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We consider structured specifications built from flat specifications using union,

translation and hiding with their standard model-class semantics, in the context of an

arbitrary institution. We examine the alternative of sound property-oriented semantics

for such specifications, and study their relationship to model-class semantics. An exact

correspondence between the two (completeness) is not achievable in general. We show

via general results on property-oriented semantics that the semantics arising from the

standard proof system is the strongest sound and compositional property-oriented

semantics in a wide class of such semantics. We also sharpen one of the conditions that

does guarantee completeness and show that it is a necessary condition.

1. Introduction

Specification formalisms offer specification-building operations for building complex struc-
tured specifications by combining and extending simpler ones (Burstall and Goguen,
1977). Then, an understanding of a large specification is achieved via an understanding
of its components. The meaning of a specification formalism needs to be completely and
precisely defined, and this raises the question of what specifications should denote. The
ultimate role of any specification is to describe the class of behaviours that satisfy the
specification — its models, in logical terminology — and hence are to be regarded as cor-
rect for the task at hand. In algebraic specification, we represent behaviours as algebras,
abstracting away from the details of code and algorithms used to implement behaviours.
It is then natural to take the class of algebras that represent correct behaviours — its
model class — as the semantics of a specification. This view carries over to the frame-
work of an arbitrary logical system formalised as an institution (Goguen and Burstall,
1992), where algebras may be replaced by other semantic structures, as appropriate for
modelling behaviours of programs at hand.

However, while model-class semantics remains fundamental, it is vital to be able to
determine whether or not a given property is a consequence of a given specification, i.e.
holds in all of its models. This is the purpose of proof systems for consequences of struc-
tured specifications, as given for instance in (Sannella and Tarlecki, 1988). The essential



property of such a system is its soundness, which ensures that the consequences derived
from a specification do indeed hold in all of its models. Another key property is that the
proof system is compositional, so that the consequences of a structured specification are
derived from the consequences of its immediate constituents. This allows consequences of
structured specifications to be deduced in stages, with the structure of the specification
as a guide to the “shape” of the proof. Completeness holds when every property that
holds in all of the models of a specification is always derivable; this is highly desirable but
is rarely achievable in the practical context of specification formalisms that often pro-
vide means for defining the standard model of the natural numbers and other datatypes
(MacQueen and Sannella, 1985).

A proof system for consequences of structured specifications determines an alternative
“property-oriented” semantics for specifications which maps them to sets of properties
(or theories), as in the original semantics of the Clear specification language (Burstall
and Goguen, 1980), see also (Diaconescu et al., 1993). Requiring the proof system to be
sound amounts to requiring that the properties given by this semantics hold in all of the
models given by the model-class semantics. The requirement of compositionality amounts
to requiring the meaning of a structured specification in the property-oriented semantics
to depend functionally on the meanings of its immediate constituents. Completeness,
together with soundness, means that the two forms of semantics essentially coincide.

Sound and compositional property-oriented semantics are the subject of study in this
paper, which we conduct in the context of an arbitrary institution (Goguen and Burstall,
1992). We recall the standard property-oriented semantics for structured specifications
built from flat specifications using union, translation and hiding, originating from Clear
(Burstall and Goguen, 1980), with the model-class semantics given in (Sannella and Tar-
lecki, 1988). We recall existing results concerning completeness of this semantics and
its corresponding proof system, sharpening one of the conditions that guarantee com-
pleteness and showing that it is moreover a necessary condition. The semantics is only
complete when the logic in use admits interpolation, so for instance there is a “gap”
between the model class semantics and the property-oriented semantics for many-sorted
equational specifications (unless we impose strong restrictions on the algebras and mor-
phisms involved).

A new result is that the standard property-oriented semantics (and its corresponding
proof system) cannot be improved: no sound and compositional semantics can be better.
This is a consequence of a more general result we prove, concerning property-oriented
semantics for structured specifications built using any collection of specification-building
operations. Surprisingly, this result requires a mild but unexpected technical assump-
tion: that the semantics considered must not “forget” any of the axioms present in flat
specifications. We first show this under the assumption that an oracle (i.e., a complete
proof system) for semantic consequences of any set of axioms in the underlying logic is
given and used in the semantics to close the sets of properties assigned to specifications
under consequence. Then we show that this assumption may be dropped when a stronger
form of compositionality is assumed. Finally, we show how these results carry over to the
context of a sound but not necessarily complete proof system for the underlying logic,
given as an entailment system.
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2. Institutional preliminaries

Following (Goguen and Burstall, 1992) and (Sannella and Tarlecki, 1988), we abstract
away from any particular logical system and study specifications built in an arbitrary
logical system formalised as an institution.

An institution (Goguen and Burstall, 1992) INS consists of:

— a category SignINS of signatures;
— a functor SenINS : SignINS → Set, giving a set SenINS(Σ) of Σ-sentences for each

signature Σ ∈ |SignINS|;
— a functor ModINS : Signop

INS → Cat, giving a category ModINS(Σ) of Σ-models for
each signature Σ ∈ |SignINS|; and

— a family 〈|=INS,Σ ⊆ |ModINS(Σ)| × SenINS(Σ)〉Σ∈|SignINS| of satisfaction relations

such that for any signature morphism σ : Σ → Σ′ the translations ModINS(σ) of mod-
els and SenINS(σ) of sentences preserve the satisfaction relation, that is, for any ϕ ∈
SenINS(Σ) and M ′ ∈ |ModINS(Σ′)| the following satisfaction condition holds:

M ′ |=INS,Σ′ SenINS(σ)(ϕ) iff ModINS(σ)(M ′) |=INS,Σ ϕ

Examples of institutions abound. The institution EQ of equational logic has many-
sorted algebraic signatures as signatures, many-sorted algebras as models and (explic-
itly quantified) equations as sentences. The institution FOPEQ of first-order predicate
logic with equality has signatures that add predicate names to many-sorted algebraic
signatures, models that extend algebras by interpreting predicate names as relations,
and sentences that are all closed (no free variables) formulae of first-order logic with
equality. Then the institution Lω1ω extends FOPEQ by permitting infinitely countable
disjunction and conjunction in formulae. See (Sannella and Tarlecki, 2012) for detailed
definitions of these and many other institutions. We will also consider single-sorted ver-
sions of these institutions (EQss etc.) as well as versions where models are required to
have non-empty carriers of all sorts (EQne etc.).

We will freely use standard terminology, and say that a Σ-model M satisfies a Σ-
sentence ϕ, or that ϕ holds in M , whenever M |=INS,Σ ϕ. We will omit the subscript
INS, writing INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉. Similarly, the subscript Σ on the
satisfaction relations will often be omitted. For any signature morphism σ : Σ → Σ′,
the translation function Sen(σ) : Sen(Σ) → Sen(Σ′) will be denoted by σ : Sen(Σ) →
Sen(Σ′), the coimage function w.r.t. Sen(σ) by σ−1 : P(Sen(Σ′))→ P(Sen(Σ)), and the
reduct functor Mod(σ) : Mod(Σ′)→Mod(Σ) by σ : Mod(Σ′)→Mod(Σ). Thus, the
satisfaction condition may be re-stated as: M ′ |= σ(ϕ) iff M ′ σ |= ϕ.

From now on we will work with an arbitrary but fixed institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉.
For any signature Σ, the satisfaction relation extends naturally to sets of Σ-sentences

and classes of Σ-models. Namely, for any set Φ ⊆ Sen(Σ) of Σ-sentences and model
M ∈ |Mod(Σ)|, M |= Φ means M |= ϕ for all ϕ ∈ Φ. Then, for any Σ-sentence
ϕ ∈ Sen(Σ) and class M ⊆ |Mod(Σ)| of Σ-models, M |= ϕ means M |= ϕ for all
M ∈M. Finally, we will also write M |= Φ with the obvious meaning.

Given a class of Σ-modelsM⊆ |Mod(Σ)|, its theory is given by Th(M) = {ϕ ∈ Sen(Σ) |
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M |= ϕ}. Given a set of Σ-sentences Φ ⊆ Sen(Σ), the class of its models is given by
Mod(Φ) = {M ∈ |Mod(Σ)| |M |= Φ}.

For any signature Σ, a Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a set
of Σ-sentences Φ ⊆ Sen(Σ), written Φ |=Σ ϕ or simply Φ |= ϕ, if for all Σ-models
M ∈ |Mod(Σ)|, M |= ϕ whenever M |= Φ.

It is trivial to check that for any class of Σ-modelsM⊆ |Mod(Σ)|, its theory Th(M)
is closed under semantic consequence, and that if a set Φ ⊆ Sen(Σ) is closed under
semantic consequence (Φ |= ϕ implies ϕ ∈ Φ) then it is a theory of its model class. We
write ClΣ(Φ) for the closure of Φ under semantic consequence, ClΣ(Φ) = Th(Mod(Φ)).

Translation under signature morphisms preserves semantic consequence: for any σ : Σ→
Σ′, ϕ ∈ Sen(Σ) and Φ ⊆ Sen(Σ), if Φ |= ϕ then σ(Φ) |= σ(ϕ). The opposite implication
may fail in general. However, it holds for instance if the reduct σ : Mod(Σ′)→Mod(Σ)
is surjective on models, and so Φ |= ϕ iff σ(Φ) |= σ(ϕ) then. Consequently, semantic con-
sequence is (preserved and) reflected by translation under all signature morphisms that
are injective in EQne , FOPEQne and Lne

ω1ω (since in these institutions injective mor-
phisms induce surjective reduct functors).

Institutional structure is rich enough to enable a number of key features of logical
systems to be expressed. For instance, amalgamation and interpolation properties may
be captured as follows.

Consider the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

This diagram admits amalgamation if for any two models M1 ∈ |Mod(Σ1)| and M2 ∈
|Mod(Σ2)| such that M1 σ1 = M2 σ2 , there exists a unique model M ′ ∈ |Mod(Σ′)| such
that M ′ σ′2 = M1 and M ′ σ′1 = M2 (we call such M ′ the amalgamation of M1 and M2),
and similarly for model morphisms.

An institution is semi-exact if pushouts of signature morphisms always exist and admit
amalgamation (or equivalently, Mod : Signop → Cat translates them to pullbacks in
Cat). In fact, the developments below do not depend on the amalgamation properties
for model morphisms, so semi-exactness is a bit too strong for our needs. We use this
standard notion nonetheless, since we are not aware of any example of an institution of
practical importance where pushout diagrams admit amalgamation of models but not of
morphisms.

Another way to weaken the requirement of exactness is to drop uniqueness of the
amalgamation; in fact, the results below still hold if we require institutions to be weakly
semi-exact, i.e. map the pushouts considered in the category of signatures to weak pull-
backs in Cat. Again, we refrain from this possible generalisation since amalgamation,
rather than weak amalgamation, is a crucial property of “useful” logical systems that
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enables systematic combination of models (that represent programs) in architectural de-
signs (Sannella and Tarlecki, 2012).

It is well-known that EQ, FOPEQ and Lω1ω (also their single-sorted versions) are
semi-exact. But this fails for some other institutions of interest, where it is useful to
rely on a slightly more subtle notion, parameterised by additional classes of signature
morphisms.

Consider two classes H,W ⊆ |Sign| of signature morphisms.1 INS is 〈H,W〉-exact if
for any signature morphisms δ ∈ H and τ ∈ W with a common source there are δ′ ∈ H
and τ ′ ∈ W forming a pushout

·

· ·

·

@
@
@I

�
�
��

�
�
��

@
@
@I

δ τ

τ ′ δ′

that admits amalgamation; then any such pushout admits amalgamation as well.
In the following we will always assume that H andW form wide subcategories of Sign

(i.e., are closed under composition and contain all identities in Sign) and that H ⊆ W.
Consider again the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

The above diagram admits parameterised (or Craig-Robinson) interpolation if for any
Φ1 ⊆ Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ2 ∈ Sen(Σ2), whenever σ′2(Φ1) ∪ σ′1(Φ2) |= σ′1(ϕ2)
then for some Φ ⊆ Sen(Σ) such that Φ1 |= σ1(Φ) we have Φ2 ∪ σ2(Φ) |= ϕ2. Such a set
Φ will be called a set of interpolants for Φ1 and ϕ2 w.r.t. Φ2. The diagram admits Craig
interpolation if it admits parameterised interpolation with “parameter set” Φ2 = ∅.

Given classes H,W ⊆ Sign of signature morphisms, we say that INS admits param-
eterised (resp. Craig) 〈H,W〉-interpolation if for any signature morphisms δ ∈ H and
τ ∈ W with a common source there are δ′ ∈ H and τ ′ ∈ W forming a pushout

1 In the context of structured specifications — see Sect. 3 — morphisms in H will be used for hide

(hiding) while those in W will be used for with (translation).
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·

· ·

·

@
@
@I

�
�
��

�
�
��

@
@
@I

δ τ

τ ′ δ′

that admits parameterised (resp. Craig) interpolation; then any such pushout admits
parameterised (resp. Craig) interpolation as well.

The above reformulation of classical (first-order) Craig interpolation (Chang and Keisler,
1990) has its source in (Tarlecki, 1986). We resign the requirement that the interpolant
be given by a single formula, following what is more natural for instance for equational
logic, as argued in (Rodenburg, 1991) and (Diaconescu et al., 1993). It is well-known
that single-sorted first-order predicate logic with equality, FOPEQss , admits Craig as
well as parameterised interpolation. But in the many-sorted case, interpolation requires
additional assumptions on the signature morphisms involved: FOPEQ admits Craig and
parameterised 〈H,W〉-interpolation when all morphisms in H are injective on sorts, see
(Borzyszkowski, 2005).

Interpolation properties for equational logic are a bit more delicate. EQne admits
Craig 〈H,W〉-interpolation for classes H and W where all morphisms are injective, but
the restriction to non-empty carriers cannot be dropped (Roşu and Goguen, 2000), (Tar-
lecki, 2011). Parameterised 〈H,W〉-interpolation for EQne fails — a counterexample
may be extracted from Example 4.3 below, cf. Prop. 4.5 — unless injectivity and strong
“encapsulation” properties are imposed on the morphisms in H (Diaconescu, 2008).

In the framework of first-order predicate logic, it is easy to derive the (stronger) param-
eterised interpolation property from Craig interpolation. This relies on compactness and
closure of the set of first-order sentences under conjunction and implication as follows.
Consider the following commuting diagram in the category of first-order signatures

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

and assume that it admits Craig interpolation. Let Φ1 ⊆ Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ ∈
Sen(Σ2) be such that σ′2(Φ1) ∪ σ′1(Φ2) |= σ′1(ϕ). By compactness, there are finite Ψ1 ⊆
Φ1 and Ψ2 ⊆ Φ2 such that σ′2(Ψ1) ∪ σ′1(Ψ2) |= σ′1(ϕ). Then σ′2(Ψ1) |= σ′1(

∧
Ψ2⇒ϕ), and

so by the simple Craig interpolation property, we have a set Ψ of Σ-sentences such that
Ψ1 |= σ1(Ψ) and σ2(Ψ) |= (

∧
Ψ2⇒ϕ). Then also Φ1 |= σ1(Ψ) and Φ2 ∪ σ2(Ψ) |= ϕ, so Ψ

is an interpolant set for Φ1 and ϕ w.r.t. Φ2. Although this argument may be generalised
to any institution where implication and “sufficiently large” conjunction are expressible,
in general parameterised interpolation is properly stronger than Craig interpolation.

Just as in classical first-order logic, where interpolation is sometimes derived from the
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Robinson consistency theorem, or from various conservativity properties, similar rela-
tionships hold between analogous notions in the institutional framework. For instance,
we say that σ1 : Σ → Σ1 is conservative for Φ1 ⊆ Sen(Σ1)2 if Mod(σ−1

1 (ClΣ1(Φ1))) =
Mod(Φ1) σ1 , i.e., every model of the σ1-coimage of the theory generated by Φ1 has a
σ1-expansion that satisfies Φ1. Given a pushout as above, and Φ1 ⊆ Sen(Σ1), Φ2 ⊆
Sen(Σ2), ϕ2 ∈ Sen(Σ2) such that σ′2(Φ1) ∪ σ′1(Φ2) |= σ′1(ϕ2), it is easy to check that
σ−1

1 (ClΣ1(Φ1)) is a set of interpolants for Φ1 and ϕ2 w.r.t. Φ2 whenever σ1 : Σ → Σ1 is
conservative for Φ1. So, conservativity in this sense is a stronger property than parame-
terised interpolation; in fact, easy examples show that it is strictly stronger.

3. Structured specifications

As announced in Sect. 2, we will work with an arbitrary institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉
equipped with two classes H ⊆ W ⊆ Sign of signature morphisms that contain all iden-
tities and are closed under composition.

We study specifications built in INS. Whatever exactly the specifications are, and
however exactly they are written, each specification has to determine a class of programs
that correctly realise it. If the models of the institution capture (the semantics of) the
programs we want to deal with, with signatures capturing their (static) interfaces, then
the most basic semantics of a specification is given in terms of its signature and its class
of models. Consequently, we will consider a class Spec of specifications in INS with a
semantics that for each specification SP ∈ Spec defines its signature Sig [SP ] and its class
of models Mod [SP ] ⊆ |Mod(Sig [SP ])|. We will refer to specifications SP with Sig [SP ] =
Σ as Σ-specifications and write Spec(Σ) for the class of all Σ-specifications. When we want
to stress that we are dealing with specifications built in the particular institution INS,
we will write SpecINS and SpecINS(Σ) rather than just Spec and Spec(Σ), respectively.

The semantics determines an obvious notion of specification equivalence: specifications
SP1 and SP2 are equivalent, written SP1 ≡ SP2, if their semantics coincide: Sig [SP1] =
Sig [SP2] and Mod [SP1] = Mod [SP2].

The simplest specifications are presentations which simply give a set of axioms assert-
ing the required properties. We write such flat specifications as 〈Σ,Φ〉 for any Σ ∈ |Sign|
and Φ ⊆ Sen(Σ) and define their semantics in the obvious way:

Sig [〈Σ,Φ〉] = Σ

Mod [〈Σ,Φ〉] = {M ∈ |Mod(Σ)| |M |= Φ}

Following the ideas of (Burstall and Goguen, 1977) and (Burstall and Goguen, 1981),
more complex specifications are now systematically formed using a collection of specification-
building operations. This stratified way of designing specification formalisms, with a clear
separation of basic blocks given as flat specifications from specification structuring mech-
anisms which are largely independent of the underlying logic, is by now standard and

2 That is, stretching the terminology of (Goguen and Roşu, 2004) somewhat, the module

〈σ1 : Σ → Σ1,Φ1〉 is conservative
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can be usefully exploited to ensure clarity and reusability in the context of different log-
ical systems formalised as institutions. One example of a specification formalism that is
structured in this way is Casl (Bidoit and Mosses, 2004; Mosses, 2004).

We will presume that specification-building operations are “strongly typed” by speci-
fication signatures, and write

sbo : Spec(Σ1)× . . .× Spec(Σn)→ Spec(Σ)

to indicate that a specification-building operation sbo takes any specifications SP1 ∈
Spec(Σ1), . . . , SPn ∈ Spec(Σn) and yields a specification sbo(SP1, . . . ,SPn) ∈ Spec(Σ).
The meaning of such a specification-building operation is then given as a function on
classes of models:

[[sbo]] : P(|Mod(Σ1)|)× . . .× P(|Mod(Σn)|)→ P(|Mod(Σ)|)

The semantics of specifications is then given compositionally, by defining the model class
of sbo(SP1, . . . ,SPn) in terms of the model classes of SP1, . . . , SPn using [[sbo]].

Flat specifications may be viewed as constant (nullary) specification-building opera-
tions. In addition to flat specifications, we will concentrate here on three (families of) ker-
nel specification-building operations, originating from ASL (Sannella and Wirsing, 1983),
and then re-introduced in (Sannella and Tarlecki, 1988) with institution-independent
model-class semantics. These operations are also at the core of Casl, and we will use
here a notation closer to the syntax of Casl, see also (Sannella and Tarlecki, 2012).

Union: For any signature Σ, we have ∪ : Spec(Σ)×Spec(Σ)→ Spec(Σ) with [[ ∪ ]] =
( ∩ ). That is, given Σ-specifications SP1 and SP2, SP1∪SP2 is a specification with
the following semantics:

Sig [SP1 ∪ SP2] = Σ

Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2]

SP1 ∪ SP2 combines the constraints imposed by SP1 and SP2.
Translation: For any signature morphism σ : Σ→ Σ′ inW, we have with σ : Spec(Σ)→

Spec(Σ′) with [[ with σ]] = ( −1
σ ) where −1

σ is the coimage function w.r.t. the σ-
reduct of models. That is, given any Σ-specification SP , SP with σ is a specification
with the following semantics:

Sig [SP with σ] = Σ′

Mod [SP with σ] = {M ′ ∈ |Mod(Σ′)| |M ′ σ ∈ Mod [SP ]}
SP with σ changes the names in SP according to σ, also adding new components.

Hiding: For any signature morphism σ : Σ′ → Σ inH, we have hide via σ : Spec(Σ)→
Spec(Σ′) with [[ hide via σ]] = ( σ) where σ is the image function w.r.t. the σ-
reduct of models. That is, given any Σ-specification SP , SP hide via σ is a specifi-
cation with the following semantics:

Sig [SP hide via σ] = Σ′

Mod [SP hide via σ] = {M σ |M ∈ Mod [SP ]}

SP hide via σ views SP as a Σ′-specification, hiding auxiliary components.

We will write SpecUTH for the class of specifications built from flat specifications using
union of specifications over common signatures, translation along morphisms in W, and
hiding w.r.t. morphisms in H. Note that the definitions of the syntax and of the signature
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for specifications in SpecUTH do not depend on the models and satisfaction relations of
the institution involved (although they are used to determine the model-class semantics
of specifications, of course) but only on the category of signatures Sign, with indicated
classes H,W ⊆ Sign, and sentences given by the functor Sen : Sign → Set. When we
want to make this dependency and the independence from the other components of the
institution more explicit, we write SpecUTH

Sen for SpecUTH . However, in general there may
be specification-building operations that involve the model part (or satisfaction relations)
of the underlying institution even in the formulation of “syntax” — see for instance the
singleton operation used in (Sannella et al., 1992).

A specification is finitary if all the flat specifications it involves have a finite set of
axioms.

The following normal form theorem provides an important technical tool:

Theorem 3.1. If INS is 〈H,W〉-exact then any specification SP ∈ SpecUTH has an
equivalent normal form nf(SP) given as 〈Σ′,Φ′〉 hide via σ, for some Σ′ ∈ |Sign|,
σ : Sig [SP ]→ Σ′ in H, and Φ′ ⊆ Sen(Σ′). Moreover, Φ′ is finite if SP is finitary.

We omit the explicit inductive definition of nf(SP) and the proof of equivalence — such
normal form results are well-known since (Bergstra et al., 1990), with predecessor in
(Ehrig et al., 1983) and the current general version in (Borzyszkowski, 2002). Let us just
mention that (weak) 〈H,W〉-exactness of the institution considered is crucial here.

In (Goguen and Roşu, 2004), specifications of the form 〈Σ,Φ〉 hide via σ are taken
as the basic meanings of specification expressions. The above theorem shows that this
brings no loss with respect to the model-class semantics, at least for specifications built
using the operations introduced above.

4. Property-oriented semantics for structured specifications

While we view the semantics of specifications given in terms of their model classes as the
most basic, their logical consequences are obviously of prime importance.

A Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a Σ-specification SP ∈ Spec(Σ)
if Mod [SP ] |= ϕ; we write this SP |= ϕ. The set of all semantic consequences of SP , called
the theory of SP , is denoted by Th(SP), so Th(SP) = Th(Mod [SP ]), and in particular
Th(〈Σ,Φ〉) = Th(Mod [〈Σ,Φ〉]) = ClΣ(Φ).

Some authors go as far as to take the theory assigned to a specification as its mean-
ing. This goes back to Clear (Burstall and Goguen, 1980), and is the stance taken in
(Diaconescu et al., 1993). In this section and the next we will discuss this option and its
relationship with the model-class semantics defined above.

By a property-oriented semantics for specifications we mean any function T that as-
signs to each specification SP ∈ Spec a set T (SP) ⊆ Sen(Sig [SP ]) of Sig [SP ]-sentences.

The assignment Th that maps each specification SP to its theory Th(SP) is one such
semantics. In fact, this is the “best” such semantics in the sense that it captures all and
only the properties that hold in all models of the given specification. We will use it as a
yardstick to measure the “strength” and “soundness” of other such semantics.
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Here is some vocabulary to talk about properties of such semantics. Let T be a
property-oriented semantics for specifications. Then:

— T is sound if T (SP) ⊆ Th(SP) for every specification SP ∈ Spec.
— A sound T is complete if T (SP) = Th(SP) for every specification SP ∈ Spec.
— T is monotone for a specification-building operation sbo : Spec(Σ1)×. . .×Spec(Σn)→

Spec(Σ) if T (sbo(SP1, . . . ,SPn)) ⊆ T (sbo(SP ′1, . . . ,SP ′n)) for all specifications SP1,SP ′1 ∈
Spec(Σ1), . . . , SP ′n,SP ′n ∈ Spec(Σn) such that T (SP i) ⊆ T (SP ′i), for i = 1, . . . , n.

— T is compositional for a specification-building operation sbo : Spec(Σ1)×. . .×Spec(Σn)→
Spec(Σ) if T (sbo(SP1, . . . ,SPn)) = T (sbo(SP ′1, . . . ,SP ′n)) for all specifications SP1,SP ′1 ∈
Spec(Σ1), . . . , SP ′n,SP ′n ∈ Spec(Σn) such that T (SP i) = T (SP ′i), for i = 1, . . . , n.

— A sound T is closed-complete for a specification-building operation sbo : Spec(Σ1)×
. . .×Spec(Σn)→ Spec(Σ) if T (sbo(SP1, . . . ,SPn)) = Th(sbo(SP1, . . . ,SPn)) for all
SP1 ∈ Spec(Σ1), . . . , SPn ∈ Spec(Σn) such that ModSig[SPi](T (SP i)) = Mod [SP i],
i = 1, . . . , n.

— T is flat-complete if T (〈Σ,Φ〉) = ClΣ(Φ) for every signature Σ and set Φ of Σ-
sentences.

— T is extensive if Φ ⊆ T (〈Σ,Φ〉) for every signature Σ and set Φ of Σ-sentences.
— T is theory-oriented if for all specifications SP ∈ Spec, T (SP) is a theory (i.e., a set

of sentences that is closed under semantic consequence).

T is monotone (resp. compositional, closed-complete) if it is so for all specification-
building operations in use.

Soundness is the property we must insist on for any property-oriented semantics. Com-
pleteness is the goal we should aim to soundly approximate as accurately as possible.
Compositionality (implied by monotonicity) is a crucial property needed to deal with
large structured specifications in a modular way. Closed-completeness is a technical no-
tion to capture how accurate the semantics is for a given specification-building operation:
we want the semantics for a specification built using an operation to be complete at least
under the assumption that it exactly captures the model classes of the argument speci-
fications (which for theory-oriented semantics is properly stronger than completeness of
the semantics for the argument specifications). Flat-completeness is closed-completeness
for flat specifications as nullary specification-building operations. Extensiveness requires
the semantics of a flat specification to include all of its axioms. Surprisingly, this sim-
ple technical condition turns out to play a key role in the results below. Clearly, any
flat-complete semantics is extensive. We usually expect semantics to be theory-oriented:
we could in principle always close the set of properties given in one way or another un-
der semantic consequences. But this would make our analysis of the issues of dealing
with structured specifications more restrictive, and potentially dependent on the com-
pleteness of entailment used for the underlying logical system. Any (flat-complete and)
closed-complete semantics is theory-oriented. Any extensive and theory-oriented seman-
tics is flat-complete.

The semantics Th above, defined via the model-class semantics for specifications, is
sound, complete and theory-oriented. It is compositional for hiding: for any signature
morphism σ : Σ′ → Σ and Σ-specification SP , Th(SP hide via σ) = σ−1(Th(SP)) (San-
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nella and Tarlecki, 1988); note that σ−1(Φ) is a theory if Φ is a theory, by the satisfaction
condition.

A key drawback of Th is that it is not compositional for union and translation. Here
are counterexamples to illustrate this. We present these by constructing an artificial
institution in which the point is clear, but the reader is encouraged to look for analogous
situations in more standard logical systems.

Example 4.1. Consider an institution INS with exactly two signatures Σ and Σ′,
and σ : Σ → Σ′ as the only non-identity signature morphism. Let Sen(Σ) = {ϕ,ϕ′},
Sen(Σ′) = {ϕ,ϕ′, ψ1, ψ2}, with σ-translation preserving ϕ and ϕ′, and let |Mod(Σ)| =
|Mod(Σ′)| = {M1,M2}, with the identity σ-reduct. Define M1 |=Σ ϕ, M2 |=Σ ϕ,
M1 6|=Σ ϕ′, M2 6|=Σ ϕ′, and M1 |=Σ′ ϕ, M2 |=Σ′ ϕ, M1 6|=Σ′ ϕ

′, M2 6|=Σ′ ϕ
′, M1 |=Σ′ ψ1,

M2 6|=Σ′ ψ1, M1 6|=Σ′ ψ2, M2 |=Σ′ ψ2.
In Σ′, we have Mod({ψ1}) = {M1} and Mod({ψ2}) = {M2}. Let SP1 be 〈Σ′, {ψ1}〉 hide via σ

and SP2 be 〈Σ′, {ψ2}〉 hide via σ. Then Mod [SP1] = {M1} and Mod [SP2] = {M2},
yielding Th(SP1) = {ϕ} = Th(SP2). Now:

— Mod [SP1 ∪ SP2] = ∅ so Th(SP1 ∪ SP2) = {ϕ,ϕ′}, which is distinct from Th(SP2 ∪
SP2) = Th(SP2) = {ϕ}.

— Th(SP1 with σ) = {ϕ,ψ1}, which is distinct from Th(SP2 with σ) = {ϕ,ψ2}.

This shows that Th is compositional for neither union nor translation.

The lack of compositionality of Th for union and translation, as well as natural con-
sideration of proof-theoretic issues (see Sect. 7 below), led to the following standard
compositional property-oriented semantics TINS for specifications in SpecUTH

INS . This se-
mantics originates from the proof rules in (Sannella and Tarlecki, 1988), was given in
(Bergstra et al., 1990) and was used in (Diaconescu et al., 1993). Here is the inductive
definition:

TINS(〈Σ,Φ〉) = ClΣ(Φ)

TINS(SP ∪ SP ′) = ClSig[SP](TINS(SP) ∪ TINS(SP ′))

TINS(SP with σ : Sig [SP ]→ Σ) = ClΣ(σ(TINS(SP)))

TINS(SP hide via σ : Σ→ Sig [SP ]) = σ−1(TINS(SP))

Proposition 4.2. TINS is a sound theory-oriented semantics for specifications built from
flat specifications using union, translation and hiding. It is monotone, compositional,
extensive, flat-complete and closed-complete for union, translation and hiding.

Proof. Monotonicity and compositionality follow from the definitions, while soundness
requires a simple inductive proof. Closed-completeness for hiding follows from the defini-
tions and the satisfaction condition. (Soundness, monotonicity and closed-completeness
were shown in (Sannella and Tarlecki, 1988).)

The missing property is completeness — and indeed TINS is not complete, as the
following counterexample shows.
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Example 4.3. Consider the following specifications built in the institution EQ of equa-
tional logic, using a hopefully self-explanatory notation based on the syntax of Casl3:

spec SP0 = sorts s

opns a, b, c : s,

f, g : s→ s

• f(a) = b

• g(a) = c

spec SP1 = SP0 hide ops a : s

spec SP = SP1 then ∀x:s • f(x) = g(x)

This example relies on the fact that the class of models of any set of equations is closed
under subalgebras. Note that using conditional equations would not help, as this property
holds then as well.

Now, Mod [SP1] consists of all Sig [SP1]-algebras with an element on which f yields
b and g yields c. Consequently, given the axiom added in SP , SP |= b = c. However,
since any Sig [SP1]-algebra is a subalgebra of an algebra in Mod [SP1], the equational
theory Th(SP1) is trivial (i.e., generated by the empty set). Hence TINS(SP1) consists
of equational tautologies only as well, and TINS(SP) = ClSig[SP ]({∀x:s • f(x) = g(x)})
does not contain b = c.

However, under additional requirements on the underlying institution, completeness
holds.

Theorem 4.4. Suppose that INS is 〈H,W〉-exact and admits parameterised 〈H,W〉-
interpolation. Then TINS is complete for specifications built from flat specifications using
union, translation and hiding.

Proof. Assume that SP |= ϕ for a specification SP built from flat specifications using
union, translation and hiding, with Sig [SP ] = Σ and ϕ ∈ Sen(Σ). We show that ϕ ∈
TINS(SP) by induction on the structure of SP , and this shows completeness since TINS

is sound by Prop. 4.2:

— Let SP be 〈Σ,Φ〉 for Φ ⊆ Sen(Σ). Then Φ |=Σ ϕ and so ϕ ∈ ClΣ(Φ) = TINS(〈Σ,Φ〉).

— Let SP be SP ′ hide via σ for some specification SP ′ with Sig [SP ′] = Σ′ and σ : Σ→
Σ′ in H. Then SP ′ |= σ(ϕ). By the inductive hypothesis, σ(ϕ) ∈ TINS(SP ′), and so
ϕ ∈ σ−1(TINS(SP ′)) = TINS(SP).

— Let SP be SP ′ with σ for some specification SP ′ with Sig [SP ′] = Σ′ and σ : Σ′ →
Σ in W. By Thm. 3.1, SP ′ ≡ 〈Σ1,Φ1〉 hide via σ1 for some Σ1 ∈ |Sign|, Φ1 ⊆
Sen(Σ1), and σ1 : Σ′ → Σ1 in H. Then, as in the (omitted, but well-known) proof of

3 In particular, the missing signature morphism in the definition of SP1 is the inclusion

from Sig[SP0] \ {a : s} to Sig[SP0], and the definition of SP abbreviates spec SP =

SP1 ∪ 〈Sig[SP1], {∀x:s • f(x) = g(x)}〉.
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Thm. 3.1, SP ≡ 〈Σ̂, σ′(Φ1)〉 hide via σ′1, where the following is a pushout in Sign:

Σ′

Σ1 Σ

Σ̂

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ

σ′ σ′1

with σ′ ∈ W, σ′1 ∈ H. Then SP |= ϕ implies σ′(Φ1) |=bΣ σ′1(ϕ). Hence, by Craig
〈H,W〉-interpolation (the stronger, parameterised version is not needed in this case),
there is an interpolant set Ψ ⊆ Sen(Σ′) such that Φ1 |=Σ1 σ1(Ψ) and σ(Ψ) |=Σ ϕ.
The former yields SP ′ |= Ψ, so by the inductive hypothesis Ψ ⊆ TINS(SP ′), and by
the latter ϕ ∈ ClΣ(σ(Ψ)) ⊆ ClΣ(σ(TINS(SP ′))) = TINS(SP).

— Let SP be SP1 ∪ SP2 for specifications SP1 and SP2 with Sig [SP1] = Sig [SP2] = Σ.
By Thm. 3.1, SP1 ≡ 〈Σ1,Φ1〉 hide via σ1 for some Σ1 ∈ |Sign|, Φ1 ⊆ Sen(Σ1)
and σ1 : Σ→ Σ1 in H, and SP2 ≡ 〈Σ2,Φ2〉 hide via σ2 for some Σ2 ∈ |Sign|, Φ2 ⊆
Sen(Σ2) and σ2 : Σ→ Σ2 inH ⊆ W. Then SP ≡ 〈Σ̂, {σ′2(Φ1), σ′1(Φ2)}〉 hide via σ2;σ′1,
as in the (omitted) proof of Thm. 3.1, where the following is a pushout in Sign:

Σ

Σ1 Σ2

Σ̂

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

with σ′1 ∈ H, σ′2 ∈ W. SP |= ϕ implies σ′2(Φ1), σ′1(Φ2) |=bΣ σ′1(σ2(ϕ)). Then, by the
parameterised 〈H,W〉-interpolation property, there is an interpolant set Ψ ⊆ Sen(Σ)
such that Φ1 |=Σ1 σ1(Ψ) and Φ2 ∪ σ2(Ψ) |=Σ σ2(ϕ). The former yields SP1 |= Ψ, so
by the inductive hypothesis, Ψ ⊆ TINS(SP1) ⊆ TINS(SP). By the latter, considering
the pushout:

Σ

Σ2 Σ

Σ2

@
@
@I

�
�
��

�
�
��

@
@
@I

σ2 idΣ

idΣ2 σ2

the parameterised 〈H,W〉-interpolation property yields an interpolant set Ψ′ ⊆ Sen(Σ)
(for Φ2 and ϕ w.r.t. Ψ) such that Φ2 |= σ2(Ψ′) and Ψ′ ∪Ψ |= ϕ. Since now the former
yields SP2 |= Ψ′, by the inductive hypothesis we have Ψ′ ⊆ TINS(SP2) ⊆ TINS(SP),
and so we also get ϕ ∈ ClΣ(TINS(SP)) = TINS(SP).
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We mimic above the proof in (Borzyszkowski, 2002), which in turn largely followed
(Bergstra et al., 1990) where the role of first-order interpolation for such results was
perhaps first explored. However, we use a stronger (parameterised) interpolation property
instead of Craig interpolation together with an assumption that the underlying institution
is compact and has conjunction and implication. The latter idea was used for instance in
(Diaconescu, 2008) to show completeness of a (stronger) calculus for proving entailment
in a context of structured specifications, where the case of specifications built using union
was simpler.

Another result of this kind, for a somewhat different collection of specification-building
operations, is given in (Goguen and Roşu, 2004). They show soundness and complete-
ness of TINS with respect to a semantics which in essence calculates a normal form of
specification expressions (see Thm. 3.1) but rely on conservativity of modules — see
the footnote at the end of Sect. 2 — rather than on the strictly weaker requirement of
parameterised interpolation.4

It is easy to see that the parameterised interpolation property is necessary for the
above completeness result:

Proposition 4.5. Suppose that INS is an 〈H,W〉-exact institution such that TINS

is complete for specifications built from flat specifications using union, translation and
hiding in INS. Then INS admits parameterised 〈H,W〉-interpolation.

Proof. Consider any pushout diagram in Sign

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

with σ1, σ
′
1 ∈ H, σ2, σ

′
2 ∈ W, and Φ1 ⊆ Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ2 ∈ Sen(Σ2) such

that σ′2(Φ1) ∪ σ′1(Φ2) |= σ′1(ϕ2). Let SP ∈ SpecUTH (Σ2) be the specification ((〈Σ1,Φ1〉 hide via σ1) with σ2)∪
〈Σ2,Φ2〉. Then

TINS(SP) = ClΣ2(ClΣ2(σ2(TINS(〈Σ1,Φ1〉 hide via σ1))) ∪ Φ2)
= ClΣ2(σ2(TINS(〈Σ1,Φ1〉 hide via σ1)) ∪ Φ2).

If TINS is complete then ϕ2 ∈ Th(SP) = TINS(SP), and we can take Φ = TINS(〈Σ1,Φ1〉 hide via σ1)
to be a set of interpolants for Φ1 and ϕ2 w.r.t. Φ2.

4 Contrary to a claim in the abstract of (Goguen and Roşu, 2004), conservativity is not a necessary

condition for the results there. In fact, they give no technical statement that repeats this claim; they

merely show that completeness fails in certain non-conservative examples.
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5. Comparing property-oriented semantics

As can be seen from Thm. 4.4 and Prop. 4.5, TINS is complete only under rather
strong assumptions concerning the underlying logical system. Even though these hold
for FOPEQ, the institution of first order logic (with classes W and H chosen, say, to
be all injective signature morphisms) this is a rather rare situation and TINS is incom-
plete in many typical institutions of practical importance, including EQ and EQne (see
Example 4.3). There have been attempts to preserve compositionality and nevertheless
ensure completeness (Mossakowski et al., 2006). However, we show below that to improve
on TINS, at least some aspects of compositionality must be sacrificed.

Theorem 5.1. Consider two property-oriented semantics T and T ′ for specifications
constructed using a set of specification-building operations, including all flat specifi-
cations. Let T be sound, monotone and closed-complete. Let T ′ be theory-oriented,
sound, compositional and extensive. Then T is at least as strong as T ′: for every SP ,
T ′(SP) ⊆ T (SP).

Proof. By induction on the structure of SP . For flat specifications, T ′(〈Σ,Φ〉) ⊆
ClΣ(Φ) = T (〈Σ,Φ〉) by soundness of T ′ and flat-completeness of T (which is the same
as closed-completeness for flat specifications).

More generally: consider any well-formed specification sbo(SP1, . . . ,SPn) with Σi =
Sig [SP i], where i = 1, . . . , n here and below, and suppose T ′(SP i) ⊆ T (SP i). Since T ′ is
theory-oriented and extensive, T ′(〈Σi, T ′(SP i)〉) = T ′(SP i); we also have T (〈Σi, T ′(SP i)〉) =
T ′(SP i). Then, using subsequently compositionality of T ′, soundness of T ′, closed-
completeness of T for sbo, and monotonicity of T (and the inductive assumption):

T ′(sbo(SP1, . . . ,SPn))

= T ′(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ Th(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
= T (sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ T (sbo(SP1, . . . ,SPn))

This completes the inductive step and the proof of the theorem.

Corollary 5.2. TINS is at least as strong as any sound, compositional and extensive
theory-oriented semantics for structured specifications built from flat specifications using
union, translation and hiding.

Proof. Directly from Prop. 4.2 and Thm. 5.1.

The requirement that the theory-oriented semantics considered be extensive is perhaps
the most surprising one. Informally, if we forget about some axioms, we should not be
able to soundly get more consequences. However, this requirement cannot be dropped in
general, as the following counterexample shows.

Example 5.3. Consider an institution INS0 with signatures Σ and Σ′, and a signature
morphism σ : Σ → Σ′. Let Sen0(Σ) = {ϕ}, Sen0(Σ′) = {ϕ,ψ}, with σ-translation pre-
serving ϕ, and let |Mod0(Σ)| = |Mod0(Σ′)| = {M0,M1,M2}, with the identity σ-reduct.
Suppose M0 6|= ϕ, M1 |= ϕ, M2 |= ϕ, M0 6|= ψ, M1 6|= ψ, M2 |= ψ (over appropriate
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signatures) and that we have a Σ-specification SPbad with Mod [SPbad ] = {M2}. Then
let T ′ be such that T ′(SPbad) = {ϕ} and T ′(SPbad with σ) = {ϕ,ψ}, and T ′ forgets
the axiom ϕ in all flat specifications. We can then ensure that for all Σ-specifications SP ,
if ϕ ∈ T ′(SP) then M1 6∈ Mod [SP ], since very informally, if ϕ cannot be put into the
theory of a specification as an axiom, the only way it can be there is as a consequence
of ψ. Then T ′ is sound and compositional, but for the Σ′-specification SPbad with σ,
it is stronger than the expected sound, monotone and closed-complete theory-oriented
semantics TINS0 that yields TINS0(SPbad) = {ϕ} and TINS0(SPbad with σ) = {ϕ}.

To make this fully specific, suppose that there are no other signatures and non-identity
signature morphisms, and no other sentences and models. Define:

T ′(〈Σ,Φ〉) = ∅
T ′(〈Σ′,Φ′〉) = ClΣ′(Φ

′ \ {ϕ})
T ′(SP1 ∪ SP2) = ClSig[SP1](T ′(SP1) ∪ T ′(SP2))

T ′(SP ′ hide via σ) = σ−1(T ′(SP))

T ′(SP with σ) =

(
∅ if T ′(SP) = ∅
{ϕ,ψ} if ϕ ∈ T ′(SP)

Put SPbad = 〈Σ′, {ψ}〉 hide via σ and check that it has the properties required above.
Indeed, T ′ is a sound compositional theory-oriented semantics, but T ′(SPbad with σ) =
{ϕ,ψ} is a strictly larger theory than TINS0(SPbad with σ) = {ϕ}.

The requirement that the semantics considered be theory-oriented cannot be dropped
either:

Example 5.4. Building on Example 5.3, consider an institution INS1 with exactly two
signatures Σ and Σ′, and σ : Σ → Σ′ as the only non-identity signature morphism. Let
Sen1(Σ) = {ϕ,ϕ′}, Sen1(Σ′) = {ϕ,ϕ′, ψ}, with σ-translation preserving ϕ and ϕ′, and
let |Mod1(Σ)| = |Mod1(Σ′)| = {M0,M1,M2,M3}, with the identity σ-reduct. Define
M0 6|= ϕ′, M1 |= ϕ′, M2 |= ϕ′, M3 |= ϕ′, M0 6|= ϕ, M1 6|= ϕ, M2 |= ϕ, M3 |= ϕ, and
M0 6|= ψ, M1 6|= ψ, M2 6|= ψ, M3 |= ψ (over appropriate signatures).

|= ϕ′ ϕ ψ

M0 − − −
M1 + − −
M2 + + −
M3 + + +

So, over the appropriate signatures we have ϕ |= ϕ′, and ψ |= ϕ.
Now define a property-oriented semantics T ′′ using inductive clauses that essentially

copy those for TINS1 , except that for the flat Σ′-specification with ψ as the only axiom
we omit exactly one of its consequences ϕ′, and then for translation along σ when the
properties of the argument specification given by the semantics include ϕ but not ϕ′,
we add ψ as a property of the translated specification. The latter happens only if the
specification to be translated along σ results from hiding w.r.t. σ of a specification with
ψ as the only axiom.
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T ′′(〈Σ,Φ〉) = ClΣ(Φ)

T ′′(〈Σ′,Φ′〉) =

(
{ψ,ϕ} if Φ′ = {ψ}
ClΣ′(Φ

′) otherwise

T ′′(SP1 ∪ SP2) = ClSig[SP1](T ′′(SP1) ∪ T ′′(SP2))

T ′′(SP ′ hide via σ) = σ−1(T ′′(SP ′))

T ′′(SP with σ) =

(
ClΣ′(σ(T ′′(SP))) if ϕ′ ∈ T ′′(SP) or ϕ 6∈ T ′′(SP)

ClΣ′(σ(T ′′(SP)) ∪ {ψ}) if ϕ′ 6∈ T ′′(SP) and ϕ ∈ T ′′(SP)

T ′′ is a sound, compositional, extensive property-oriented semantics. It is not theory-
oriented though, since in particular T ′′(〈Σ′, {ψ}〉) = {ψ,ϕ} is not closed under con-
sequence (it does not contain ϕ′). Since for all other Σ′-specifications and for flat Σ-
specifications the semantics T ′′ yields a theory, this is exploited to “enlarge our knowl-
edge” about Σ-specifications SP with T ′′(SP) containing ϕ but not ϕ′. Namely, as in
Example 5.3, putting SPbad = 〈Σ′, {ψ}〉 hide via σ, we get T ′′(SPbad) = {ϕ} (while
TINS1(SPbad) = {ϕ,ϕ′}), and so T ′′(SPbad with σ) = {ψ,ϕ, ϕ′}, which is a strictly
larger theory than TINS1(SPbad with σ) = {ϕ,ϕ′}.

The counterexample property-oriented semantics given in Example 5.4 is compositional
but not monotone. This is necessarily so, since for the semantics considered in Thm. 5.1
and Cor. 5.2, if we assume that it is monotone then the requirement that it be theory-
oriented may be dropped:

Theorem 5.5. Consider two property-oriented semantics T and T ′ for specifications
constructed using a set of specification-building operations, including all flat specifica-
tions. Let T be sound, monotone and closed-complete. Let T ′ be sound, monotone and
extensive. Then T is at least as strong as T ′: for every SP , T ′(SP) ⊆ T (SP).

Proof. By induction on the structure of SP . For flat specifications, T ′(〈Σ,Φ〉) ⊆
ClΣ(Φ) = T (〈Σ,Φ〉) by soundness of T ′ and flat-completeness of T (which is the same
as closed-completeness for flat specifications).

More generally: consider any well-formed specification sbo(SP1, . . . ,SPn) with Σi =
Sig [SP i], where i = 1, . . . , n here and below, and suppose T ′(SP i) ⊆ T (SP i) (induc-
tive assumption). Since T ′ is extensive, we have T ′(SP i) ⊆ T ′(〈Σi, T ′(SP i)〉). Also:
T (〈Σi, T ′(SP i)〉) = ClΣi

(T ′(SP i)) ⊆ ClΣi
(T (SP i)) = T (SP i) by flat-completeness of T ,

the inductive assumption, and closure of T (SP) under consequence (T is closed-complete,
hence theory-oriented). Then, using subsequently monotonicity of T ′, soundness of T ′,
closed-completeness of T for sbo, and monotonicity of T :

T ′(sbo(SP1, . . . ,SPn))

⊆ T ′(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ Th(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
= T (sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ T (sbo(SP1, . . . ,SPn))

This completes the inductive step and the proof of the theorem.
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Corollary 5.6. TINS is at least as strong as any sound, monotone and extensive property-
oriented semantics for structured specifications built from flat specifications using union,
translation and hiding.

Proof. Directly from Prop. 4.2 and Thm. 5.5.

Example 5.3 shows that the requirement that the semantics considered in the above
corollary be extensive cannot be dropped: the counterexample semantics T ′ given there
is monotone.

The above analysis of the relative power of property-oriented semantics for structured
specifications was based on an implicit assumption that there are no signatures, sentences,
and specifications other than those we are dealing with. In a way, this is a version of
the famous closed world assumption. In particular, Examples 5.3 and 5.4 relied on this
to justify soundness of the counterexample semantics constructed there that for some
specifications (built from flat specifications using union, translation and hiding) yield a
theory that is properly richer than the theory produced by the standard compositional
semantics. Consequently, the counterexamples do not apply if we consider the semantics
for specifications in some potential extensions of the specification framework.

As before, consider a class Spec of specifications built using a family of specification-
building operations. For any class SP of new specification constants, with model-theoretic
semantics given as usual (i.e., for each SP ∈ SP we have Sig [SP ] ∈ |Sign| and Mod [SP ] ⊆
|Mod(Sig [SP ])|, hence we also have Th(SP) = Th(Mod [SP ])), let Spec(SP) be the class
of specifications that contains Spec and SP and is closed under the specification-building
operations considered, with a semantics that extends the semantics for specifications in
Spec and SP using the meaning of the specification-building operations as explained in
Sect. 3.

We say that a property-oriented semantics T for specifications in Spec is persistently
sound and compositional if for any class of new specification constants SPnew with model-
class semantics, for any sound property-oriented meaning for specifications in SPnew

given by Tnew (SP) ⊆ Th(SP) for all SP ∈ SPnew , there is a sound and compositional
property-oriented semantics T̂ for Spec(SPnew ) that extends T and Tnew , that is such
that T̂ (SP) = T (SP) for SP ∈ Spec and T̂ (SP) = Tnew (SP) for SP ∈ SPnew . Clearly,
any persistently sound and compositional property-oriented semantics is sound and com-
positional, but the opposite implication fails in general.

It is easy to check that the standard compositional property-oriented semantics TINS

for specifications built from flat specifications using union, translation and hiding is per-
sistently sound and compositional. Moreover, it is the strongest such property-oriented
semantics. In contrast to the previous results, this does not require the semantics con-
sidered to be extensive.

Theorem 5.7. Consider two property-oriented semantics T and T ′ for specifications
constructed using a set of specification-building operations, including all flat specifica-
tions. Let T be sound, monotone and closed-complete. Let T ′ be persistently sound and
compositional. Then T is at least as strong as T ′: for every SP , T ′(SP) ⊆ T (SP).
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Proof. We proceed by induction on the structure of specifications. Consider a specifi-
cation sbo(SP1, . . . ,SPn), n ≥ 0, where T ′(SP1) ⊆ T (SP1), . . . , T ′(SPn) ⊆ T (SPn).
We need to show that T ′(sbo(SP1, . . . ,SPn)) ⊆ T (sbo(SP1, . . . ,SPn)).

Let SP ′1, . . . , SP ′n be new specification constants with semantics given by Sig [SP ′1] =
Sig [SP1], Mod [SP ′1] = Mod [〈Sig [SP1], T ′(SP1)〉], . . . , Sig [SP ′n] = Sig [SPn], Mod [SP ′n] =
Mod [〈Sig [SPn], T ′(SPn)〉], and property-oriented meaning Tnew (SP ′1) = T ′(SP1), . . . ,
Tnew (SP ′n) = T ′(SPn).

Since T ′ is persistently sound and compositional, there is a sound and compositional
property-oriented semantics T̂ ′ that extends T ′ and Tnew to Spec({SP ′1, . . . ,SP ′n}). Then,
using compositionality of T̂ ′, its soundness, the definition of the model-class semantics
of the new constants, closed-completeness of T , and finally extensiveness (which follows
from flat-completeness, implied by closed-completeness) and monotonicity of T :

T ′(sbo(SP1, . . . ,SPn))

= cT ′(sbo(SP ′1, . . . ,SP ′n))

⊆ Th(sbo(SP ′1, . . . ,SP ′n))

= Th(sbo(〈Sig [SP1], T ′(SP1)〉, . . . , 〈Sig [SPn], T ′(SPn)〉))
= T (sbo(〈Sig [SP1], T ′(SP1)〉, . . . , 〈Sig [SPn], T ′(SPn)〉))
⊆ T (sbo(SP1, . . . ,SPn))

Corollary 5.8. TINS is at least as strong as any persistently sound and compositional
property-oriented semantics for structured specifications built from flat specifications
using union, translation and hiding.

Proof. Directly from Prop. 4.2 and Thm. 5.7.

6. Entailment systems

The notion of an institution as recalled in Sect. 2 captures model-theoretic aspects of
logical systems. An institution is typically augmented by an entailment system that
approximates the semantic consequence relation, and in this section we consider the
consequences of the results above in this setting. Entailment systems are normally defined
with reference to a set of proof rules, but the presentation here abstracts away from this
level of detail.

An entailment relation on a set S of sentences is a binary relation ` ⊆ P(S) × S
satisfying the following properties:

reflexivity : {ϕ} ` ϕ;
weakening : if Φ ` ϕ then Φ ∪Ψ ` ϕ; and
transitivity : if Φ ` ψ and Ψϕ ` ϕ for each ϕ ∈ Φ then

⋃
ϕ∈Φ Ψϕ ` ψ

for all sentences ϕ,ψ ∈ S and sets of sentences Φ,Ψ ⊆ S and Ψϕ ⊆ S for ϕ ∈ Φ.
Clearly, the semantic consequence relation defined in Sect. 2 is a entailment relation

in the above sense.
Let Sen : Sign → Set be a functor. An entailment system for Sen is a family of
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entailment relations E = 〈`Σ ⊆ P(Sen(Σ))× Sen(Σ)〉Σ∈|Sign| such that for each mor-
phism σ : Σ → Σ′ in Sign, sentence ϕ ∈ Sen(Σ) and set Φ ⊆ Sen(Σ), if Φ `Σ ϕ then
Sen(σ)(Φ) `Σ′ Sen(σ)(ϕ), where Sen(σ)(Φ) denotes the image of Φ under Sen(σ).

Given an institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉, an entailment system
for INS (Meseguer, 1989; Harper et al., 1994) is an entailment system E = 〈`Σ〉Σ∈|Sign|
for Sen that is sound with respect to semantic consequence, that is, for each signature
Σ, Σ-sentence ϕ ∈ Sen(Σ) and set Φ ⊆ Sen(Σ), if Φ `Σ ϕ then Φ |=Σ ϕ. Such an
entailment system E is complete for INS if the opposite implication holds. Clearly, for any
institution INS, the semantic consequence relations form an entailment system EINS =
〈|=Σ〉Σ∈|Sign|, which is sound and complete for INS.

A general logic (Meseguer, 1989) is an institution INS equipped with an entailment
system E for INS.

For the rest of this section, let E = 〈`Σ〉Σ∈|Sign| be an arbitrary entailment system for
Sen : Sign→ Set.

For any signature Σ ∈ |Sign|, a set of sentences Φ ⊆ Sen(Σ) is an E-theory if it is
closed under `Σ: if Φ `Σ ϕ then ϕ ∈ Φ for all ϕ ∈ Sen(Σ). For any set Φ ⊆ Sen(Σ), the
least E-theory that contains Φ will be denoted by ClEΣ(Φ). Clearly, for any institution
INS and its semantic entailment system EINS, ClEINS

Σ ( ) coincides with ClΣ( ), and
EINS-theories are exactly the theories in INS as defined in Sect. 2.

An entailment system E = 〈`Σ〉Σ∈|Sign| for Sen : Sign → Set is trivial if for each
signature Σ ∈ |Sign|, `Σ = P(Sen(Σ))× Sen(Σ) (each set entails all sentences).

Proposition 6.1. Given an entailment system E , if E is non-trivial then there is an
institution INS0 such that E is a (sound) entailment system for INS0, but E is not
complete for INS0. If E is trivial then it is complete for any institution for which it is
sound.

Proof. A non-trivial entailment system is incomplete for an institution INS0 in which
all categories of models are empty; more interesting institutions INS0 can be constructed
as well. The other part is trivial.

Proposition 6.2. For any entailment system E there is an institution INSE such that
E is (sound and) complete for INSE .

Proof. Consider an entailment system E = 〈`Σ〉Σ∈|Sign| for Sen : Sign→ Set. For any
signature Σ ∈ |Sign|, define Σ-models to be E-theories and satisfaction to be membership:
Mod(Σ) = {Φ ⊆ Sen(Σ) | ClEΣ(Φ) = Φ} (considered as a discrete category), and then for
M ∈Mod(Σ) and ϕ ∈ Sen(Σ) define M |=Σ ϕ to hold iff ϕ ∈M . Furthermore, for any
signature morphism σ : Σ→ Σ′ define the reduct to be the coimage w.r.t. translation of
sentences: for M ′ ∈Mod(Σ′), M ′ σ = σ−1(M ′). By preservation of entailment in E along
signature morphisms, it follows that indeed M ′ σ ∈Mod(Σ), and the satisfaction condi-
tion holds trivially. This defines an institution INSE = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉.

Now, given any set of Σ-sentences Φ ⊆ Sen(Σ) and Σ-sentence ϕ ∈ Sen(Σ), Φ |= ϕ

in INSE means that for all M ∈ Mod(Σ), if Φ ⊆ M then ϕ ∈ M , which is equivalent
to ϕ ∈MΦ, where MΦ = ClEΣ(Φ) is the least model in Mod(Σ) that contains Φ. Hence,
Φ |= ϕ in INSE iff Φ `Σ ϕ.
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As remarked in Sect. 3, the syntax of flat specifications and union, translation and
hiding introduced there for an arbitrary institution INS depends only on the category
of signatures with distinguished class H and W of signature morphisms, satisfying the
requirements imposed in Sect. 3, and the sentence functor Sen : Sign → Set. Conse-
quently, we can consider such specifications whenever just an entailment system E for
Sen together with appropriate H, W is given, rather than an entire institution. In par-
ticular, the signature Sig [SP ] of any specification SP ∈ SpecUTH is then well defined.

The concept of a property-oriented semantics directly carries over to this framework:
as in Sect. 4, a property-oriented semantics is a function T that maps any specification
SP to a set of Σ-sentences T (SP) ⊆ Sen(Sig [SP ]).

Given such a property-oriented semantics, definitions of its monotonicity, composition-
ality and extensiveness carry over in a similarly straightforward way. We say that T is
E-theory-oriented if T (SP) is an E-theory for all specifications SP .

However, concepts related to the model-theoretic part of the institution require more
care.

A property-oriented semantics T is E-sound if it is sound in any institution INS (with
the same signature category and sentence functor as for E) for which E is sound (or
equivalently, in any general logic with E as the entailment system).

A sound property-oriented semantics T is E-complete in a class of institutions INS,
if it is complete in any institution INS ∈ INS (with the same signature category and
sentence functor as for E) for which E is sound and complete. E-closed-completeness and
E-flat-completeness may be defined analogously — we will not use these concepts here
though.
E-completeness is perhaps a weaker notion than one would expect: we might have

required completeness of the semantics in any institution INS ∈ INS for which E is sound
but not necessarily complete, so in any general logic with E as the entailment system. As
can be derived from Prop. 6.1, such a stronger property would not be achievable at all
though, unless the entailment system is trivial (or a very narrow class INS is considered).

The definition of the standard compositional theory-oriented semantics for specifica-
tions in SpecUTH requires only an obvious tiny adjustment:
TE(〈Σ,Φ〉) = ClEΣ(Φ)

TE(SP ∪ SP ′) = ClESig[SP](TE(SP) ∪ TE(SP ′))

TE(SP with σ : Sig [SP ]→ Σ) = ClEΣ(σ(TE(SP)))

TE(SP hide via σ : Σ→ Sig [SP ]) = σ−1(TE(SP))

Proposition 6.3. TE is an E-sound E-theory-oriented semantics for specifications built
from flat specifications using union, translation and hiding. It is monotone, compositional
and extensive.

As for TINS in Sect. 4, completeness does not hold, unless the class of institutions
(general logics) considered is subject to further requirements:

Corollary 6.4. Let INS be the class of institutions that are 〈H,W〉-exact and admit
parameterised 〈H,W〉-interpolation. Then TE is E-complete for specifications built from
flat specifications using union, translation and hiding in the class INS.
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Proof. Follows from Thm. 4.4.

Interpolation properties may be directly defined for an entailment system E = 〈`Σ〉Σ∈|Sign|
for a sentence functor Sen : Sign→ Set, without reference to the underlying institution.
Namely, consider again the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

@
@
@I

�
�
��

�
�
��

@
@
@I

σ1 σ2

σ′2 σ′1

This diagram admits parameterised (or Craig-Robinson) interpolation if for any Φ1 ⊆
Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ ∈ Sen(Σ2), whenever σ′2(Φ1) ∪ σ′1(Φ2) `Σ′ σ

′
1(ϕ) then

for some Φ ⊆ Sen(Σ) such that Φ1 `Σ1 σ1(Φ) we have Φ2 ∪ σ2(Φ) `Σ2 ϕ. The diagram
admits Craig interpolation if it admits parameterised interpolation with “parameter set”
Φ2 = ∅.

Given classes H,W ⊆ Sign of signature morphisms, we say that E admits parame-
terised (resp. Craig) 〈H,W〉-interpolation if for any signature morphisms δ ∈ H and
τ ∈ W with a common source there are δ′ ∈ H and τ ′ ∈ W forming a pushout in Sign

·

· ·

·

@
@
@I

�
�
��

�
�
��

@
@
@I

δ τ

τ ′ δ′

that admits parameterised (resp. Craig) interpolation; then any such pushout admits
parameterised (resp. Craig) interpolation as well.

Clearly, if E is (sound and) complete for an institution INS then the above interpolation
properties for E coincide with those for INS as defined in Sect. 2.

So, for an entailment system that admits parameterised 〈H,W〉-interpolation, the se-
mantics TE is E-complete for the class of institutions that are 〈H,W〉-exact.

Even though TE is not E-complete in general, it is in essence the strongest compositional
E-theory oriented semantics:

Corollary 6.5. TE is at least as strong as any E-sound, compositional, extensive E-
theory-oriented semantics for structured specifications built from flat specifications using
union, translation and hiding.

Proof. Let T be an E-sound, compositional, extensive E-theory-oriented semantics.
Consider the institution INSE where semantic entailment coincides with entailment in
E , as given by Prop. 6.2. Then TE coincides with TINSE , and T is sound in INSE (as well
as compositional and extensive). Consequently, TE is at least as strong as T by Cor. 5.2.
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The assumption that the semantics considered be extensive cannot be dropped. Exam-
ple 5.3 can be adapted to the framework of an entailment system:

Example 6.6. Consider an entailment system E0 that consists of semantic consequence
for the institution constructed in Example 5.3. That is, take the category of signatures
Sign0 with exactly two objects Σ and Σ′, and σ : Σ → Σ′ as the only non-identity
morphism. The sentence functor is given by Sen0(Σ) = {ϕ}, Sen0(Σ′) = {ϕ,ψ}, with
σ-translation preserving ϕ. Define E0 as the least entailment system for Sen0 such that
ψ `0

Σ′ ϕ.
Then consider the property-oriented semantics T ′ defined in Example 5.3. It is E0-

sound (by the same reasoning as in Example 5.3), compositional and E0-theory-oriented.
Moreover, for SPbad defined as 〈Σ′, {ψ}〉 hide via σ, we have T ′(SPbad with σ) =
{ϕ,ψ}, while TE0(SPbad with σ) = {ϕ}.

Similarly, the assumption that the semantics considered be E-theory-oriented cannot
be dropped, since Example 5.4 can be adapted here as well:

Example 6.7. Consider an entailment system E1 that consists of semantic consequence
for the institution constructed in Example 5.4. That is, take the category of signatures
Sign1 with exactly two objects Σ and Σ′, and σ : Σ → Σ′ as the only non-identity
morphism. The sentence functor is given by Sen1(Σ) = {ϕ,ϕ′}, Sen1(Σ′) = {ϕ,ϕ′, ψ},
with σ-translation preserving ϕ and ϕ′. Define E1 as the least entailment system for Sen1

such that ψ `1
Σ′ ϕ, ϕ `1

Σ ϕ′.
Then consider the property-oriented semantics T ′′ defined in Example 5.4. It is E1-

sound (for the same reason as in Example 5.4), compositional and extensive. Moreover,
for SPbad defined as 〈Σ′, {ψ}〉 hide via σ, we have T ′′(SPbad with σ) = {ψ,ϕ, ϕ′},
while TE1(SPbad with σ) = {ϕ,ϕ′}.

As in Sect. 5, the counterexample semantics above had to be non-monotone:

Corollary 6.8. TE is at least as strong as any E-sound, monotone and extensive property-
oriented semantics for structured specifications built from flat specifications using union,
translation and hiding.

Proof. Let T be a E-sound, monotone and extensive property-oriented semantics. Con-
sider the institution INSE where semantic entailment coincides with entailment in E , as
given by Prop. 6.2. Then TE coincides with TINSE , and T is sound in INSE (as well as
monotone and extensive). Consequently, TE is at least as strong as T by Cor. 5.6.

Clearly, the requirement that the semantics considered in the above corollary be extensive
cannot be dropped here by Example 6.6, since the semantics T ′ given there is monotone.

We conclude this section by comparing semantics in different entailment systems. Of
course, if E is not at least as strong as another entailment system E ′ used to give a
semantics for specifications, we cannot expect TE to be at least as strong as this other
semantics; typically this would not hold even for flat specifications. However:

Proposition 6.9. Consider two entailment systems for Sen : Sign→ Set, E = 〈`Σ〉Σ∈|Sign|
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and E ′ = 〈`′Σ〉Σ∈|Sign|. Suppose that E is at least as strong as E ′, that is, for each sig-
nature Σ ∈ |Sign|, `′Σ ⊆ `Σ (all E ′-consequences of any set of sentences are also its
E-consequences). Then TE is at least as strong as TE′ for specifications built from flat
specifications by union, translation and hiding: TE′(SP) ⊆ TE(SP) for all SP ∈ SpecUTH .

Proof. By easy induction on the structure of specifications.

Corollary 6.10. TE is at least as strong as any semantics for specifications built from
flat specifications using union, translation and hiding that is compositional, extensive,
E ′-theory-oriented and E ′-sound for some entailment system E ′ such that E is at least as
strong as E ′.

Proof. By Cor. 6.5 and Prop. 6.9.

It may be considered somewhat unsatisfactory to require that the semantics we compare
TE with is E ′-sound, rather than just E-sound. However, this cannot be weakened, since
the counterexample semantics T ′′ given in Example 6.7 is E ′-theory-oriented for instance
for the least entailment system E ′ generated by ψ `′Σ′ ϕ (and any system that is still
weaker than such E ′).

However, as discussed at the end of Sect. 5, the perhaps unexpected requirements
on the property-oriented semantics considered may be dropped if a stronger version of
soundness and compositionality is assumed, that persist when the specification framework
is extended.

We say that a property-oriented semantics T for specifications built using some specification-
building operations in the context of an entailment system E is E-persistently sound and
compositional if it is persistently sound and compositional in any institution INS for
which E is sound.

Corollary 6.11. TE is at least as strong as any E-persistently sound and compositional
property-oriented semantics for structured specifications built from flat specifications
using union, translation and hiding.

Proof. By Cor. 5.8, considering the institution INSE where semantic entailment coin-
cides with entailment in E , as given by Prop. 6.2, and TE coincides with TINSE .

7. Final remarks

We studied property-oriented semantics for structured specifications in the context of an
arbitrary institution, and then in the context of an arbitrary entailment system.

Considering specifications built from flat specifications using union, translation and
hiding, we explained why the standard compositional property-oriented semantics given
in Sect. 4 cannot be improved. On one hand, we sharpened the standard result (Borzyszkowski,
2002) that this semantics is complete in any exact institution with an appropriate in-
terpolation property (cf. Thm. 4.4). On the other hand, we showed that it is at least as
strong as any other sound, compositional, extensive theory-oriented semantics, as well
as any other sound, monotone, extensive property-oriented semantics (cf. Cor. 5.2 and
Cor. 5.6). These two results follow from more general theorems that state similar results
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for specifications built using an arbitrary collection of specification-building operations
(cf. Thm. 5.1 and Thm. 5.5). We also give counterexamples that show that the unexpected
and counter-intuitive requirements of extensiveness (the semantics considered must not
“forget” about axioms in flat specifications5) and theory-orientedness (they take regard
of consequences of the properties derived) cannot be dropped in general (cf. Examples 5.3
and 5.4). However, they are superfluous if we require a stronger form of soundness and
compositionality, that persist when the specification formalism is extended by new spec-
ification constants with arbitrary sound semantics (cf. Thm. 5.7 and Cor. 5.8). It is
worth noting that a similar effect may be achieved if instead of adding new specification
constants we require that the property-oriented semantics for structured specifications
translated by any institution comorphism (Meseguer, 1989; Tarlecki, 2000; Goguen and
Roşu, 2002) extends in a sound and compositional way to structured specifications in the
richer institution.

These results and counterexamples improve significantly on related results in (Sannella
and Tarlecki, 2012). They carry over to the context of specifications built from flat
specifications using union, translation and hiding in the context of an entailment system,
see Sect. 6. The results also apply, mutatis mutandis, to any specification language that
has at least the expressive power provided by these simple operations.

Although we discussed property-oriented semantics here, there is an intimate link be-
tween proof systems and property-oriented semantics which make the results immediately
applicable to proof systems as well. For instance, the standard compositional property-
oriented semantics TINS for structured specifications built from flat specifications using
union, translation and hiding in an institution INS given in Sect. 4 may be presented
using the following well-known proof system:

〈Σ,Φ〉 ` ϕ
ϕ ∈ Φ

SP1 ` ϕ
SP1 ∪ SP2 ` ϕ

SP2 ` ϕ
SP1 ∪ SP2 ` ϕ

SP ` ϕ
SP with σ ` σ(ϕ)

SP ` σ(ϕ)

SP hide via σ ` ϕ
together with the following rule to link consequences of specifications with semantic
consequence in the underlying institution:

SP ` ϕ for each ϕ ∈ Φ Φ |= ψ

SP ` ψ
(|= closure)

Clearly, for any specification SP ∈ SpecUTH and Sig [SP ]-sentence ϕ, we have that ϕ ∈
TINS(SP) if and only if SP ` ϕ can be derived in the above proof system. The standard
compositional property-oriented semantics TE for structured specifications built from
flat specifications using union, translation and hiding in an entailment system E given

5 For this reason, extensiveness is called non-absent-mindedness in (Sannella and Tarlecki, 2012).
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in Sect. 6 may be presented by essentially the same proof system with the final rule
(|= closure) replaced by the following:

SP ` ϕ for each ϕ ∈ Φ Φ `Sig[SP ] ψ

SP ` ψ
(` closure)

In such a sense, any proof system for proving consequences of specifications generates a
property-oriented semantics. (Note that this is different from proof systems for proving
entailment between properties in the context of a structured specification, as studied in
(Diaconescu, 2008, Sect. 14.2).)

On one hand then, the notions we introduced for property-oriented semantics, like
soundness, completeness, closed-completeness, compositionality, monotonicity, etc., may
be directly applied to proof systems. In particular, the proof system given by the rules
above is sound, theory-oriented, monotone, compositional, extensive, flat-complete and
closed-complete for the specification-building operations considered. The main results
presented here for property-oriented semantics carry over to proof systems as well, and
can be recast as establishing that the above proof system for consequences of structured
specifications built from flat specifications using union, translation and hiding is the
strongest compositional one possible. Improving on it requires compositionality to be
sacrificed: a non-compositional proof system that is stronger may be given for instance
by the following single rule, using Theorem 3.1:

Φ′ `Σ′ σ(ϕ)

SP ` ϕ
nf(SP) = 〈Σ′,Φ′〉 hide via σ

Another non-compositional approach, which uses additional axioms and rules that are
derived from the form of the specification in question, is (Hennicker et al., 1997).

On the other hand, we may want to study formats of proof systems that ensure desir-
able properties of the semantics they generate. For instance, if all the proof rules in a proof
system derive consequences of structured specifications from consequences of their imme-
diate constituents then the corresponding property-oriented semantics is compositional.
Monotonicity follows if furthermore none of the proof rules involves “negative” premises.
Finally, the property-oriented semantics given by a proof system is theory-oriented (resp.
E-theory-oriented) iff the rule (|= closure) (resp. (` closure)) is admissible.
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