, the relation between VR and UR can be
written as

VR = Z−1
R UR (5)

where

ZR =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ZR
1,2

ZL
. . .

ZR
1,MR

ZL

ZR
2,1

ZL
1 . . .

ZR
2,MR

ZL

...
...

. . .
...

ZR
MR,1

ZL

ZR
MR,2

ZL
. . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

where ZL is the terminal load impedance of antennas,
and ZR

i,j (i, j = 1, 2, . . . , MR) is the receiving mutual
impedance between the ith and jth receiving antennas,
as defined in the previous section.

The mutual coupling in the transmit side can be taken
into account in a similar way. The terminal voltages at
the transmitting antennas with and without the mutual
coupling, denoting by VT and UT respectively, are re-
lated by

VT = Z−1
T UT (7)

where

ZT =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ZT
1,2

ZA
. . .

ZT
1,MT

ZA

ZT
2,1

ZA
1 . . .

ZT
2,MT

ZA

...
...

. . .
...

ZT
MT ,1

ZA

ZT
MT ,2

ZA
. . . 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

where ZA is the input impedance of the antennas, and
ZT

i,j (i, j = 1, 2, . . . ,MT ) is the transmitting mutual
impedance between the ith and jth transmitting anten-



Fig. 2: Block diagram of a MT × MR MIMO system with antenna mutual coupling.

nas. As an example, ZT
1,2 is defined as [18]

ZT
1,2 =

VT1

I2
|Vs1=0 (9)

It should be noted that the coupled voltage VT1|Vs1=0 is
the voltage across the antenna input impedance rather
than the open-circuit voltage as in the conventional
method [18]. Considering (5) and (7), the transmit and
receive correlation matrices (including spatial correlation
and mutual coupling) can be expressed as

RT = E{VT VH
T } = Z−1

T E{UT UH
T }(Z−1

T )H (10a)
RR = E{VRVH

R } = Z−1
R E{URUH

R }(Z−1
R )H (10b)

where E{·} is the expectation operator over all multipath
scattering directions. We note that the correlation ma-
trices of the uncoupled terminal voltages at the transmit
and receive side, denoted as E{UT UH

T } and E{URUH
R }

respectively, only take the spatial correlation into ac-
count, whereas RT and RR include the mutual coupling
as well.

For the MIMO system shown in Figure 2, the input-
output relation between UT and VR can be written as

VR = HmcUT + n (11)

where Hmc is the channel matrix including the antenna
mutual coupling, and n is the additive noise in the re-
ceiver. In the case of independent fading statistics for
the transmitter and receiver, this correlation matrix can
be created by the Kronecker product of two separated
matrices [19]. A common way to include the correlation
among the channel matrix entries is to use the Kronecker
model [19–21] as

Hmc = R1/2
R HwR1/2

T (12)

where Hw is the i.i.d. Rayleigh fading channel model,
i.e., its entries are independent, zero-mean, unit-variance
circularly symmetric complex Gaussian random variables
[22,23].

3.1 MIMO Capacity

The ergodic capacity (Mean capacity) for the MIMO sys-
tem described by (12) (when the channel is unknown at
the transmitter) is given by

C = EH

{
log2 det

[
IMR

+
ρ

MT
HmcHH

mc

]}
(13)

where ρ = PT /σ2
n is the average SNR at the receiver for

each antenna (PT is the total transmitted power).

4. Numerical Results and Discussions

In this section, we consider a 2 × 2 MIMO system of
identical dipole antennas with identical source and ter-
minal load impedances, i.e., Zs1 = Zs2 = Zs and
ZL1 = ZL2 = ZL. For the sake of simplicity, we assume
that the transmit antennas are separated far enough to
ignore the mutual coupling at the transmit side, i.e.,
VT = UT , and E{UT UH

T } = I is considered. Another
point, as is mentioned in previous works [5, 8], is that
in practical MIMO applications the voltage across the
real part of the terminal load ZL is considered as the re-
ceived signal rather than the voltage across the complex
load ZL. So, we modify the channel matrix relation in
(12) by replacing ZL with real(ZL) in the ZR definition.

The dimension of the dipole antennas are length =
λ/2, wire radius = 5 mm, at the frequency of 1800 MHz
and antenna spacing d = 0.05λ. The receiving mu-
tual impedances for different values of the terminal load
impedance ZL = RL + jXL were obtained from FEKO
software [24] based on the method described in [14].

Some recent works [5, 7, 9], by using the conventional
mutual impedance method, have investigated the effect
of the terminal load ZL on the MIMO performance. It is
shown that in the presence of the mutual coupling effect,
MIMO performance metrics (signal correlation, received
power, or capacity) can be improved by choosing a proper
ZL to optimise the desired metric.

Here, we calculate the ergodic capacity for both mu-
tual coupling models (conventional and receiving mutual
impedance methods) for different complex values of ZL.
The ergodic capacity is calculated from (13) by averaging



over 3000 realisations of Hw. Assume α be the uncoupled
terminal voltages correlation defined by

α =
E{UR1U

H
R2}√

E{UR1UH
R1}E{UR2UH

R2}
(14)

In our simulation, three different scenarios are considered
for α (and for the open-circuit voltages in the conven-
tional method ): uniform distribution, and two Lapla-
cian distribution cases with the similar amplitudes but
different phases. In the case of the uniform distribution,
α = J0(2πd/λ), where J0(·) is the zeroth-order Bessel
function of the first kind. To generalise our result to
more realistic cases, we have considered a Laplacian dis-
tribution which is described by

p(φ) = c1 exp

[
−
√

2|φ − φ0|
σ

]

where φ0 and σ are the mean and the standard deviation
of the distribution, respectively. c1 is a normalization
factor such that the integral of p(φ) over the azimuth
plane, i.e. over the interval [−180o, 180), is equal to 1.
In the Laplacian distribution case, two different sets of
(φ0, σ) = {(0o, 33.5o), (90o, 58o)} corresponding to α =
0.99� 0o and α = 0.99� 167.7o are considered. For all
scattering distribution scenario, a reference SNR of 20
dB is assumed.

For comparison, the mean capacaity surfaces of the
new method and the conventional method, in the case of
the uniform distribution, for different values of the real
and imaginary parts of the terminal load ZL = RL+jXL

are shown in Figure 3 and 4, where RL ∈ [0, 200]Ω and
XL ∈ [−50, 100]Ω. It can be seen that for any method, an
optimal ZL can be found to maximize the mean capacity.

We note that here we are looking for an optimum ter-
minal load impedance ZL that maximises the capacity
rather than the

The maximun mean capacity (bits/s/Hz) and the cor-
responding ZL(Ω) values for the uniform and Laplacian
(φ0, σ) = {(0o, 33.5o), (90o, 58o)} scattering distributions
are shown in Table 1. It is clear that by using the conven-
tional method for different scenarios of scattering distri-
bution at the receive side, different values of the terminal
load impedance ZL are needed to compensate the mu-
tual coupling effect and maximize the MIMO capacity.
The new approach uses the receiving mutual impedance
method to characterises the mutual coupling effect and
compute an optimum value of ZL for different scenarios.
It shows that, the conventional method can not model
the mutual coupling precisely, so for any case of the scat-
tering distribution, we need to find an optimum value of
ZL, and it is not a practical way.

5. Conclusion

In this paper, we investigated the effect of the terminal
load impedance ZL of the antennas on the MIMO capac-
ity by using a new method to characterise the antenna
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Fig. 3: Mean capacity based on the new receiving mutual
impedance method and uniform scattering distribution. The max
value of mean capacity is 12.4 b/s/Hz for ZL = 1 + j0.
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Fig. 4: Mean capacity based on the conventional method and uni-
form scattering distribution. The max value of mean capacity is
8.56 b/s/Hz for ZL = 45 − j15.

Table 1: Optimized mean capacity (bits/s/Hz) and the correspond-
ing ZL(Ω) values for the uniform and Laplacian (φ0,σ) scattering
distributions.

Capacity (bits/s/Hz) uniform (0o, 33.5o) (90o, 58o)

New method 12.4 12.56 12.18
Conventional method 8.56 7.54 7.73

Optimum ZL(Ω) uniform (0o, 33.5o) (90o, 58o)

New method 1 + j0 1 + j0 1 + j0
Conventional method 45 − j15 50 − j20 45 − j20

mutual coupling in compact MIMO systems. We consid-
ered different scenarios for the scattering distribution at
the receive side. The results showed that by using this
new method, an optimum value of ZL can be obtained
to maximise the capacity for different scattering distri-
bution scenarios, whereas the conventional methods need
to different ZL in different cases.
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