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ABSTRACT 

A shallow planar layer of liquid bounded from above by gas is set into motion via the 

thermocapillary effect resulting from a thermal gradient applied along its interface. 

Depending on the physical properties of the liquid and the strength of the gradient, the system 

is prone to departure from its equilibrium state and to the consequent development of an 

oscillatory regime. This problem is numerically investigated for the first time by means of 

two-phase direct numerical simulations fully taking into account the presence of a deformable 

interface. Obliquely-travelling hydrothermal waves (HTWs), similar to those first described 

by Smith and Davis (1983) [Smith, M.K. and S.H. Davis, Instabilities of Dynamic 

Thermocapillary Liquid Layers .1. Convective Instabilities. Journal of Fluid Mechanics, 

1983. 132(Jul): p. 119-144], are reported presenting good agreement with linear stability 

theory and experiments. The non-linear spatio-temporal growth of the instabilities is 

discussed extensively along with the final bulk flow for both the liquid and gas phases. Our 

study reveals the presence of interface deformations which accompany the HTWs pattern 

with a certain time-delay. The local heat fluxes are found to be significantly affected by the 

transient nature of the HTWs, contradicting the results of previous single-phase studies. 

  
                                                 
a) Corresponding author: prashant.valluri@ed.ac.uk 
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I. INTRODUCTION 

At the beginning of the twentieth century, Bénard [1] performed a series of experiments 

in which a horizontal liquid layer was subjected to a vertical temperature gradient and found 

regular cellular convection patterns (Bénard cells). Motivated by Bénard’s results, Rayleigh 

[2] completed a fundamental theoretical study focusing on instabilities of liquid layers due to 

buoyancy. Pearson [3] examined drying paint films and pointed out the presence of steady 

convective cells of similar to those observed by Bénard even when the free surface was 

inverted  (and, therefore, the gravity vector was effectively reversed). Since the instabilities 

seemed to be unaffected by the direction of gravitational field, Pearson concluded that these 

patterns could not be explained by means of density gradients and proposed surface tension 

gradients as the principal driving force, i.e. the Marangoni effect. Following a similar 

approach to that performed by Lord Rayleigh, Pearson carried out a linear stability analysis 

on a horizontal liquid layer of depth 𝑑 subjected to the vertical temperature gradient resulting 

from the supply of heat to the lower plate. He regarded surface tension 𝜎  as a linearly 

decreasing function of temperature, 𝛾 = −𝜕𝜎 𝜕𝑇⁄ , ignored the effects of the gas phase, 

assumed a fixed non-deformable interface and isolated capillary convection from buoyancy 

by neglecting gravity. Pearson expressed the critical conditions for the onset of convective 

instabilities by means of the Marangoni number 𝑀𝑎 = 𝛾𝑏𝑑2 𝜇𝛼⁄  (he referred to it as the 

generic dimensionless number 𝐵) where 𝑏 is the thermal gradient, 𝜇 is the dynamic viscosity 

and 𝛼 is the thermal diffusivity. Scriven and Sterling [4] extended Pearson’s stability analysis 

by taking into account free-surface deformations and provided a criterion to distinguish 

whether buoyancy or surface tension dominate cellular convection in liquid pools [4]. 

Smith and Davis [5, 6] employed linear theory to investigate the stability of liquid film of 

small depth for two different planar geometries whose basic-state solutions are referred to as 

the “linear-flow” solution (infinite liquid layer) and the “return-flow” solution (two-

dimensional slot). In the first part of their work [5], the authors considered the effect of three-

dimensional disturbances for a fluid with constant physical properties, and a surface tension 

linearly-dependent on temperature set into motion by a horizontal thermal gradient imposed 

along the interface. The free-surface is regarded as non-deformable, the dynamics of the gas 

phase is neglected, the liquid is bounded from below by an adiabatic rigid plane and there are 

no body forces. Heat transfer across the interface is controlled through the Biot number 

𝐵 = ℎ𝑑 𝑘⁄  where h is a heat transfer coefficient, d is the layer thickness, and k is the liquid 
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thermal conductivity. Smith and Davis [5] found two classes of thermal-convective 

instabilities, namely stationary longitudinal rolls and propagating hydrothermal waves 

(hereafter referred to as HTWs). The former type is basically the classical instability studied 

by Pearson [3] whereas the latter represents a different mode of instability. They also used the 

𝑀𝑎 number to define the onset of the instabilities and, analogously to Pearson [3], discovered 

that the most unstable case always corresponds to the adiabatic interface, i.e. 𝐵 = 0. For the 

linear-flow solution, the preferred mode consists of two HTWs propagating at angles ±𝜓 

with respect to the axis opposite to the direction of the surface flow when 𝑃𝑟 < 0.60; a 

single two-dimensional HTW propagating in parallel to the basic state flow when 0.60 <

 𝑃𝑟 < 1.60  and stationary longitudinal rolls for 𝑃𝑟 > 1.60 ; here Pr corresponds to the 

Prandtl number. In the return-flow configuration the preferred mode is always a HTW 

propagating at angles ±𝜓 with respect to the axis opposite to the direction of the surface 

flow. The angle of propagation for oblique HTWs is solely a function of Pr. 

In the second part of their investigation [6], Smith and Davis focused on a different 

family of thermocapillary instabilities, the so-called “surface-wave” instabilities, whose 

mechanism is critically connected to significant interface deformations. Since we are 

primarily interested in the HTWs, we do not go into the details of this topic and refer the 

reader to [6] for further information. An extensive review on thermocapillary instabilities was 

performed by Davis [7]. In a subsequent paper, Smith [8] described the physical mechanisms 

of the new HTW instability. At small 𝑃𝑟 numbers, the HTWs extract their energy from the 

externally-imposed horizontal temperature gradient by the streamwise flow whereas, at large 

𝑃𝑟  numbers, the energy is obtained from the flow-induced vertical temperature field by 

vertical convection [8]. It is worth highlighting the work of other authors who extended the 

theoretical study by Smith and Davis to account for buoyancy effects, namely Garr-Peters [9, 

10]; Parmentier et al. [11]; Mercier and Normand [12] and more recently Chan and Chen 

[13]. Parmentier et al. [11] confirmed the always stabilizing effect of viscosity and noticed 

that the system’s behaviour was decisively connected to the 𝑃𝑟 number. They concluded that 

it could only be guaranteed that buoyancy destabilizes the flow when 𝑃𝑟 > 2.6. However, if 

𝑃𝑟 < 0.4 , the effect is inverted and gravity tends to stabilize the system. Mercier and 

Normand [12] investigated the transition between stationary and oscillatory modes, which 

depends on the relative importance of buoyancy and capillary forces, and reported two new 

types of oscillatory modes presenting significant differences with the predictions by Smith 

and Davis [5]. Chan and Chen [13] observed a slight increment in the angle of propagation 
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when the effect of gravity is weak until a inflexion point from which the angle decreases 

steadily to zero. The phase-speed and wavelength decrease constantly as the role of gravity 

becomes more predominant. 

Numerous experimental investigations have been carried out in rectangular [14, 15] and 

annular geometries [16-18] to study thermocapillary- and buoyancy-driven instabilities but 

only few of them provide conclusive proof of the existence of HTWs predicted by Smith and 

Davis [5]. Here we only present the most relevant studies and refer the reader to Schatz and 

Neitzel [19] and Burguete et al. [15] for more detailed reviews. Riley and Neitzel [14] argued 

that, due to buoyancy and geometric effects, previous experimental studies do not provide a 

definitive proof for the existence of the HTWs. Hence, they conducted a series of 

experiments in a laterally-heated rectangular geometry, considering very thin liquid layers of 

1cSt silicone oil (𝑑 = 0.75 − 2.5 mm; 𝑃𝑟 = 13.9). They reported observing pure HTWs for 

𝑑 ≤ 1.25 mm presenting good agreement with the results from the linear theory of Smith and 

Davis [5]. Burguete et al. [15] performed similar experiments in a wider rectangular cavity 

with 0.65cSt silicone oil. They also considered a larger range of liquid heights (𝑑 = 0.5 −

10 mm) and investigated the influence of the geometrical aspect ratios. Burguete et al. [15] 

observe oblique HTWs and longitudinal stationary rolls for small (𝑑 ≤ ℎ𝑟) and large (𝑑 >

ℎ𝑟) fluid depths respectively. Within the HTW regime, for larger heights (ℎ𝑐 < 𝑑 < ℎ𝑟) the 

HTW source is a line and generally evolves towards one end of the container leaving a single 

wave, whereas for smaller heights (𝑑 < ℎ𝑐), the source looks like a point and emits a circular 

wave which becomes almost planar farther from the source in both directions [15]. The 

transition liquid depths, ℎ𝑟 and ℎ𝑐, are found to be dependent on cavity’s aspect ratio. 

With the aims of contrasting previous theoretical and experimental works as well as 

providing further characterizations of thermocapillary driven flows, HTWs have also been 

studied by means of numerical simulations. Xu and Zebib [20] conducted 2D and 3D 

numerical investigations on rectangular cavities for fluids with 1 ≤ 𝑃𝑟 ≤ 13.9 and obtained 

neutral stability diagrams. In 2D, the authors also provided results illustrating the influence of 

the driving force (𝑅𝑒) and streamwise length aspect ratio on the flow structure. In 3D, their 

attention was focused on the influence of the sidewalls which, in general, had a damping 

effect on the oscillation. Bucchignani [21] investigated numerically the flow represented by 

the experiments of Riley and Neitzel [14] on shallow silicone layers (𝑑 = 1 mm). The author 

reported temperature and velocity oscillatory perturbations consistent with the observation of  
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pure HTWs. Taking Schwabe et al. [17] as point of reference, several analogous 

investigations have been carried out on annuli [22-27] showing spiral-like HTW trains 

consistent with Smith and Davis [5], the HTW deformations result from the annular 

geometry. Some of the authors also investigate other families of instabilities found when the 

liquid depth is increased, i.e. when buoyancy becomes the leading force. The emergence of 

HTWs on a slightly different system was studied very recently by Karapetsas et al. [28] who 

considered the stability of evaporating droplets on a heated substrate. In their case the thermal 

gradient was not imposed externally but was induced by the evaporation process. The results 

of their energy analysis showed that the induced waves, which have been also reported in 

earlier experimental studies [29], are of hydrothermal nature and share exactly the same 

mechanisms as those described in Smith [8]. 

All of the aforementioned numerical studies employ a qualitatively similar methodology 

which shares the same simplifications. The authors completely ignore the gas phase above the 

liquid layer, use a single-phase model whose upper boundary is regarded as non-deformable 

(with the exception of the stability analyses by Scriven and Sterling [4], Smith and Davis [5] 

Karapetsas et al. [28]) horizontal free-surface and, if considered, model the heat transfer 

across the interface via the Biot number and the temperature jump between the free surface 

and a  reference temperature; in most cases the reference temperature is taken to be a constant 

with the exception of Mercier and Normand [12] who consider instead a profile that varies 

linearly in the streamwise direction, and Mancho and Herrero [30] who take into account the 

effect of lateral heating walls. We propose a new two-phase, numerical approach based on the 

Volume-of-Fluid method, which permits a more realistic direct numerical simulation of 

thermocapillary flows. As we explain in subsequent sections, our model solves both liquid 

and gas phases accounting for interface deformations and computes the energy exchange 

between phases based on the local conditions solely. We demonstrate the development of 

HTWs over a range of system parameters, and discuss, in detail, the associated interfacial and 

heat transfer dynamics. 

The rest of this paper is organised as follows. In section II, we provide details of the 

problem formulation and of the numerical techniques used to carry out the computations. 

Section III is devoted to the description and the discussion of our findings. We start by 

confirming the base state to then continue presenting the spatio-temporal evolution of the 

HTWs, the interface deformations induced by the instabilities and the Fourier analyses 

performed to characterize the oscillatory signals. The section concludes showing the 
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multiphase bulk flow features along with the explanation of the mechanism of heat transfer 

across the interface. Finally, the most important conclusions resulting from this investigation 

are summarized in section IV. 

II. PROBLEM STATEMENT AND FORMULATION 

A. Problem statement 

We study the two-phase thermocapillary flow for a rectangular cavity similar to that 

employed in Riley and Neitzel [14] (hereafter, referred to as RN). A sketch of the planar 

model is shown in FIG. 1. The rectangular pool of width 𝑊, length 𝐿 and total height 𝐻 is 

filled with a liquid layer of depth 𝑑, bounded from above by a gas. A rectangular coordinates 

system, (𝑥�,𝑦�, 𝑧̂), as shown in FIG. 1, is used to model the flow which is set into motion via a 

temperature gradient imposed along the interface by fixing the temperature of the end-walls 

located at 𝑥� = ± 𝐿 2⁄ . The temperature difference between walls is ∆𝑇 = 𝑇ℎ − 𝑇𝑐. The mean 

temperature (𝑇ℎ + 𝑇𝑐) 2⁄  is chosen to be the reference temperature 𝑇𝑟  at which all the 

physical properties of the fluids are measured. 

 

 
FIG. 1. Sketch of the flow geometry. 

 

Both fluids present in the system are incompressible, viscous and immiscible. The 

density, dynamic viscosity, thermal conductivity, specific heat capacity and coefficient of 

thermal expansion are respectively 𝜌𝑙, 𝜇𝑙, 𝑘𝑙, 𝑐𝑝𝑙, 𝛽𝑙 for the liquid and 𝜌𝑔, 𝜇𝑔, 𝑘𝑔, 𝑐𝑝𝑔, 𝛽𝑔 for 

the gas. The surface tension 𝜎 is assumed to be a linear function of temperature, i.e. 𝜎� = 𝜎𝑟 −
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𝛾�𝑇� − 𝑇𝑟� where 𝛾 = −𝜕𝜎� 𝜕𝑇�⁄  is the temperature coefficient of the surface tension and 𝜎𝑟 is 

the surface tension at the reference temperature 𝑇𝑟 . Evaporation of the liquid layer is 

considered to be negligible and is ignored. 

We introduce the following scalings to calculate the principal dimensionless variables 

(without carets), 

 
𝒙� = 𝑑𝒙 𝒖� =

𝛾∆𝑇
𝜇𝑙

𝒖 𝑝̂ =
𝛾∆𝑇
𝑑

𝑝 

(1) 

 
𝑇� = 𝑇 ∆𝑇 + 𝑇𝑟 𝑡̂ =

𝜇𝑙𝑑
𝛾∆𝑇

𝑡 𝜎� = 𝜎𝑟 𝜎 

where 𝒙 = (𝑥,𝑦, 𝑧) and 𝒖 = (𝑢, 𝑣,𝑤) are the coordinate and velocity vectors with respect to 

the Cartesian system of coordinates located in the centre of the domain; 𝑝, 𝑇 and 𝑡 denote the 

pressure, temperature and time, respectively. As a result of this change of variables, the 

following dimensionless parameters arise, 

 
𝑅𝑒 =

𝛾𝑑∆𝑇
𝜇𝑙𝜈𝑙

 𝐹𝑟 =
𝛾2Δ𝑇2

𝑔𝑑𝜇𝑙2
 𝑊𝑒 =

𝛾2Δ𝑇2𝑑
𝜇𝑙𝜈𝑙𝜎𝑟

 𝑃𝑟 =
𝜈𝑙
𝛼𝑙

 (2) 

Here, 𝜈𝑙 = 𝜇𝑙 𝜌𝑙⁄  and 𝛼𝑙 = 𝑘𝑙 �𝜌𝑙𝑐𝑝𝑙�⁄  are the liquid kinematic and thermal diffusivities; 

𝑔 is the gravitational acceleration and 𝑅𝑒, 𝐹𝑟, 𝑊𝑒 and 𝑃𝑟 are the Reynolds, Froude, Weber 

and Prandtl numbers, respectively. Note that in the above definition we use as characteristic 

velocity the thermocapillary velocity 𝛾∆𝑇 𝜇𝑙⁄ .  

Other important dimensionless groups that characterize non-isothermal multiphase flows 

are the dynamic Bond number 𝐵𝑜𝑑 and the Marangoni number 𝑀𝑎𝐿:  

 
𝐵𝑜𝑑 =

𝜌𝑙𝑔𝛽𝑙𝑑2

𝛾
 𝑀𝑎𝐿 =

𝛾∆𝑇𝑑
𝜇𝑙𝛼𝑙

 (3) 

The dynamic Bond number measures the relative importance of thermogravity forces 

with respect to thermocapillary forces. When 𝐵𝑜𝑑 approaches zero, thermogravity forces are 

negligible compared to surface tension forces. The Marangoni number is the parameter used 

to quantify the strength of the thermocapillary convection arising for systems with variable 
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interfacial tension. Previous works are not consistent regarding the dimensionless framework 

employed: the definition of the Marangoni number is different in almost every case, based on 

the suitability of the case considered. For the sake of consistency and enabling easier 

comparisons, we use our definition of the Marangoni number as expressed in (3) to identify 

the different cases that we study but employ the effective Marangoni number 𝑀𝑎 as defined 

by Smith and Davis [5] (hereafter, referred to as SD) to interpret the results and compare 

them with other investigations, 

 
𝑀𝑎 =

𝛾𝑑2𝑏𝑖
𝜇𝑙𝛼𝑙

 (4) 

where 𝑏𝑖 = −�𝑑𝑇� 𝑑𝑥�⁄ � is the interior or effective thermal gradient, i.e. the thermal gradient 

in the core region of the gas-liquid interface. As we shall see when we discuss the 

implications of the thermal boundary-layers at the end-walls, it is important to highlight that 

in general 𝑏𝑖 ≠ ∆𝑇 𝐿⁄ . Burguete et al. [15] experimentally investigated the extension of the 

thermal boundary-layers for different liquid depths and observed that these quantities are only 

equal in situations wherein the Marangoni effects are dominant over buoyancy. The authors 

reports differences as large as 𝑏𝑖 ≅ 0.2∆𝑇 𝐿⁄  as the liquid depth increases, which indicates 

that the use of 𝑀𝑎  to characterise the thermal forcing is only appropriate in situations 

wherein 𝑑  is small enough for buoyancy effects to be negligible. Note that 𝑀𝑎 = 𝑀𝑎𝐿 ∙

(𝑏𝑖𝑑 ∆𝑇⁄ ). For the same reason in order to compare our velocity, temperature and time values 

with those reported by SD [5], we need to multiply our values of 𝒖  and 𝑇 by (𝑀𝑎𝐿 𝑀𝑎⁄ ) to 

convert them to the SD scale, whereas 𝑡  requires multiplying by the inverse factor 

(𝑀𝑎 𝑀𝑎𝐿⁄ ). 

Since we choose the liquid as reference for the dimensional analysis, the physical 

properties of the gas are taken into account by means of the following ratios, 

Γ𝜌 =
𝜌𝑙
𝜌𝑔

 Γ𝜇 =
𝜇𝑙
𝜇𝑔

 Γ𝑘 =
𝑘𝑙
𝑘𝑔

 Γ𝑐𝑃 =
𝑐𝑝𝑙
𝑐𝑝𝑔

 Γ𝛽 =
𝛽𝑙
𝛽𝑔

 (5) 

B. Governing equations 
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In the present work, we make use of the Volume-of-Fluid (VOF) method initially 

described by Hirt and Nichols [31]. We do not attempt to explain all the details surrounding 

this technique here and, therefore, refer the reader to Scardovelli and Zaleski [32] for a 

comprehensive review of the VOF and other methods employed to simulate interfacial flows. 

This is a well-established method that has been used with success by several researchers in 

the past for the study of thermocapillary driven flows [33-35]. 

The VOF approach belongs to the class of interface-capturing methods which do not 

define the interface as a sharp boundary. Instead, the interface between the fluids is a diffuse 

region of finite thickness reconstructed by solving the advection transport of a scalar field, 

sometimes called colour function. We employ the liquid volume fraction 𝑐 defined as the 

volume of liquid phase divided by the total volume of the control volume.  

 
𝑐 = �  1, cells filled with liquid

0, cells filled with gas  (6) 

Thus, the interface is the transition region where 0 < 𝑐 < 1. The volume fraction is 

transported across the domain by the conservation equation, 

 𝜕𝑐
𝜕𝑡

+ ∇ ∙ (𝑐𝒖) = 0 (7) 

In a two-phase system only one conservation equation needs to be solved as the volume 

fraction for the gas phase is simply (1 − 𝑐). We use the one-fluid variant of the VOF method 

which treats both liquid and gas as a single fluid whose physical properties vary spatially 

according to 𝑐. This formulation allows computing both incompressible Newtonian fluids 

using the divergence-free condition (continuity equation) and a single set of momentum 

equations, 

∇ ∙ 𝒖 = 0 (8) 

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ∙ (𝜌𝒖𝒖) =
1
𝑅𝑒

[−∇𝑝 + ∇ ∙ 𝜇(∇𝒖 + ∇𝒖𝑇)] + 𝐟𝐛 +
1
𝑊𝑒

𝐟𝐬𝐯 (9) 
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where 𝒖 and 𝑝 denote the shared velocity and pressure fields and 𝜌 = 𝑐 + (1 − 𝑐) Γ𝜌⁄  and 

𝜇 = 𝑐 + (1 − 𝑐) Γ𝜇⁄  are the single-fluid volume-averaged density and viscosity. The 

volumetric forces 𝐟𝐛 and 𝐟𝐬𝐯 account for buoyancy and surface tension respectively. 

RN [14] pointed out that buoyancy in the liquid phase cannot be disregarded if one aims 

to provide a conclusive and accurate description of physically-realisable HTWs. We also 

intend to investigate the gas flow wherein the same phenomenon becomes important due to 

the irregular temperature distribution produced by the externally imposed gradient. Following 

Boussinesq’s approximation, the basic idea of our approach is to consider constant the 

density of the pure substances (𝜌𝑙 and 𝜌𝑔) everywhere in the momentum equation except for 

the gravity term, where the densities are approximated by linear functions of 𝑇 . The 

application of this approach results in the volumetric force 𝐟𝐛, 

 
𝐟𝐛 = −𝜌 �

1
𝐹𝑟

−
𝐵𝑜𝑑
𝑅𝑒

𝛽𝑇� 𝐞𝐳 (10) 

where 𝛽 = 𝑐 + (1 − 𝑐) Γ𝛽⁄  is the single-fluid coefficient of thermal expansion, 𝑇  is the 

temperature and 𝐞𝐳  is the unit vector in the vertical direction. Note that this expression 

reduces to 𝐟𝐛 = −� 1
𝐹𝑟
− 𝐵𝑜𝑑

𝑅𝑒
𝑇� 𝒆𝒛 in the bulk of the liquid (𝑐 = 1) and to 𝐟𝐛 = − 1

Γ𝜌
� 1
𝐹𝑟
−

𝐵𝑜𝑑
𝑅𝑒

1
Γ𝛽
𝑇� 𝒆𝒛 in the gas (𝑐 = 0), which in dimensional terms is 𝐟𝐛 = −�𝜌𝑙 − 𝜌𝑙𝛽𝑙�𝑇� − 𝑇𝑟��𝑔𝒆𝒛 

and 𝐟𝐛 = −�𝜌𝑔 − 𝜌𝑔𝛽𝑔�𝑇� − 𝑇𝑟��𝑔𝒆𝒛, respectively.  

Surface tension effects are incorporated in the momentum balance by means of the 

Continuum Surface Force (CSF) model formulated by Brackbill et al. [36]. Contrary to other 

sharp-interface approaches where the surface tension is a superficial force applied as a 

discrete boundary condition, the essential idea underlying the CSF model is the computation 

of the surface tension as a smoothly-varying volumetric force acting on the transition region 

between phases.  The conservation of momentum gives the classical surface tension force per 

unit of interfacial area, 𝐟𝐬𝐚, 

 𝐟𝐬𝐚 = 𝜎𝜅𝐧 + ∇s𝜎 (11) 

where 𝜎 is the surface tension; 𝜅 = −(∇𝑠 · 𝐧) denotes the interface curvature; 𝐧 = ∇𝑐 |∇𝑐|⁄  is 

the unit vector normal to the interface pointing from the gas to the liquid and ∇s= ∇ −
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𝐧(𝐧 ∙ ∇) is the gradient operator tangent to the interface. The first term in (11) represents the 

force normal to the interface proportional to the surface tension coefficient 𝜎  and the 

curvature 𝜅 (Laplace’s formula). The second term is a force tangent to the interface that arises 

only in cases in which the surface tension varies spatially giving rise to thermocapillary-

driven flows. In dimensionless form, the linear dependency between 𝜎 and  𝑇 takes the form, 

 𝜎 = 1 − 𝐶𝑎 𝑇 (12) 

where 𝐶𝑎 is the capillary number defined as 𝐶𝑎 = 𝛾∆𝑇 𝜎𝑟⁄ . The reader should note that 𝐶𝑎, 

which represents the ratio of viscous force to surface tension force, is not a new independent 

dimensionless number and can be obtained as 𝐶𝑎 = 𝑊𝑒 𝑅𝑒⁄ .  

In accordance with the CSF model, the force per unit interface area 𝐟𝐬𝐚 is converted into 

a force per unit volume 𝐟𝐬𝐯  via 𝛿 = |∇𝑐| which takes a finite value at the interface and 0 

elsewhere. 

 𝐟𝐬𝐯 = (𝜎𝜅𝐧 + ∇𝑠𝜎)𝛿 (13) 

When we employ equation (12) for the tangential term in (13), we obtain 

 𝐟𝐬𝐯 = (𝜎𝜅𝐧 − 𝐶𝑎∇𝑠𝑇)𝛿 (14) 

Substitution of equations (10) and (14) in (9) and small rearrangements in the surface-

tension term yield the final expression of the momentum equation, 

𝜕(𝜌𝒖)
𝜕𝑡

+ ∇ ∙ (𝜌𝒖𝒖) =
1
𝑅𝑒

[−∇𝑝 + ∇ ∙ 𝜇(∇𝒖 + ∇𝒖𝑇)] − 𝜌 �
1
𝐹𝑟

−
𝐵𝑜𝑑
𝑅𝑒

𝛽𝑇� 𝐞𝐳 + �
1
𝑊𝑒

𝜎𝜅𝐧 −
1
𝑅𝑒

∇𝑠𝑇� 𝛿 (15) 

 

The model is completed with the equation for the conservation of energy in its 

temperature form. Ignoring pressure and viscous dissipations, the governing equation can be 

written as follows, 

 𝜕�𝜌𝑐𝑝𝑇�
𝜕𝑡

+ ∇ ∙ �𝜌𝑐𝑝𝑇𝒖� =
1

𝑀𝑎𝐿
∇ ∙ (𝑘∇𝑇) (16) 
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where 𝑇 is the shared temperature field, 𝑘  denotes the thermal conductivity calculated by 

𝑘 = 𝑐 + (1 − 𝑐) Γ𝑘⁄  and 𝑐𝑝  is the mass-averaged heat capacity computed as 𝑐𝑝 =

𝑐+(1−𝑐) �Γ𝜌Γ𝑐𝑝�⁄
𝑐+(1−𝑐) Γ𝜌⁄

.  

The governing equations (7), (8), (15) and (16) form the set of six PDEs with six 

unknowns (𝑐,𝑢, 𝑣,𝑤, 𝑝 and 𝑇) solved numerically via the finite-volume method. Derivatives 

in diffusion terms are approximated by the centered scheme while a second-order upwind 

scheme is employed for the advection terms. The reconstruction of the interface is 

accomplished via a classical compressive differencing scheme similar to that of Ubbink [37]. 

The solution is advanced in time with the implicit second-order backward Euler method. 

Convergence at each time step is assumed when the root-mean-square (RMS) residual is 

below the target value 1 × 10−5. The timestep size is selected so that it is always smaller than 

the viscous, conductive and Maragoni timescales, i.e. ∆𝑡 < min(∆𝑥2 𝜈𝑙⁄ ;  ∆𝑥2 𝛼𝑙⁄ ;  ∆𝑥 𝑢0⁄ ). 

In all the cases presented in this work, the Marangoni timescale (O(10-3 s)) is the leading 

criterion which is logical given that thermocapillary advection is the system’s fundamental 

driving force. The Marangoni timescale also satisfies the low Courant number criterion 

necessary for the compressive differencing scheme used. The physical domain is discretized 

by means of a hexahedral mesh with the scalar variables stored in the cells centres and the 

velocities at the cell faces (staggered grid). Special attention is paid to the correct resolution 

of the thermal boundary-layers near the fixed-temperature walls. To that end, we employ a 

biased element distribution with finer resolution near the end-walls. The effects of deficiently 

resolved boundary-layers are illustrated in more detail section III.A along with the mesh 

dependency test. 

C. Boundary and initial conditions 

The rectangular domain is bounded below by a solid wall and in the streamwise direction 

by vertical fixed-temperature walls. These solid boundaries are all impermeable and the no-

slip condition is applied for the momentum equation. In dimensionless form, the domain’s 

height 𝐻 and the streamwise 𝐿 and the spanwise 𝑊 lengths are taken into account by means 

of the geometrical ratios 𝐴𝐻 = 𝐻 𝑑⁄ , 𝐴𝐿 = 𝐿 𝑑⁄  and 𝐴𝑊 = 𝑊 𝑑⁄ , respectively. Hence, we can 

express the previous conditions in mathematical notation as follows, 



13 
 

 𝒖 = (0, 0, 0) 𝑇 = ±
1
2

 at 𝑥 = ∓
𝐴𝐿
2

 (17) 

 𝒖 = (0, 0, 0) 
𝜕𝑇
𝜕𝑧

= 0 at 𝑧 = 0 (18) 

To minimize any end-effects in the spanwise direction, we employ periodic boundary 

conditions at the sidewalls (𝑦 = ±𝐴𝑊 2⁄ ). The upper surface (𝑧 = 𝐴𝐻) is assumed to be a 

constant-pressure (𝑝 = 0) open boundary which allows flow into and/or out of the domain. A 

priori unknown, the flow direction is locally calculated based on the direction of the 

surrounding velocity field. For velocity vectors pointing into the domain, the temperature of 

the gas is assumed to be at 𝑇𝑟; whereas for flows leaving the domain, zero gradient conditions 

for velocity and temperature are applied to close the boundary value problem. This open 

boundary is, therefore, a mixed Dirichlet-Neumann boundary condition.  

Initially, we start with a perfectly horizontal interface. To save computational time, we 

employ the return-flow solution presented by SD [5] as an initial condition for the liquid, 

whereas the gas starts at rest with the temperature field characteristic of pure steady-state heat 

conduction in the spanwise direction:  

 
𝒖 =

𝑐
𝐴𝐿

�
3𝑧2 − 2𝑧

4
, 0, 0� 

   

 𝑇 = −
1
𝐴𝐿

�𝑥 + 𝑐
𝑀𝑎𝐿
48𝐴𝐿

(3𝑧4 − 4𝑧3 + 1)� at 𝑡 = 0 (19) 

 𝑝 = 𝑐
3𝑥

2𝐴𝐿
    

Note that in these expressions we approximate 𝑏𝑖 ≃ ∆𝑇 𝐿⁄  because a priori we do not 

know its value due to the thermal boundary-layer effects at the end-walls.  

We can also study wettability effects by defining the contact angle on solid boundaries. 

The specified angle is then used to calculate the interface normal vector for cells contiguous 

to the walls, which is later used in the computation of both the curvature and the surface 
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tension force. For simplicity, we maintain a constant value of 90° in the present work and 

leave a more in-depth analysis of wettability effects for future studies. 

III. RESULTS AND DISCUSSION 

A. Base state 

We start our investigation of the system dynamics by considering whether a steady-state 

can be attained for the case of a thin liquid layer with 𝑃𝑟 = 13.9 and a quiescent gas. The 

geometrical domain is defined by 𝐴𝐿 = 30, 𝐴𝑊 = 50 and 𝐴𝐻 = 3. Tests were also carried 

out with 𝐴𝐻 = 6 and 4 and it was seen that the results were independent of the domain height 

from 𝐴𝐻 ≥ 3. The remaining dimensionless parameters are: 𝑅𝑒 = 755, 𝐹𝑟 = 58.2, 𝑊𝑒 =

27.1 , 𝐵𝑜𝑑 = 0.142 , 𝑀𝑎𝐿 = 10500 , Γ𝜌 = 688 , Γ𝜇 = 44.6 , Γ𝑘 = 3.85 , Γ𝑐𝑝 = 1.71  and 

Γ𝛽 = 0.4. Note that these values correspond to the same stable case studied experimentally by 

RN [14] with a 1-mm liquid layer of 1cSt Dow Corning silicone oil, normal air and ∆𝑇 =

8.16 K. SD [5] predict a critical Marangoni number 𝑀𝑎𝑐𝑆𝐷 = 295 for this configuration. We 

should bear in mind that this value has been obtained from a stability analysis that disregards 

the stabilizing effects of gravity and heat loss across the interface. RN [14] report 𝑀𝑎𝑐𝑅𝑁 =

366 for the same system but their critical value is calculated from their experimental work 

under normal gravity and with the liquid layer open to ambient air. Hence, comparison 

between 𝑀𝑎𝑐𝑆𝐷  and 𝑀𝑎𝑐𝑅𝑁  gives a quantitative evaluation of the effects of the theoretical 

simplifications on the stability of the flow. 

In the initial stages, the flow undergoes an adjustment period in which the originally 

imposed temperature gradient (∆𝑇 𝐿⁄ ) is progressively reduced by the effect of the thermal 

boundary-layers acting at the walls. Once the boundary-layers have been established 

completely, the system reaches a steady-state wherein velocity and temperature are 

essentially constant. The steady streamwise temperature profile at the interface is shown in 

FIG. 2a. At this point, the effective temperature gradient for the core region 𝑏𝑖  remains 

constant but is smaller than that initially imposed because of the evolution of the thermal 

boundary-layers at the walls. It must be noted that SD [5] did not encounter this due to their 

unbounded infinite domain. Thus, to correctly interpret our results and compare them with 

other works, we shall use 𝑏𝑖 which is obtained a posteriori. We find 𝑀𝑎 = 214 (calculated 
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from a fitted value of effective temperature gradient, 𝑏𝑖  ) which is lower than 𝑀𝑎𝑐𝑆𝐷  and 

therefore corresponds to a stable configuration whose bulk flow should be similar to the basic 

state presented in [5].  

TABLE I shows that convergence is achieved upon mesh refinement. The simulations 

are run for large number of timesteps (3 − 4 × 105) before crucial system parameters such as 

superficial velocity and effective Marangoni number, which measures the effective thermal 

gradient, are read. Due to the small relative difference in these parameters between 73𝑥 ×

121𝑦 × 59𝑧 and 61𝑥 × 101𝑦 × 49𝑧 (1.33% for 𝑢 and 2.01% for 𝑀𝑎), the latter mesh is chosen 

for further simulations. 

TABLE I: Mesh dependency test for the case presented in section A. 

Grid Surface velocity Effective gradient 

73𝑥 × 121𝑦 × 59𝑧 𝑢 = 5.6 × 10−3 𝑀𝑎 = 218 

61𝑥 × 101𝑦 × 49𝑧 1.33 % 2.01 % 

51𝑥 × 84𝑦 × 41𝑧 7.23 % 3.56 % 

43𝑥 × 70𝑦 × 34𝑧 9.42 % 5.58 % 
 

Obtaining well-resolved thermal boundary-layers is vital. FIG. 2b shows the thermal 

boundary-layer with mesh refinement. At low mesh densities, we observe that the 

temperature of the liquid right next to the hot wall drops from the fixed value, 𝑇 = 0.5. The 

opposite behaviour is detected near the cold end. This is indicative of a poorly resolved 

boundary-layer resulting in a lower effective thermal gradient at the centre. It was noted that 

for coarse resolutions, the interior gradient reaches a constant value unaffected by ∆𝑇, 

incorrectly preventing the system from going beyond the critical point and, therefore, from 

being subjected to any instability mode. The most efficient way to overcome this difficulty is 

by refining the mesh near the walls. We use 61𝑥 × 101𝑦 × 49𝑧 with a mesh refinement such 

that there are at least 6-9 computational points within the boundary regions. 
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FIG. 2. (a) Steady surface temperature distribution and (b) resolution of the thermal boundary-layer 

with 𝑃𝑟 = 13.9 , 𝑅𝑒 = 755 , 𝐹𝑟 = 58.2 , 𝑊𝑒 = 27.1 , 𝐵𝑜𝑑 = 0.142 , 𝑀𝑎𝐿 = 10500 , Γ𝜌 = 688 , Γ𝜇 = 44.6 , 

Γ𝑘 = 3.85, Γ𝑐𝑝 = 1.71 and Γ𝛽 = 0.4. The asterisks (**) denotes a uniform element distribution, i.e. no 

grid refinement near the walls.  

 

Although we compute the full 3D case, we observe that the flow is basically independent 

of the spanwise direction as expected. In FIG. 3 we compare the numerically obtained base 

state liquid streamwise velocity (FIG. 3a) and flow-induced temperature fields (FIG. 3b) with 

those from experiments [14], and those used in the stability analysis of SD [5]; this is done at 

the domain centre, 𝑦 = 0. Following RN [14], the velocity profile in FIG. 3a has been scaled 

by the interface value as opposed to the thermocapillary velocity scale. Since RN [14] do not 

report the vertical temperature distribution for their experiments, in FIG. 3b we only compare 

our results with the theory of SD [5]. The predicted steady state is thus in good agreement for 

both the velocity and the temperature fields and these results serve as a good validation of our 

code, allowing us to continue with a more thorough study of the stability characteristics and 

the dynamics of this system. 
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FIG. 3. Basic-state profiles for the liquid at (𝑥,𝑦) = (0, 0) ; (a) streamwise velocity (b) flow-induced 

temperature. The parameters are the same as in FIG. 2. 

B. Hydrothermal waves 

We now choose a liquid with 𝑃𝑟 = 0.75 and impose a temperature difference between 

the end-walls large enough to make sure that the effective thermal gradient is supercritical, 

i.e. the flow is within the unstable region. In this case, the geometrical domain is 

comparatively smaller only in the spanwise direction, 𝐴𝑊 = 15. Tests were also conducted 

with 𝐴𝑊 = 30 to ensure the independence of the results. We first focus on the case of an 

adiabatic interface studied by SD [5], and impose a specially large thermal conductivity ratio, 

Γ𝑘 = 1010, which effectively means that the gas acts as a thermal insulator. The remaining 

dimensionless parameters that define the physical system are 𝑅𝑒 = 11912 , 𝐹𝑟 = 1726 , 

𝑊𝑒 = 748, 𝐵𝑜𝑑 = 0.111, 𝑀𝑎𝐿 = 8934, Γ𝜌 = 641, Γ𝜇 = 14.3, Γ𝑐𝑝 = 2 and  Γ𝛽 = 0.4. Pure 

HTWs are only found for capillary flows in which surface tension is dominant over gravity; 

this condition is met when 𝐵𝑜𝑑 approaches zero or, in dimensional terms, when the liquid 

depth is smaller than the capillary length. Since RN [14] report HTWs for 𝐵𝑜𝑑 ≤ 0.222 and 

in the case presented here 𝐵𝑜𝑑 = 0.111, we expect to observe the same instability mode. The 

time-step size and the grid resolution are 0.823 and 101𝑥 × 61𝑦 × 49𝑧 respectively.  

1. Spatio-temporal evolution 
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The overall transient evolution of the system is analysed by recording the time history of 

the principal variables for the interface (temperature and velocity) at the mid-point 𝑃𝑜(0, 0 𝑧𝑖) 

as shown in FIG. 4, in which 𝑧𝑖 locates the interfaces. Given the deformable interface, the 

vertical location of this monitoring point, 𝑧𝑃𝑜 = 𝑧𝑖 , is part of the transient solution 

corresponding to 𝑐 = 0.5 at 𝑥𝑃𝑜 = 𝑦𝑃𝑜 = 0.  

 

 
FIG. 4. Instantaneous (a) interface temperature and (b) flow speed for the adiabatic-interface case 

with 𝑃𝑟 = 0.75, 𝑅𝑒 = 11912, 𝐹𝑟 = 1726, 𝑊𝑒 = 748, 𝐵𝑜𝑑 = 0.111, 𝑀𝑎𝐿 = 8934, Γ𝜌 = 641, Γ𝜇 = 14.3, 

Γ𝑘 = 1010 , Γ𝑐𝑝 = 2  and  Γ𝛽 = 0.4 . The monitoring point 𝑃𝑜 = (0, 0, 𝑧𝑖)  is located at the centre of 

domain on the interface. Insets showing the dynamics of the oscillatory stage are available in FIG. 

9. 

 

FIG. 4a shows the instantaneous temperature distribution at the centre of the interface. 

The capillary flow first undergoes a strong transient period (𝑡 < 105) wherein its surface 

temperature initially decays but then quickly recovers, reaching a practically steady-value 

around 𝑇 = 0.045 , slightly higher than the original. This minor deviation, 4.5% of the 

temperature difference between the end-walls, is attributed to boundary effects resulting from 

having a finite domain, is related to the adjustment from the imposed initial conditions 

presented in equation (19) to the numerically-generated ‘base state’ wherein the thermal 

boundary-layers have been established. From 𝑡 = 1.6 × 105  to 3 × 105  no noteworthy 

change is observed in the flow. At 𝑡 = 3 × 105, we introduce a small perturbation over the 

velocity and the temperature fields. The perturbations’ amplitudes are respectively 𝑢𝑃𝑜 1000⁄  

for the velocity and 10−3 , ∆𝑇 1000⁄ , for the temperature, where 𝑢𝑃𝑜  represents the flow 

speed recorded by 𝑃𝑜 at the interface. The perturbation wavelength and angle of propagation 

are those provided by SD [5] for the critical mode with Pr. In the particular case under 
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consideration, these criteria result in perturbations of amplitudes 5.1 × 10−6 (velocity) and 

10−3 (temperature), wavelength 4.18 and angle of propagation 57°. No distinguishable mode 

manifests itself until 𝑡 = 3.7 × 105, at which time the effects of the HTWs are first captured. 

The flow then enters the progressively-growing oscillatory state characteristic of an unstable 

regime.  

Similar conclusions can be drawn from the study of the instantaneous evolution of the 

velocity for the same point. FIG. 4b shows the magnitude of 𝒖 throughout the numerical 

simulation. In this case, it is more difficult to identify the same stages as those reported from 

the temperature profile. The transient period for the speed is approximately 20% of the 

thermal and it is followed by a quasi-steady state, from 𝑡 = 105 to 3 × 105, in which the 

velocity experiences small deviations from its mean value 𝑢 = 0.0051. The conversion of 

this average value to the dimensionless framework by SD [5] yields 𝑢 = 0.22 which is in 

good agreement with the superficial velocity reported by the authors, 𝑢 = 0.25. In this period 

the spanwise component of the flow velocity does not follow any dominant pattern and it is at 

least two orders of magnitude smaller than the streamwise component.  

FIG. 5a shows the interface temperature distribution at the centre of the planar geometry 

(𝑦 = 0) in the streamwise direction for  𝑡 = 5.572 × 105 . At this instant, the flow has 

already gone deep into the oscillatory phase and has reached a quasi-steady-state wherein the 

prevailing HTW mode is fully-developed throughout the liquid layer. The thermal boundary-

layer is more prominent near the cold wall where it causes a sudden temperature drop of 

approximately 0.25, double the temperature jump existing near the hot boundary. This 

difference in extension is provoked by surface flow of hot fluid being transported towards the 

cold wall due to the Marangoni effect. The temperature profile in the core region presents 

three wave-like deviations from its average linear value.  

We compute the effective thermal gradient and find 𝑀𝑎 = 211, which is higher than the 

critical value reported by SD [5],  𝑀𝑎𝑐𝑆𝐷 = 96 , for the same liquid and 𝐵 = 0 . The 

corresponding superficial temperature distribution is shown in FIG. 5b. The isotherms clearly 

resemble the shape of the HTWs presenting an oblique pattern, which is the projection of the 

HTW disturbances onto the principal 𝑥𝑧 plane. The perturbations travel from the lower-left 

(cold) towards the upper-right corner (hot) in FIG. 5b which is consistent with the results 

from stability theory that predict HTWs travelling upstream [5, 8].  
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FIG. 5. (a) Streamwise temperature distribution along the interface for 𝑦 = 0 ; (b) interface 

isotherms showing HTWs travelling from the lower-left (cold wall) to the upper-right (hot wall) 

corner. (𝑡 = 5.572 × 105). The parameters are the same as in FIG. 4. 

 

For a generic variable 𝜙, we define the local value of its disturbance 𝜙′ at the interface 

(deviation from the base state) as follows, 

 
𝜙′ = 𝜙 −

1
𝐴𝑤

� 𝜙 d𝑦
𝐴𝑊
2

−𝐴𝑊2

 (20) 

where 𝜙 = 𝑇,𝑢, 𝑣,𝑤 or 𝑧𝑖.  

The spatial growth of the instabilities is illustrated by several snapshots in FIG. 6. 

Initially, we observe a group of well-defined HTWs growing near the hot wall and 

propagating in the negative 𝑥 and 𝑦 directions (FIG. 6a). This mode is directly related to the 

most unstable mode in the linear regime predicted by SD [5] and we shall refer to this group 

of instabilities as first HTW mode. They span around 23% of 𝐿  when they reach their 

maximum size and propagate with 𝜓 = 56° with respect to the negative 𝑥-axis. Meanwhile 

the rest of the domain is subject to much weaker disturbances, which are essentially parallel 

to the 𝑥 axis. After a certain time, the amplitude of the disturbances grows and the system 

enters in the non-linear regime. The first HTW mode interacts with other unstable modes and 

this interaction results into a new front of HTWs that appears near the centre of the liquid 
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layer travelling from the lower-left to the upper-right corner of the domain (FIG. 6b). At first, 

the new HTWs grow against the first HTW mode not being strong enough to disrupt it 

significantly. However, after a while their amplitude grows and the new waves start to 

overwhelm the first as shown in FIG. 6c. Eventually, the latter perturbation mode dominates 

the former and the flow reaches an oscillatory state wherein the new HTWs fill the domain 

completely (FIG. 6d).  This new group of HTWs, termed the prevailing HTW mode, 

propagates at 𝜓 = 55° from the negative 𝑥-axis. 
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FIG. 6. Contour plots of interface temperature disturbance 𝑇′ computed at various points in time 

showing the spatio-temporal growth of the HTWs. (a) First HTW mode near the hot wall (𝑡 =

3.703 × 105); (b) prevailing HTW mode growing stronger in the centre of the domain (𝑡 = 3.991 ×

105); (c) prevailing HTW mode disrupting the first mode (𝑡 = 4.217 × 105); (d) prevailing HTW 

mode fully developed propagating towards the upper-right corner at 𝜓 = 55° with respect to the 
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negative 𝑥 axis (𝑡 = 5.572 × 105). The parameters are the same as in FIG. 4. 
HTWs can be characterized by their angle of propagation, 𝜓, overall wavenumber 𝑘 and 

phase-speed 𝑐𝑅. SD [5] obtain these parameters from their linear stability analysis. For the 

current case, the resulting values are listed in TABLE II along with those found for the first 

and prevailing HTW modes shown in FIG. 6; there is generally good agreement for both 

cases, particularly for 𝜓. 

 

TABLE II. Comparison between the HTWs predicted by SD [5] and those found in the present 

investigation for 𝑃𝑟 = 0.75 . First and prevailing modes are those shown in FIG. 6.  

(*SD’s dimensionless framework, ** This is a non-linear wave)  

 Smith and Davis [5] First HTW mode Prevailing HTW mode 

𝜓 57° 56° 55° 

𝑘 1.52 1.55 1.04** 

𝑐𝑅 0.060 0.090* 0.099* 

 

It is important to study the implications of having periodic boundary conditions in the 

spanwise direction on the growth of HTWs. Garnier et al. [18], for instance, noted this in 

their investigation with annular geometries. Periodic boundary conditions are employed to 

minimize the effects of the sidewalls but its use restricts the number of possible HTWs in the 

y-direction to an integer value. For the case under consideration, the wavenumber in the 

spanwise direction predicted by SD [5] is 𝛽 = 1.27, which corresponds to a wavelength of 

𝜆𝑦 = 4.95. The width of the domain is selected so that three of these HTWs can exist �𝐴𝑊 =

3𝜆𝑦�. The good agreement observed for the first HTW mode indicates that this group of 

waves are exactly those reported by SD. However, as the flow evolves into the non-linear 

regime, the number of waves in the spanwise direction for the prevailing mode is only two; 

the wavenumber becomes 𝑘 = 1.04 as opposed to 1.52 expected from SD. Although a priori 

conceivable, given that SD’s theory is not rigorously valid within the non-linear stage, the 

fact that only a discrete set of possible wavenumbers is possible could indicate that this 

difference might not be the same for the infinite case wherein there is no constrain derived 

from spanwise periodicity. To ensure independence from the boundary conditions and 
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domain’s width, we compute the same case with  𝐴𝑊 = 6𝜆𝑦 and observe that the number of 

waves is exactly double for both the first and the prevailing modes (FIG. 7).  

 
FIG. 7. Frist and prevailing HTW modes observed in a wider domain (𝐴𝑊 = 30) with 𝑡 = 4.169 ×

105. The rest of the parameters are the same as in FIG. 4. 
 

In addition to the detailed validation against SD as shown above, we present a brief 

summary of our comparisons against some quasi-numerical studies reported in literature. 

Parmentier   et  al. [11] carried out a stability analysis, analogous to that of SD, including the 

effect of buoyancy characterised by a Rayleigh number, 𝑅𝑎. For cases with 𝑃𝑟 = 0.1 and 

𝑃𝑟 = 1  and with 𝑅𝑎 =  23.4 , which corresponds to the case considered here, the 

wavenumber is expected to be between 𝑘~0.7  for 𝑃𝑟 = 0.1  and 𝑘~1.1  for 𝑃𝑟 = 1 

(Parmentier   et  al. do not present data for 𝑃𝑟 = 0.75). These values suggest an approximate 

wavenumber 𝑘~1 for our chosen liquid, which compares better with the prevailing mode 

than the linear SD mode. The authors also report 𝜓~80° for 𝑃𝑟 = 0.1 and 𝜓~52° for 𝑃𝑟 = 1 

resulting in an estimated value of 𝜓~60° for our liquid; this is in good agreement with the 

SD results and those presented in our paper. Garr-Peters [10] also discussed the effect of 

gravity for liquids with 0.01 ≤ 𝑃𝑟 ≤ 10, this time by means of 𝐵𝑜𝑑. As in the previous case, 

𝑘 and 𝜓 are assessed with the help of the curves available for the two closest liquids for 

which 𝑃𝑟 = 0.023 and 2.22. The wavenumber ranges from 𝑘~0.35 for 𝑃𝑟 = 0.023  to 𝑘~1 
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for 𝑃𝑟 = 2.22 with an estimated value of 𝑘~0.6 for the 𝑃𝑟 value corresponding to our case, 

whereas the angle of propagation is expected to be within the range 𝜓~64° for 𝑃𝑟 = 2.22  to 

𝜓~77° for 𝑃𝑟 = 0.023. It is important to note that, in our case, gravity plays only a very 

minor role in comparison with that of thermocapillarity. Mercier and Normand [12] only 

considered the case of 𝑃𝑟 = 7  and controlled the relative importance of buoyancy and 

thermocapillarity with the ratio 𝑊 = 𝑀𝑎/𝑅𝑎 ; here 𝑊 = 9 . Comparisons between their 

analysis and SD’s reveal a slight increment in the wavenumber and a noticeable reduction in 

the angle of propagation when the effect of gravity is weak. SD report 𝑘 = 2.58 and 𝜓 = 27° 

for 𝑃𝑟 = 7 and 𝑊 = ∞ (gravity is neglected) while, for the closest case with 𝑊 = 8, Mercier 

and Normand [12] compute 𝑘 = 2.62 and 𝜓 = 46°. Though the transition between stationary 

and oscillatory modes experimentally observed by Daviaud and Vince [38] was correctly 

reproduced, the angle of propagation; 𝜓 ≅ 80° was not. It must be noted that the cases above 

ignore the presence of full gas phase dynamics (unlike this work), and mainly deal with much 

higher 𝑃𝑟  than the focus of this work. Hence, a detailed comparison with other semi-

numerical work is not possible. We now present an in-depth analysis of the linear and non-

linear growth of the thermocapillary and interfacial instabilities. 

2. Oscillatory regime - Fourier analysis 

The instability’s growth is investigated by means of fast Fourier transforms (FFT) 

performed over the temperature 𝑇′ and interface height 𝑧𝑖′ disturbances. For the time being, 

we restrict ourselves to the prevailing HTWs. FIG. 8 shows the instantaneous evolution of the 

three most significant sinusoidal modes resulting from the FFT algorithm for the spanwise 

section across the 𝑥 = 0  plane. It should be noted that this graph has been obtained by 

carrying out a FFT at every point it time therefore allowing the transient tracking of the 

fundamental modes.  

Initially, the amplitudes of the three leading modes for both 𝑇′ and 𝑧𝑖′ is approximately 

equal (FIG. 8a-c).  This behaviour changes at the HTW’s onset, around 𝑡 = 3.7 × 105, and, 

when the flow is fully-developed, we find the HTWs are essentially coupled thermal 

perturbations and interface deformations.  



26 
 

 
FIG. 8. Instantaneous FFT analysis of the (a) temperature 𝑇′ and (c) interface height 𝑧𝑖′ disturbances 

for the spanwise section with 𝑥 = 0. Graphs (b) and (d) show a more detailed view of the HTWs’ 

growth phase. The linear growth rates are represented by 𝜔𝑇
𝐼  and 𝜔𝑇

𝐼𝐼 for 𝑇′ and by 𝜔𝑧𝐼  and 𝜔𝑧𝐼𝐼 for 𝑇′. 

The parameters are the same as in FIG. 4. 

  

Of most interest is the HTW’s growth phase shown in detail in FIG. 8b and d. The third 

mode (least relevant) has been left out for the sake of clarity. FIG. 8b and d show regions of 

linear growth for both sinusoidal modes from 𝑇′  and 𝑧𝑖′ . The actual growth rate for each 

mode is calculated by fitting exponential functions of the type 𝜑(𝑡) = 𝜑0 ∙ 𝑒𝜔𝑡 (FIG. 8b-d). 

We find that the growth rates for first and second modes are 𝜔𝑇
𝐼 = 1.4 × 10−4 and 𝜔𝑇

𝐼𝐼 =

3.23 × 10−5  for 𝑇′  and 𝜔𝑧𝐼 = 1.2 × 10−4  and 𝜔𝑧𝐼𝐼 = 2.6 × 10−5  for 𝑧𝑖′ . Calculation of their 

respective ratios yields  𝜔𝑇
𝐼 𝜔𝑇

𝐼𝐼⁄ = 4.3  and 𝜔𝑧𝐼 𝜔𝑧𝐼𝐼⁄ = 4.6  which are remarkably close 

suggesting that the temperature and interfacial waves are strongly connected. Overtones are 

enslaved to the fundamental mode. 
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The study of the HTWs’ spatial growth is continued by plotting the instantaneous 𝑇′ and 

𝑧𝑖′ at 𝑃𝑜 and at two additional monitoring points 𝑃𝑐 and 𝑃ℎ situated near the cold and hot wall 

respectively. The horizontal coordinates of these new locations are �𝑥𝑃𝑐 ,𝑦𝑃𝑐� = (13.5, 0) and 

�𝑥𝑃ℎ , 𝑦𝑃ℎ� = (−13.5, 0). We find that the HTWs do not grow uniformly in either space or 

time (FIG. 9). The prevailing HTWs are first observed in 𝑃ℎ , 𝑃𝑜  and 𝑃𝑐  at 𝑡 = 3.4 × 105 

(aprox.), 3.7 × 105 and 4.1 × 105 respectively, which confirms that the HTWs spatially grow 

in the opposite direction to that they propagate. Towards the hot wall both the disturbance 

growth rate and its final amplitude are larger. FIG. 9b shows the instantaneous interface 

height disturbance at the same points revealing that the gas-liquid interface presents its 

largest deformations at the domain’s centre. From these graphs it is also clear the existence of 

a direct relationship between the growth of the HTWs and the interface deformations.  

 

 
FIG. 9. Instantaneous evolution of the (a) temperature 𝑇′ and (b) interface height 𝑧𝑖′ disturbances at 

monitoring points near the hot wall (𝑃ℎ), centre of the layer (𝑃𝑜) and near the cold wall (𝑃𝑐). The 

parameters are the same as in FIG. 4. 
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The FFT analyses of the 𝑇′signals, shown in FIG. 9a, result in the plot shown in FIG. 

10a. The temperature disturbance captured by the monitoring locations are essentially a 

sinusoidal function of frequency 𝑓 = 1.88 × 10−4. Conversion of this frequency to the SD 

dimensionless framework results in 𝑓 = 7.66 × 10−3  which is roughly half of the value 

reported by SD [5] for the critical mode, 𝑓𝑐 = 14.3 × 10−3. In all three cases, the second 

most important mode is less that 10% of the fundamental. The corresponding amplitudes are 

1.85 × 10−2 , 1.42 × 10−2  and 2.87 × 10−3  for 𝑃ℎ , 𝑃𝑜  and 𝑃𝑐  respectively which is in 

accordance with the observations made in FIG. 6d or FIG. 9, i.e. increasing HTW strength 

towards the hot end-wall. A similar plot to FIG. 10a is obtained when we compute the FFT 

for the 𝑧𝑖′ signals, FIG. 10b. In this case, the leading modes act at the same frequency but the 

strongest is found at the centre of the layer (𝑃𝑜) with an amplitude of 6.73 × 10−3 . The 

maximum interface deviation for 𝑃ℎ and 𝑃𝑐 is 2.65 × 10−3 and 1.27 × 10−3 respectively. 

 

 
FIG. 10. Frequency/amplitude diagram resulting from the Fast Fourier Transform (FFT) performed 

over the oscillatory (a) thermal disturbance 𝑇′ (b) interface-height disturbance 𝑧𝑖′ shown in FIG. 9. 

The parameters are the same as in FIG. 4. 

 

The conclusions drawn from the Fourier analysis are strengthened when we plot together 

the instantaneous 𝑇′ and 𝑧𝑖′ for one of the points (𝑃𝑜) and zoom in so we can precisely study a 

few perturbation cycles, FIG. 11. We observe that 𝑇’ and 𝑧𝑖’ are out-of-phase: a positive 

thermal perturbation is immediately followed by an interface depression after 𝑡 = 0.43𝜏. As 

it will be explained in more detail when the bulk flow is presented, the relationship between 

𝑇′ and 𝑧𝑖′ illustrated in Fig. 10 results from the Marangoni effect for liquids, like the ones 

considered in the present work, for which the surface tension is inversely dependent on 𝑇. A 
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hot spot in the interface corresponds to a location with lower surface tension than its 

surroundings which results in the liquid being dragged away from it with the subsequent local 

level depression becoming deeper. A similar effect is also observed in the case of surfactant-

driven thin-film flows in which the surface tension is a decreasing function of the surfactant 

concentration [39].  

 

  
FIG. 11. Instantaneous temperature 𝑇′ and interface height 𝑧𝑖′ disturbances at the centre of the liquid 

layer within the oscillatory stage, monitoring point 𝑃𝑜. The parameters are the same as in FIG. 4. 

 

FIG. 12 shows the interface disturbance 𝑧𝑖′  at the same instant within the oscillatory 

regime that we investigate in FIG. 5 or FIG. 6d, i.e. 𝑡 = 5.572 × 105. Comparing FIG. 12 

with FIG. 6d reveals that that the physical interface deformations follow the HTW pattern, 

travelling with the same angle of propagation 𝜓  and phase-speed 𝑐𝑅  from the lower-left 

corner (cold wall) towards the upper-right end (hot wall). Thus, we conclude that HTWs are 

not only travelling temperature perturbations but they also entail interfacial waves. 
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FIG. 12. Interface-height disturbance 𝑧𝑖′ at an instant within the oscillatory regime (same as that of 

FIG. 6d). The parameters are the same as in FIG. 4. 

3. Bulk flow 

We investigate the bulk flow within the non-linear regime for both liquid and gas phases 

by considering three vertical sections: one parallel to the yz-plane (spanwise section), another 

parallel to the xz-plane (streamwise section) and a third section perpendicular to the HTW 

front, as shown in FIG. 13, FIG. 15 and FIG. 16, respectively. These sections are slightly 

closer towards the hot boundary where the amplitude of the HTWs is larger and better 

defined. FIG. 13 shows (a) the temperature and interface-height disturbance, (b) the 

tangential velocity field and (c) the streamline plot for the spanwise section at 𝑥 = −6 and 

𝑡 = 5.572 × 105. We observe two fully-formed HTWs travelling in the positive y direction 

and an equal number of interface deformations following them, FIG. 13a. The interface 

deformations are characterised by sharp crests with wide and nearly horizontal troughs 

whereas the thermal perturbations are more sinusoidal. The wavenumber in the spanwise 

direction is 𝛽 = 0.84 which is fairly close to the critical value reported by SD [5], 𝛽𝑐 = 1.27, 

even though we are in the non-linear regime. The spatial delay between 𝑇′ and 𝑧𝑖′ follows the 

same ratios as those reported in FIG. 11. For example, from FIG. 13a one can see that the 
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delay between subsequent 𝑇′ and 𝑧𝑖′ crests is approximately 0.7 times the wavelength in the 

spanwise direction which is in agreement with the temporal delay observed in FIG. 11.  

 
FIG. 13. Spanwise section with 𝑥 = −6  and 𝑡 = 5.572 × 105 ; (a) thermal and interface-height 

perturbations and interface velocity; (b) tangential velocity; (c) streamlines; (d) isotherms. The 

parameters are the same as in FIG. 4. 

 

The spanwise bulk velocity field is presented in FIG. 13b. The average velocity in the 

gas is larger than in the liquid. At the interface the flow is being pulled due to the Marangoni 

effects towards cold spots (min 𝑇’) from both sides which causes these points to be locations 

where opposite fluid streams collide and consequently where the velocity is minimum. The 

velocity of the interface fluid travelling towards the cold spots in the negative y direction 

(opposite to the HTW propagation) is higher than in the contrary case. These velocity 

inequalities result from energy imbalances around the cold spots. More thermal energy is 
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transported from the hot spots towards their downstream cold points (negative y direction) 

than from the hot spots to their preceding cold ones. The net result is that the temperature at 

cold spots rises as the following hot spots become colder and the HTWs propagate spatially 

in the positive y. FIG. 13c shows the streamlines for both phases. Very well formed rolls 

rotating counter-clockwise are observed in the gas phase. These rolls follow the HTWs at the 

same velocity and their centre is located 0.24𝜆𝑦 and 0.11𝜆𝑦 after the points of minimum 𝑇′ 

and maximum 𝑧𝑖′ respectively, and are due to transport of momentum from the liquid phase 

through the interfacial stress. The streamline sources and sinks observed in the liquid are 

nothing but the projection of oblique rolls travel with the HTWs. These are explained in 

detail in FIG. 15 and FIG. 16. 

 

 
FIG. 14. Streamlines at 𝑡 = 3.703 × 105 for a spanwise plane with 𝑥 = −10. The point in time is the 

same as in FIG. 6a; the HTWs propagate towards the negative y direction. The parameters are the 

same as in FIG. 4. 

 

FIG. 14 shows the spanwise streamlines for the first HTW mode found at 𝑡 = 3.703 ×

105 (FIG. 6a). This mode exists for a relatively long period of time and then is suppressed by 

the prevailing disturbance at later times; however, it bears similarities to the prevailing HTW. 

Here, we observe three pairs of counter-rotating rolls in the gas travelling with the HTWs. As 

the simulation evolves, the size of the rolls rotating in one direction grows while the gap 

available for the second set of rolls becomes smaller. The result is that one set of rolls 

remains next to the interface and the other is pushed upwards. This behaviour and the shape 

of the velocity field between rolls in FIG. 13 lead us to think that there is a second layer of 

rolls in the gas phase rotating clockwise and located between those shown in FIG. 13 at a 

higher level. The flow in the liquid phase is comparatively slower and it also presents a 

characteristic pattern composed of swirls’ pairs travelling with the HTWs (FIG. 13c). 

FIG. 15 shows a streamwise section, at y = 0, in which the HTWs travel upstream, and 

the delays between 𝑇’ and 𝑧𝑖′ signals maintain the ratios reported in FIG. 11 and FIG. 13. The 
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wavenumber in the streamwise direction is 𝛼 = 0.62, which compares well with critical 

wavenumber 𝛼𝑐 = 0.82 obtained from the linear theory by SD [5]. The interface-deformation 

profile is again formed by relatively wide valleys and narrower crests. The flow is driven by 

surface tension gradients at the interface, hence convection is stronger there.  We observe the 

same imbalance between the velocities around cold spots that leads to the HTW propagation.   

 
FIG. 15. Streamwise section across the centre of the domain 𝑦 = 0 with 𝑡 = 5.572 × 105; (a) thermal 

and interface-height perturbations and interface velocity; (b) tangential velocity field; (c) 

streamlines; (d) isotherms. The vertical dimension is scaled up by a factor of 3 with respect to x in 

(b), (c) and (d) for clarity of presentation. The parameters are the same as in FIG. 4. 

 

Moving at higher velocity than the liquid �Γ𝜇 > 1�, the gas motion presents a wavy 

pattern (FIG. 15c) resulting from the projection of the oblique rolls observed in the spanwise 
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section (FIG. 13b) onto the streamwise plane. The main stream enters the domain through the 

open boundary near the hot wall and leaves it at the cold boundary. Stagnation areas appear 

near the exit point, where the main flow collides with the solid wall. Alterations to this 

behaviour are expected for lower Γ𝑘 because buoyancy then will try to drive the gas near the 

walls in the opposite directions, i.e. buoyancy acts against interfacial convection to drive 

upwards the hot gas next to the heated boundary (the contrary case will be found near the 

cold wall). 

The analysis of the liquid phase reveals two standing rolls at (and parallel to) the vertical 

walls along with a second pair of oblique rolls, whose axes are parallel to the HTW fronts, 

propagating with the thermal disturbances towards the heated boundary. The former result 

from the inversion of the flow direction at the solid walls whereas the latter are provoked by 

the HTWs.  

The description of the flow under consideration is completed with the study of the 

section parallel to the direction of propagation across the point (𝑥,𝑦) = (−6, 0), shown in 

FIG. 16. The data reveals that the amplitude of the thermal disturbance is not constant, but 

grows in the direction of propagation form 0.0125 to 0.0235. This tendency is also reported 

by RN in their experimental investigation [14] and it is most likely to be a result of the finite 

domain. The interface-height disturbance presents the opposite behaviour with its amplitude 

falling from 0.01 to roughly 0.002. The streamline plot (FIG. 16c) shows the travelling liquid 

rolls previously reported. Their centres are located just before the coldest spots at a vertical 

coordinate equal to 2/3 of the local interface height. Note that this position coincides exactly 

with the point of zero velocity in the base state (FIG. 3a), which is not surprising given that 

the streamwise velocity field in the core region (FIG. 15b) is basically the base state (return-

flow solution) altered by a weaker periodic perturbation superposed. The rotational speed of 

the rolls rises in the direction of propagation. This is directly derived from the growth of 𝑇′ 

observed along the same path which results in larger surface tension gradients (driving force).  
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FIG. 16. Vertical section parallel to the direction of propagation across the point (𝑥,𝑦) = (−6, 0) at  

𝑡 = 5.572 × 105; (a) thermal and interface-height perturbations and interface velocity; (b) tangential 

velocity field; (c) streamlines; (d) isotherms. The parameter 𝑠  denotes the coordinate along the 

direction of propagation. The vertical dimension is scaled up by a factor of 1.5 with respect to s in 

(b), (c) and (d) for visualization purposes. The parameters are the same as in FIG. 4. 

 

C. Non-adiabatic interface 

To date, thermocapillary instabilities have been numerically investigated by means of 

single-phase models solely, wherein heat losses across the free surface are computed through 

the thermal boundary condition acting on it. In most cases, the authors use simple expressions 

where the heat flux is calculated based on the Biot number 𝐵 = ℎ𝑑/𝑘 and the temperature 

jump between the local temperature and the temperature of the bounding gas far from the free 
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surface 𝑇𝑟, i.e. 𝜕𝑇 𝜕𝑧⁄ = −𝐵 (𝑇 − 𝑇𝑟). Such expressions are again approximations required 

when the gas phase is neglected and imply that the heat-flux distribution across the liquid 

surface is essentially dictated by the streamwise temperature profile rather than by the normal 

(local) temperature gradient between the liquid at the interface and the gas right next to it. In 

our model the gas phase dynamics is completely resolved by considering continuity of 

temperature at the interface, hence we have no need for this type of assumptions. 

Furthermore, this capability allows us to investigate, for the first time, the role of the local 

heat transfer across the interface in the HTW mechanism. 

We consider the same unstable system to that previously described with the only 

difference that the gas is not a thermal insulator anymore and, therefore, heat transfer 

between phases is permitted. To that end, the conductivity ratio is reduced to a reasonable 

value, Γ𝑘 = 70 , while the remaining dimensionless groups along with the geometrical 

domain, mesh and marching time are maintained the same. To save computational time, the 

simulation is started from the results of the case previously presented at an instant after the 

adjustment period (FIG. 4). For the sake of simplicity, this instant is set as the reference 

(𝑡 = 0). 

 

 
FIG. 17. Instantaneous distribution of (a) 𝑇′ for the adiabatic and non-adiabatic interface cases; (b) 

𝑇′  and the vertical temperature gradient 𝜕𝑇 𝜕𝑧⁄  for the non-adiabatic interface case within the 

prevailing oscillatory regime; Monitoring point 𝑃𝑜. Parameters: 𝑃𝑟 = 0.75, 𝑅𝑒 = 11912, 𝐹𝑟 = 1726, 

𝑊𝑒 = 748, 𝐵𝑜𝑑 = 0.111, 𝑀𝑎𝐿 = 8934, Γ𝜌 = 641, Γ𝜇 = 14.3, Γ𝑘 = 70, Γ𝑐𝑝 = 2 and  Γ𝛽 = 0.4. 

 

FIG. 17a shows the temporal evolution of the temperature disturbance 𝑇′ at 𝑃𝑜 for both 

the adiabatic and non-adiabatic interface cases. The non-adiabatic system exhibits a similar 
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transient progress to the adiabatic case (same stages) but the prevailing HTW mode develops 

in a shorter period of time. We compute 𝑀𝑎, direction of propagation, wavenumber and 

phase-speed, and find that these parameters are essentially the same as those reported for the 

adiabatic case: 𝑀𝑎 = 210, 𝜓 = 55°, 𝑘 = 1.05 and 𝑐𝑅 = 0.098. However, FIG. 17a shows 

the heat transfer across the interface has increased the instability’s growth rate and maximum 

amplitude.  

For these observations to be consistent with previous investigations [5], which reported a 

stabilizing effect of heat loss across the free surface, the gas should warm the liquid. The 

local net heat flux between phases is given by 𝑞𝑛𝑒𝑡 = −(𝐧 ∙ 𝑘∇𝑇) , however, when the 

interface is horizontal, which is essentially our case, only the vertical component of Fourier’s 

law is relevant, i.e. 𝑞𝑛𝑒𝑡 ≈ 𝑞𝑧 = −𝑘(𝜕𝑇 𝜕𝑧⁄ ). We compute the temperature gradient at the 

interface and find that 𝜕𝑇 𝜕𝑧⁄ ≥ 0 everywhere. Thus, we can confirm that the energy indeed 

flows from the gas to the liquid. The gradient distribution is highly transient and follows the 

HTW pattern. The maximum values are observed next to the solid walls where the different 

extensions of the thermal boundaries layers for the liquid and the gas provoke the largest 

vertical temperature gradients. Our findings agree with the experimental observations by 

Schwabe et al. [17] in which the authors also report heat input to the free surface in an 

analogous annular system.  

FIG. 17b reveals the highly transient behaviour of the local heat flux across the interface. 

We observe that the maximum gradient does not coincide with the coldest locations and 

compute a temporal delay of roughly 0.35𝜏 between the hot spots and the subsequent 𝜕𝑇 𝜕𝑧⁄  

maxima. Note that these findings are again in contradiction with the results obtained with 

single-phase models which predict the largest energy fluxes at extreme-temperature locations 

(either crests or troughs depending on the choice of the 𝑇𝑟) and indicate that the disturbances 

in the temperature field provoked by the HTWs experience a delay as they propagate into the 

gas phase. FIG. 18 shows the spanwise temperature profile for interface 𝑇(𝑧𝑖) and the gas 

just above 𝑇(𝑧𝑖 + 0.3) at 𝑡 = 1.543 × 105. The plot confirms that temperature field in the 

gas is subjected to oscillatory fluctuations provoked by the HTWs. The temperature signals 

are slightly offset with the gas disturbances following the interface HTWs. This delay 

explains why the maximum heat fluxes occur between temperature crests. The amplitude of 

the temperature perturbations becomes weaker as they travel away from the interface until a 
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point where they are completely dissipated. This spatio-temporal delay leads to the 

oscillatory behaviour of the heat flux (FIG. 17b).   

 

 
FIG. 18. Spanwise section at  𝑥 = 0 showing the temperature profile for the interface 𝑇(𝑧𝑖), for the 

gas just above the interface,  𝑇(𝑧𝑖 + 0.3), and the resulting vertical gradient 𝑑𝑇/𝑑𝑧. The parameters 

are the same as in FIG. 17. 

 
 

IV. CONCLUSIONS 

The hydrothermal-wave instability first predicted by SD [5] has been investigated by 

means of two-phase direct numerical simulations of shallow liquid layers surrounded by 

saturated environments. Imposition of a horizontal temperature gradient along the interface 

between the liquid and the gas results in thermocapillary motion. We have studied this 

problem employing novel direct numerical simulations of two-phase flow and heat transfer 

based on the VOF method in 3D. Our findings show the benefits of this novel strategy 

capable of capturing interface deformations as well as solving the coupled behaviour of the 

gas phase. 

The numerical results have been validated against the original linear-stability theory by 

SD [5] and the experimental work by RN [14] concluding excellent agreement in both cases. 

Obliquely travelling HTWs have been reported for a liquid with 𝑃𝑟 = 0.75 and a gas acting 

as a thermal insulator. The HTWs’ angle of propagation, wavenumber and phase-speed have 

been computed and compared to the values predicted by SD [5] obtaining good agreement. 

We have extensively described the instability’s onset and growth revealing complex spatio-
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temporal evolution. It has been observed that unstable systems give rise to not only thermal 

disturbances on the base state (HTWs) but also induce interface deformation (physical 

waves). These physical waves follow the HTW pattern travelling with the same angle of 

propagation but with a phase-lag. We have paid special attention to the non-linear growth of 

instabilities’ by means of a Fourier analyses to investigate the relationships between the 

hydrothermal and physical waves (FIG. 8). The linear-growth regions have been identified 

for the first two fundamental sinusoidal modes in both disturbances and the actual growth 

rates have been computed by fitting exponential functions. We find that the ratios between 

the growths rate of the fundamental modes to the first overtones follow the same ratio for 

both the thermal and the physical waves, suggesting a strong link between the two and also 

that the overtones are enslaved to the fundamental mode. To the best of our knowledge, this 

is the first time that interface deformations coupled with the HTWs have been reported. 

In the third part of our work, we have described the main features of the bulk flow for 

both liquid and gas phases using the principal vertical sections, that is to say a spanwise (FIG. 

13), a streamwise (FIG. 15) and a section perpendicular to the HTWs’ front (FIG. 16). 

Convective rolls have been reported in both phases along with their coupled behaviour with 

the interface temperature and interface-height disturbances. 

Finally, we have taken advantage of our model, which solves the interfacial energy 

balance using the local conditions of both fluids, to investigate the mechanism of heat 

transfer between phases. We have proved that single-phase or the so-called one-sided 

approaches to model this phenomenon via the temperature gradient between the interface and 

a constant reference temperature (room temperature) provide imprecise results. The travelling 

nature of the HTWs leads to a delay in the propagation of thermal perturbations towards the 

gas phase which results in maximum heat fluxes not at the points of highest temperatures but 

somewhere in between. 
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