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Sparsity-based Autofocus for
Under-sampled Synthetic Aperture Radar

Shaun I. Kelly, Student Member, IEEE, Mehrdad Yaghoobi, Member, IEEE, and Mike E. Davies, Senior
Member, IEEE,

Abstract—Motivated by the field of compressed sensing and
sparse recovery, nonlinear algorithms have been proposed for
the reconstruction of synthetic aperture radar images when the
phase history is under-sampled. These algorithms assume exact
knowledge of the system acquisition model. In this paper we
investigate the effects of acquisition model phase errors when
the phase history is under-sampled. We show that the standard
methods of autofocus, which are used as a post-processing step
on the reconstructed image, are typically not suitable. Instead of
applying autofocus as a post-processor, we propose an algorithm
that corrects phase errors during the image reconstruction. The
performance of the algorithm is investigated quantitatively and
qualitatively through numerical simulations on two practical
scenarios where the phase histories contains phase errors and
are under-sampled.

Index Terms—Synthetic Aperture Radar, Autofocus, Com-
pressed Sensing, Sparse Recovery, Blind Calibration, Block
Relaxation Methods, Phase Retrieval

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active ground

imaging system which is based on the coherent processing

of multiple radar echoes. Typically, the reconstructed image

is formed from the stored echos (phase history) using a

linear approximation of the pseudo-inverse, e.g. polar format

algorithm (PFA), range migration algorithm (RMA) or filtered

back-projection. The approximate pseudo-inverse is an inverse

which is defined on a finite region of the spatial frequency

support of the reconstructed complex image. The size of this

support is defined by the transmitted RF signal bandwidth and

the size of the synthetic aperture. Ideally the reconstructed

image would have a rectangular support in the spatial fre-

quency plane so that the point spread function (PSF) would

be a two-dimensional sinc function. This is approximately the

case in systems where the synthetic aperture is uniformly

sampled and the transmitted RF signal has a contiguous

bandwidth. However, in a number of interesting non-standard

SAR scenarios, this will not be true.

Two such systems that we will consider in this paper are

multifunction and ultra wide band (UWB) SAR. In a multi-

function SAR system, the radar antenna is used for multiple

tasks which causes interruptions in the uniform acquisition of

SAR data along the synthetic aperture [1], [2]. In the case

of UWB SAR, the transmitted signal spectrum is broad and

may contain frequency sub-bands that are in use by other

communication systems or where transmission is not allowed.

The authors are with the Institute for Digital Communications (IDCoM),
University of Edinburgh, UK, EH9 3JL, e-mail: shaun.kelly@ed.ac.uk.

To avoid interference, notch filters are commonly used in

the transmitter and/or the receiver to avoid using these sub-

bands [3], [4].

In both of these scenarios defining an inverse on an ap-

proximately rectangular spatial frequency support is ill-posed.

Fig. 1 demonstrates why a rectangular support is sought by

comparing the PSF of a rectangular spatial Fourier support and

a randomly under-sampled aperture. In the PSF of the under-

sampled aperture, unlike the ideal PSF, a significant amount

of the target energy is contained in the side-lobes. Clearly this

is undesirable. In order to make this problem well-posed, an

appealing idea is to apply the tools and theory of compressed

sensing (CS) and sparse recovery, for example [5], [6], [7],

[8].

The theoretical results of CS are based on exact knowledge

of the linear acquisition system, however, in practical situa-

tions, such a system cannot be perfectly known. This is the

case in SAR where the received phase history may contain

significant phase errors due to imperfect system modelling.

Methods for correcting these errors in fully-sampled systems

are known as autofocus algorithms and are most commonly

used as a post-processing method on the reconstructed image.

All autofocus algorithms require a signal model for ei-

ther the phase errors and the image or both. Additionally,

many algorithms make a far-field and small aperture angle

approximation so that the phase errors are constant along the

range axis of the reconstructed image. One of the earliest

autofocus algorithms to be developed was the mapdrift (MD)

algorithm [9]. MD estimates the phase errors based on a low-

order polynomial model for the phase errors along the cross-

range direction. Phase gradient autofocus (PGA), one of the

most commonly used algorithms, requires the phase errors

along the cross-range direction to vary smoothly and also

requires the image to contain isolated point scatterers [10].

Recently another algorithm, multichannel autofocus (MCA),

has been proposed which requires the focused image to contain

a known region which is almost zero [11]. Although these

post-processing autofocus methods have been very successful

for correcting phase errors in fully-sampled scenarios, they

may not be suitable for under-sampled SAR.

The algorithm proposed in this paper for image reconstruc-

tion and autofocus of a under-sampled phase history has simi-

larities with the proposed method in [12]. Although the method

proposed in [12] primarily concentrates on the fully-sampled

scenario it does demonstrate that it is also applicable to the

under-sampled scenario. Both methods involve approximately

solving the same non-convex problem but our algorithm has
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Fig. 1. PSF for full-sampled and under-sampled almost rectangular spatial
Fourier supports: (a) is the fully-sampled support and its PSF is given in (b).
(c) is the under-sampled support and its PSF is given in (d).

some additional practical benefits. Firstly, it can be shown

to be stable and it produces a sequence that convergences

to a connected set. Secondly, it empirically converges in a

significantly smaller number of iterations.

A closely related problem which has been investigated in

the signal processing literature in the last few years is the

problem of phase retrieval, e.g. [13] and [14]. The goal of

phase retrieval is to recover a complex signal from magnitude

only measurements. The SAR imaging and autofocus problem

is equivalent to the phase retrieval problem if we ignore all

phase information due to a belief that it is corrupted. In these

papers a technique known as “phase-lifting” is used to pose

a convex problem which is solved to recover the signal. This

technique involves “lifting” the signal so instead of recovering

x ∈ C
N the algorithm recovers X = xxH ∈ C

N×N . This

process is likely to be very costly computationally and will

likely make these techniques infeasible for SAR systems.

Contributions of the paper

The main contributions of this paper are as follows. We

show using CS theory and numerical simulations that standard

post-processing autofocus methods are unsuitable for under-

sampled SAR. We analyse under what conditions the image

reconstruction and autofocus problem is well-posed. Also, we

propose a new algorithm that correct phase errors within the

image reconstruction algorithm. Empirically, we show that that

this algorithm converges faster than existing methods and then,

theoretically, we show that it is stable and convergent, which

cannot be said of the existing algorithms. We also verify the

performance of the algorithm using two practical scenarios.

Organisation of the paper

In Section II a brief background on relevant CS results

is provided. Then in section III a SAR acquisition model

is developed which includes phase errors. In Section IV

the expected performance of existing post-processing auto-

focus methods in a CS framework is investigated. Inherent

ambiguities in the under-sampled phase error problem are

analysed in Section V. A reconstruction algorithm for under-

sampled SAR with phase errors is proposed in Section VI.

Finally experimental simulations in Section VII are used to

demonstrate the effectiveness of the proposed algorithm.

Notation

The following is a description of the notational conventions

used within this paper. Matrices and vectors will be denoted

by upper and lower case boldface symbols respectively (e.g.

X and x). Elements of matrices and vectors will be lower case

lightface and will be indexed by subscripts, e.g. the element

in the mth row and the nth column of a matrix X is denoted

by xmn.

The complex conjugate of a complex scalar x will be x∗

and the complex conjugate transpose of a vector or a matrix

will have a superscript H, e.g. XH. X† is used to indicate the

pseudo inverse of X .

We define diag{x} to be a square matrix with the elements

of the vector x along its main diagonal. Re{x} will denote

the real part of a complex scalar x.

The following notation is for matrix and vector norms. ‖.‖0

denotes the “counting norm” which is equal to the number of

non-zero elements in a vector or a matrix. ‖.‖F and ‖.‖1 are

element-wise two and one matrix norms respectively. Finally,

‖h‖2 = sup {‖h(X)‖F : ‖X‖F = 1} is the operator norm of

a linear operator h.

II. COMPRESSED SENSING: BACKGROUND

CS theory provides a theoretical framework which can be

used to analyse the reconstruction performance of an under-

determined linear system, e.g.

y = Ax + n,

where, y ∈ C
M are the measurements, A ∈ C

M×N is the

system model, x ∈ C
N is the original signal and n ∈ C

M is

a complex Gaussian noise for M < N . Without any further

information, the best approximation of x, in the MMSE sense,

is given by the pseudo inverse A†y. However, using the

tools of CS we may be able to produce a better estimate if

x is sparse or well approximated by a sparse signal in an

orthonormal basis, i.e.

x = Ψα,

where, Ψ ∈ C
N×N is an orthogonal basis and α ∈ C

N is

either a sparse vector, i.e. ‖α‖0 ≤ K for K � N , or is close
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to its best K-term approximation αK , i.e. ‖α − αK‖2 ≈ 0.

As well as the sparsity conditions on x we also require

certain conditions on the matrix AΨ to hold. A property

that is commonly used to define sufficient conditions on AΨ
is the so-called restricted isometry property (RIP) [15]. A

matrix A satisfies the (symmetric) RIP of order K if, for all

vectors x with no more than K non-zero entries, there exists

a (symmetric) RIP positive constant δK < 1 which satisfies

the following inequalities:

(1 − δK) ‖x‖2
2 ≤

∥∥∥Âx
∥∥∥2

2
≤ (1 + δK) ‖x‖2

2 . (1)

If x satisfies the sparsity condition and AΨ satisfies a 2K
order (symmetric) RIP with an RIP constant that satisfies the

following inequality:

δ2K <
3

4 +
√

6
≈ 0.46515, (2)

then x can be stably reconstructed from y using the following

convex optimisation program [16]:

minimise
α

‖α‖1

subject to ‖y − AΨα‖2 ≤ σ.
(3)

The solution of Eq. (3), α̃, will be stable in the following

sense

‖α̃ − α‖2 ≤ C1,Kσ + C2,K
‖α − αK‖1√

K
, (4)

where, σ = ‖n‖2 and C1,K and C2,K are constants [17].

In words, our solution will be bounded by something that is

proportional to the noise energy σ and the error associated

with the best K-term approximation of α.

Although there is no computationally efficient way to check

Eq. (2) for arbitrary matrices there are interesting asymptotic

results for random matrices. One such result [18] is, if A is

formed from M < N random columns of a Fourier matrix and

Ψ is an identity matrix then with overwhelming probability

the matrix A satisfies Eq. (2) if M is of the order

M = O(K log5(N)) (5)

This result motives the use of CS theory for under-sampled

SAR. If the under-sampled SAR observation matrix is similar

to a randomly under-sampled Fourier matrix and our image

contains only a small number of bright targets in clutter we

may be able to make a good approximation of the image by

solving a convex optimisation program.

III. SAR GENERATIVE MODEL WITH PHASE ERRORS

Since SAR systems are a coherent imaging system, the

round trip propagation delay to a reference position in the

scene must be estimated at each position along the aperture.

In spotlight mode SAR this reference point is the scene centre.

Errors in this estimate, which can be due to a non-idealised

propagation medium or inaccuracies in the inertial navigation

system, introduce unknown phase errors into the acquired

data. If not corrected, phase errors can degrade and produce

distortions in the reconstructed image.

If we consider a simplified spotlight-mode SAR system after

dechirp-on-receive, adding a delay error τe at each aperture

position produces the following discretized system model [19],

ykl = ejφkl

M∑
m=1

N∑
n=1

xmn exp
{
−j

(
2umnk

c
− τ0

)(
ω0 + 2α

(
(l − 1) Ts − T

2

))}
(6)

where, Y = {ykl} ∈ C
M ′×N ′

is the phase history, X =
{xmn} ∈ C

M×N are the scene reflectivities, {φkl} = (ω0τek
−

ατ2
ek

) + 2ατek
((l − 1) Ts − T/2) ∈ C

M ′×N ′
are the phase er-

rors which result from the delay errors, {umnk} ∈ R
M×N×M ′

are the distances between each element in the scene and

each aperture position, c is the speed of light, τ0 is the true

propagation delay to the scene centre, Ts is the range sampling

period, 2α is the chirp rate, ω0 is the carrier frequency and

T is the chirp period. If we neglect the effects of the linear

phase term, which is done in most systems because this term

usually has only a minor effect on the reconstructed image

quality, the discrete SAR observation model with phase errors

becomes:

Y = diag
{

ejφ
}
h (X) , (7)

where, h : C
M×N → C

M ′×N ′
is a linear map that models the

ideal SAR observation model (the summation in Eq. (6)) and

φk = ω0τek
− ατ2

ek
(8)

are the phase errors.

Clearly, without further assumptions, the problem of recov-

ering φ and X from Y is ill-posed if M ′ = M and N ′ = N ,

since there are only MN equations and M(N +1) unknowns.

IV. CS WITH POST-PROCESSING AUTOFOCUS

Most post-processing autofocus methods make a far-field

and small aperture angle approximation in the SAR acquisition

model [19], i.e. the image was formed using a separable two-

dimensional imaging method such as range-Doppler imag-

ing [20]. Under the separable approximation and assuming we

sample at exactly the Nyquist rate in range and cross range,

the system can be modelled as the following LHS and RHS

matrix multiplication:

Y = diag
{

ejφ
}
AXB, (9)

where,

amn = exp{ − j(2π(m − 1)(n − 1)/M−
(m − 1)π − (n − 1)π + Mπ/2)}

and

bmn = exp{ − j(2π(m − 1)(n − 1)/N−
(m − 1)(2πω0/2αT − π)−
(n − 1)π + Nπ/2 − 2ω0L/c)}
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are the elements of the cross-range matrix A ∈ C
M×M and

the range matrix B ∈ C
N×N , respectively, where, L is the

scene radius.

Since, A is essentially a Fourier matrix, we can rewrite the

observation model in Eq. (9) as Y = AΨXB, where, Ψ is a

circulant matrix which may be viewed as a filter in cross-range

direction for each range bin.

When fully-sampled, recovering ΨX from Y is straight

forward because A and B are invertible. Post-processing

autofocus algorithms then recover X from the filtered image

ΨX using a signal model for Ψ and/or X .

When Y is under-sampled in either range or cross-range

the observation model will be:

Y ′ = AΨXB′ (10)

or

Y ′ = A′ΨXB, (11)

where, A′ ∈ C
M ′×M is a M ′ < M row subset of A and

B′ ∈ C
N×N ′

is a N ′ < N column subset of B. With this

model, unlike in the fully-sampled situation, A′ and B′ are

not invertible.

An estimate of ΨX can be reconstructed by solving Eq. (3).

CS results can then be used to analyse the expected reconstruc-

tion quality of this estimate. If the under-sampling is random in

cross-range, the reconstruction of the filtered image is stable,

in the sense that the columns of the recovered filtered image

Ψ̃X satisfy Eq. (4), if the number of cross-range samples is

greater than O(K log5(M)). For a fixed K, the reconstruction

error is dependent on the additive noise and the K-term

approximations of the columns of the filtered image. Larger

phases errors will make these K-term approximations worse

and therefore increase the error in the reconstructed filtered

image.

With an estimate of the filtered image the restructured

image can be recovered by applying a standard post-processing

autofocus technique. The resulting image is given by

X̃ = Ψ̃
-1
Ψ̃X, (12)

where, Ψ̃
-1

= A-1 diag
{

e−jφ̃
}

A is the phase error correction

applied by the autofocus algorithm and φ̃ are the estimated

phase errors by the chosen algorithm. If the estimated phase

errors are the true phase errors then the error in the recon-

structed image is given by

X − X̃ = Ψ-1E (13)

where, E = ΨX − Ψ̃X is the error in the estimated filtered

image. Therefore, even with knowledge of the true phase

errors, the effect of correcting phase errors as a post-processing

step can result in a significant error in the reconstructed image.

For this reason, in most cases, post-processing autofocus

methods are unsuitable for under-sampled SAR.

V. UNIQUENESS

It is well known that there are inherit ambiguities in the

autofocus problem which prevent the problem having a unique

solution. The formulation in Eq. (9) is known to be ambiguous

to constant and linear phase errors [19].

A sparsity based necessary condition for the uniqueness of

the autofocus problem can be given which is dependent on the

observation model h and the signal model of the scene X . It

is given as follows:

h
(
X̃
)

= diag {d}h (X) ⇐⇒ ∃β ∈ {β ∈ C : |β| = 1} : X̃ = βX,

(14)

and

∀(X̃, X, d) ∈
{

X̃ ∈ X , X ∈ X , d ∈ D
}

,

where,

X =
{
X ∈ C

M×N : ‖X‖0 ≤ K
}

,

i.e. we know the scene has at most K scatters, and

D =
{

d ∈ C
M ′

: |dm| = 1
}

is the set of all possible phase errors,

If Eq. (14) is satisfied then the problem is unique up to a

scalar β multiplication of the true X , i.e. X̃ = βX , and the

solutions are given by the following program:

minimise
X,d

‖X‖0

subject to diag {d}Y = h (X)
d∗

mdm = 1, m = 1, . . . , M,

(15)

where, ‖.‖0 measures the number of non-zeros matrix ele-

ments.

Eq. (14) states that the phase error free observation model

h must have the property that the phase history of a sparse

image cannot be equal to a phase error corrupted phase history

of a different sparse image.

In Appendix A, we give additional conditions for the

uniqueness of the separable model where we have sub-

sampling only in the cross-range direction.

VI. SPARSE RECONSTRUCTION AND AUTOFOCUS

In this section our goal is to design algorithms which

perform sparse reconstruction and autofocus and are able

to be solved or approximately solved in a polynomial time.

To this end, the non-convex function ‖X‖0 in Eq. (15)

is replaced with its closest convex function ‖X‖1 and the

equality constraint is replaced with an inequality constraint

that accommodates noise. This results in:

minimise
X,d

‖X‖1

subject to ‖diag {d}Y − h(X)‖F ≤ σ

d∗
mdm = 1, m = 1, . . . , M.

(16)
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Even though our objective function is now convex, Eq. (16) is

still non-convex because the inequality constraint is not linear

and therefore does not define a convex feasible set.

In order to use gradient based methods, which are usually

used in large scale problems such as SAR reconstruction,

the objective must be smooth. Therefore it is convenient to

exchange to the inequality constraint and the objective in

Eq. (16) to form the equivalent program:

minimise
X,d

‖diag {d}Y − h(X)‖2
F

subject to ‖X‖1 ≤ τ

d∗
mdm = 1, m = 1, . . . , M.

(17)

Note, there is a one-to-one map, γ : σ → τ if 0 ≤ σ ≤ ‖Y ‖F.

Even though the problem is still non-convex, importantly, in

each set of variables X and d –with the other fixed– we have

a unique solution. This observation allows us to use a block

relaxation type method which can be used to approximate the

solution and has been found to be effective in the related

problem of dictionary learning [21].

Block relaxation methods approximately solve Eq. (17) by

iteratively solving the problem based on a single parameter

block, X or d, at a time.

A. Minimisation based on X

Consider Eq (17) when d is fixed, i.e.

minimise
X

f(X, d)

subject to ‖X‖1 ≤ τ,
(18)

where,

f(X, d) = ‖diag {d}Y − h(X)‖2
F . (19)

A method used for solving Eq. (18) is a technique known

as “majorisation minimisation”. This technique replaces the

objective function with a majorising surrogate function which

is much easier to solve. A function g is said to majorise f if

f(ω) ≤ g(ω, ξ) and f(ω) = g(ω, ω),∀ω and ξ ∈ Υ, where,

Υ is the parameter space. A surrogate function can be derived

for (19) by expanding it as a Taylor series and bounding its

curvature (d2f ) [21]. This surrogate function is:

g(X, X‡, d) = ‖diag {d}Y − h(X)‖2
F −∥∥∥h(X) − h(X‡)

∥∥∥2

F
+

LX

∥∥∥X − X‡
∥∥∥2

F
,

(20)

where, LX > ‖h‖2
2. Replacing the objective function with its

surrogate function, Eq. (18) becomes

minimise
X,X‡

g
(
X, X‡, d

)
subject to ‖X‖1 ≤ τ,

(21)

which is a minimisation based on X and a surrogate parameter

vector X‡. In this program, if X is fixed, the minimum of

Eq. (21) occurs at X‡ = X and if X‡ is fixed the minimum

occurs at

minimise
X

‖X − C‖F

subject to ‖X‖1 ≤ τ,
(22)

where, C = X‡ + 1
LX

hH(diag {d}Y −h(X‡)). The solution

of Eq. (22) is the projection of C onto an �1 ball with a

radius of τ . There are efficient methods to exactly compute

this projection [22].

By minimising Eq. (21) based on either X‡ and X in an

alternating fashion, X‡ and X will converge to the solution

of Eq. (18) [23]. In practice, a feasible LX can determined

using a backtracking line-search.

B. Minimisation based on d

Consider Eq. (17) when X is fixed, which (ignoring con-

stant terms) is given by:

minimise
d

tr
{
−2 Re

{
diag

{
dH
}

h(X)Y H
}}

subject to d∗mdm = 1, m = 1, . . . , M.
(23)

The unique solution of Eq. (23) can be found analytically

by,

d = ej∠diag{h(X)Y H}. (24)

C. Non-convex Block Relaxation

A block relaxation of Eq. (17) is produced by solving

Eq. (18) and Eq. (23) in an alternating fashion which is

described in the following pseudo code:

Algorithm 1 A(X, d)
Output: X, d

repeat
X‡ ← X
X ← D(X, d)
d‡ ← d
d ← ej∠diag{h(X)Y H}

until ‖X−X‡‖F‖X‡‖−1
F < threshold∧‖d−d‡‖2‖d‡‖−1

2 <
threshold

Where, D solves Eq. (18). The approaches used in [12], [24]

and [25] are of this form. These types of methods are stable,

assuming we can solve D, i.e. we exactly solve Eq. (18) at each

iteration. In practical algorithms where only an approximate

solution at each iteration is obtained, no stability analysis

exists.

Another way to create a block relaxation is to use the

surrogate parameter X‡ as an additional parameter block, i.e.

minimise
X,X‡,d

g
(
X, X‡, d

)
subject to ‖X‖1 ≤ τ

d∗
mdm = 1, m = 1, . . . , M.

(25)

For this relaxation, as long as Eq. (25) is always solved

based on X‡ after solving based on X the solution for

each sub-problem is easily commutable and the complete
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algorithm is known to be stable and guaranteed to converge

to an accumulation point or a connected set of accumulation

points, see [21, Proposition B.3]. The pseudo code for this

algorithm, when phase minimisation occurs at each iteration,

is as follows:

Algorithm 2 B(X, d)

Initialise: Lx > ‖h‖2
F

Output: X, d
repeat

X‡ ← X
C ← X‡ + 1

LhH
(
diag {d}Y − h

(
X‡

))
X ← Pτ (C)
d‡ ← d
d ← ej∠diag {h(X)Y H}

until ‖X−X‡‖F‖X‡‖−1
F < threshold∧‖d−d‡‖2‖d‡‖−1

2 <
threshold

Where, Pτ (C) projects C onto an �1 ball with a radius of

τ . It is interesting to note that this algorithm can be seen

as a generalisation of Algorithm 1. An additional benefit

of Algorithm 2 is that it is likely to converge faster than

Algorithm 1. This is because Algorithm 1 will likely oscillate

around the optimum path.

VII. EXPERIMENTAL RESULTS

In these experiments we investigate the performance of

Algorithm 1 and Algorithm 2 using under-sampled phase

histories that contain phase errors.

A. Quantitative Performance

In the first experiment we investigate the empirical con-

vergence rate and reconstruction performance of Algorithm 1

and Algorithm 2. In order to easily compare with post-

processing autofocus techniques, we consider the separable

model, Eq. (9). In this experiment the scene consists of a small

number of constant amplitude point targets randomly placed in

the scene. The under-sampling consists of selecting a random

subset of the fully-sampled synthetic aperture. Two different

phase errors were consider: quadratic phase errors φm =
γ((m− 1)/M)2 which model platform velocity measurement

errors and normally distributed phase errors φm = N (0, γ2).
The parameters for the synthetic model are in Table. I.

TABLE I
SAR SYSTEM PARAMETERS FOR SYNTHETIC EXPERIMENTS

parameter value

carrier frequency (ω0) 2π × 10 × 109 rad/s
chirp bandwidth (2αT ) 2π × 150 × 106 rad/s

scene radius (L) 50 m
number of targets 20

signal to noise ratio 0 dB

1) Convergence: In this experiment we compare the num-

ber of iterations it takes Algorithm 1 and Algorithm 2 to reach

the stopping criterion when the threshold is 10−6. In order to

fairly compare the two algorithms we compute the operation D
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Fig. 2. Comparison of empirical convergence rates: (a) ‘�’ Algorithm 1 and
’×’ Algorithm 2. (b) ‘�’ Algorithm 2 with continuation and ’×’ Algorithm 2.

in Algorithm 1 using the “majorisation minimisation” method

from Section VI-A. We also define the number of iterations in

each algorithm to be the total number of times the gradient of

the objective function has to been computed with respect to

X . We select this definition because the main computational

cost of both algorithms is consumed by computing this gra-

dient, therefore, the iterations count will closely relate to the

algorithm’s execution time. We choose to show the results for

normally distributed phase errors with γ = 10. This is because

the type and magnitude of phase errors was found to have only

a minor effect on the results.

As expected Fig. 2(a) shows that Algorithm 2 requires many

less iterations than Algorithm 1. This will likely be due to

the minimisation path of Algorithm 1 oscillating around the

optimal minimisation path.

A technique known as continuation has been found to be

useful for increasing the numerical convergence rate of �1
sparse recovery algorithms when there is no phase errors [26].

Continuation involves varying the value of τ during the

iterations of the algorithm. The motivation for this technique

is based on the observation that the convergence rate depends

on τ . The smaller than value of τ , the faster the algorithm

will converge. Therefore, a method of continuation is to start

with a small value of τ and increases its value in the following

iterations until it reaches the desired final value.

In order to further improved the convergence rate of our

algorithm we experimented with a continuation scheme. Al-

though we did not see any singularity in the modified algo-

rithm with this setting, the convergence and stability would

need to be proved in the future.

In this simulation we used a continuation scheme that

involved changing τ during the first I iterations by the rule

τi = iτ/I for i = 1, . . . , I . The selection of a “good” I
depends on the under-sampling so we used the following

values of I for each under-sampling percentage.

TABLE II
CONTINUATION PARAMETERS

sampling
ratio (%) 20 26 32 38 44 50 56 62 68 74

I 30 20 10 5 3 2 1 1 1 1
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Fig. 2(b) shows a small improvement in performance when

continuation is used. Another method for reducing the required

number of iterations would be to use a more aggressive step

size, similar to what is used is other iterative �1 sparse recovery

algorithms. Using this type of step size, the stability of the

algorithm cannot be guaranteed but in practise it may also be

useful.

2) Reconstruction Error: In order to assess the image

reconstruction performance of the autofocus methods we de-

fine an image quality metric. Since the autofocus problem is

ambiguous to scalar multiplication by β ∈ {β ∈ C : |β| = 1}
and cyclic permutation, we define a metric that is immune to

these ambiguities. We will refer to this metric as relative SNR

and define it as:

minimise
β,n

⎧⎪⎨
⎪⎩10 log10

⎛
⎜⎝ ‖X‖2

F∥∥∥X̃ − βP nX
∥∥∥2

F

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

where, n ∈ Z and

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
1 0 . . . 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 . . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Fig. 4 shows the reconstruction performance of sparse

recovery with post-processing autofocus and Algorithm 2

with different phase errors. We do not show the results of

Algorithm 1 because the results are virtually identical to that

of Algorithm 2. The magnitude of the corresponding filters for

each of the phase errors, the rows of Ψ, are shown in Fig. 3.

To provide an empirical upper-bound, we also show the

reconstruction performance that can be achieved with oracle

knowledge of the phase errors and also the locations of the

targets, we refer to this as the oracle reconstruction. The oracle

reconstruction recovers an image as follows: it first corrects

the phase errors in the phase history such that it has no phase

errors. It then uses the known location of the targets to perform

a least squares (LS) estimate of the target reflectivities. This

problem is overdetermined since there are K reflectivities and

M ′N > K measurements.

The sparse recovery with post-processing autofocus is per-

formed as is described in Section IV. Firstly, an �1-norm

spectral projected gradient (SPG) method [23] is used to

recover the filtered image Ψ̃X then the image is recovered

from the filtered image using the reference phase errors φ̃.

These reference phase errors are selected slightly differently

for the two different types of phase errors. When the phase

errors are quadratic, φ̃ is selected to be equal to the true

phase errors, even for the phases associated with unobserved

measurements. This is because the CS reconstruction tends

to approximate the blurred image. However, when the phase

errors are random, φ̃ is selected to be equal to the true phase

error at the M ′ indices corresponding to the observed aperture

measurements and 0 at all indices corresponding to unobserved

aperture measurements. The reason for this difference is
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Fig. 3. Phase error induced filters: the rows of Ψ for quadratic and random
phase errors with different γ. Quadratic: (a) γ = 0.1 (c) γ = 1 (e) γ = 10.
Random: (b) γ = 0.1 (d) γ = 1 (f) γ = 10.

because for the random phase errors, unlike quadratic phase er-

rors, each of the phase errors are independent. This means that

the phase errors associated with the unobserved measurements

have no effect on the sparse recovery algorithm, therefore,

it doesn’t make sense to use them in Ψ̃
-1

. In comparison,

setting the unobserved phase errors to zero slightly increases

the reconstruction performance.

To understand the results of Fig. 4, the sources of errors

in the reconstructed image should be considered. The three

sources of errors in a reconstructed image are the additive

noise, the under-sampling and the phase errors. For the oracle

reconstruction the only source of error is due to the additive

noise. The performance degrades with the sampling ratio

because the denoising effect of the LS estimate degrades as

the ratio M ′N/K decreases. For the sparse recovery with

autofocus the sparse recovery will try to minimise the errors

associated with the under-sampling and also will implicitly

denoise. This process will be more successful if the filtered

image is approximately sparse. The post-processing autofocus



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

sampling ratio (%)

re
la

tiv
e 

S
N

R
 (

dB
)

(a)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

sampling ratio (%)

re
la

tiv
e 

S
N

R
 (

dB
)

(b)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

sampling ratio (%)

re
la

tiv
e 

S
N

R
 (

dB
)

(c)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

sampling ratio (%)

re
la

tiv
e 

S
N

R
 (

dB
)

(d)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

sampling ratio (%)

re
la

tiv
e 

S
N

R
 (

dB
)

(e)

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

20

25

30

sampling ratio (%)

re
la

tiv
e 

S
N

R
 (

dB
)

(f)

Fig. 4. Reconstruction performance versus under-sampling ratio: ‘◦’ oracle reconstruction, ‘�’ Algorithm 2 and ‘×’ sparse recovery and post-processing
autofocus with reference phase errors. Quadratic: (a) γ = 0.1 (b) γ = 1 (c) γ = 10. Random: (d) γ = 0.1 (e) γ = 1 (f) γ = 10.

will then try to reduce the errors associated with the phase er-

rors. Algorithm 2 also minimises the effect of under-sampling

and phase errors and implicitly denoises.

As predicted in Section IV, as the phase errors increase, the

performance of sparse recovery with post-processing autofocus

decreases. It is also interesting to note that this methods

performance is better for quadratic phase errors than for

random phase errors. This is because the filter corresponding

to the quadratic phase errors is approximately sparse while

than the filter corresponding to the random phase errors is

not. Hence, the sparse recovery for quadratic phase errors

is more effective at reducing the errors associated with the

undersampling and the additive noise.

The performance of Algorithm 2, which is in contrast

to the performance of sparse recovery with post-processing

autofocus, is consistently good for both types of phase errors.

In fact, it achieves a performance, even with large phase errors,

that is similar to a sparse recovery without phase errors. The

SNR gap between the performance of Algorithm 2 and the

oracle reconstruction is primarily due to the shrinkage effects

of �1-minimisation. This gap could potential be reduced by an

additional procedure known as “debiasing” [27].

B. Qualitative Performance

In these experiments we wish to show that the presented

algorithm works on realistic simulations of our two motivating

scenarios, i.e. multifunction and UWB SAR. The scene used

in both simulated scenarios consists of four point targets which

reflect back an equal amount of energy. Fig. 5 is a block

diagram which illustrates the basic elements used to create

the simulated phase histories. Firstly, the analog signal that

would be received at each aperture position is simulated by

summing scaled and delayed versions of the transmitted chirp

where the scaling and delay correspond to the reflectivity

and the signal travel time for each point target. For each

position an additional delay is added to the analog received

signal to model system inaccuracies. Each analog signal is

then dechirped and IF filtered which simulates the analog

receiver in a dechirp-on-receive system. Finally the analog to

digital sampling is simulated by down sampling the signals

to a sample rate proportional to the IF bandwidth and the

Residual Video Phase (RVP) term is removed.

1) UWB SAR: As mentioned previously, under sampling

occurs in a UWB SAR system when notches are introduced

into the transmitted chirp in order to avoid interference with

other users. In this simulation we used a notched linear

frequency chirp which had a spectral density that is given

in Fig. 6. The chirp contains five notches which equate to a

nulling of approximately 20% of the chirp spectrum.

The other parameters of the simulation are given below.
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Fig. 5. Block diagram for generating a simulated phase history.
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Fig. 6. Power spectral density of notched linear frequency chirp.

TABLE III
SYSTEM PARAMETERS FOR SIMULATED UWB SAR

parameter value

carrier frequency (ω0) 2π × 308 × 106 rad/s
chirp bandwidth (2αT ) 2π × 324 × 106 rad/s

IF bandwidth 2π × 20 × 106 rad/s
altitude 7000 m

stand-off distance 7000 m
aperture length 7000 m

number of aperture samples 200
scene radius (L) 75 m
number of targets 4

signal to noise ratio 0 dB
timing errors N (0, 80 × 10−11) s

2) Multifunction SAR: In this simulation a randomly under-

sampled aperture of an X-band SAR system is used to simulate

a multifunction SAR system. The phase history contains a

50% random subset of the fully-sampled aperture. The other

parameters of the simulation are given below.

TABLE IV
SYSTEM PARAMETERS FOR SIMULATED MULTIFUNCTION SAR

parameter value

carrier frequency (ω0) 2π × 10 × 109 rad/s
chirp bandwidth (2αT ) 2π × 600 × 106 rad/s

IF bandwidth 2π × 30 × 106 rad/s
altitude 7000 m

stand-off distance 7000 m
aperture length 250 m

number of aperture samples 300
scene radius (L) 75 m
number of targets 4

signal to noise ratio 0 dB
timing errors N (0, 2.5 × 10−11) s

For both scenarios, three SAR images where formed using

different reconstruction methods. One image in each scenarios

was generated using filtered back-projection without any form

of autofocus. Another was generated using 20 iterations of an

�1-norm SPG method again without any form of autofocus.

The last image was created using 20 iterations of the modified

Algorithm 2 which uses continuation with I = 15. The

final value of τ was selected to be the sum of the absolute

values of the target reflectivities. However, the reconstruction

performance was found to be not particularly dependent on

this parameter. In a real system a suitable τ could be selected

with only a coarse degree of parameter tuning. In the iterative

reconstruction algorithms both the observation model and its

adjoint (h(.) and hH(.)) are computed using the fast (re/back)-

projection algorithms from [25].

The resulting images from both simulation scenarios are

contained in Fig. 7 and Fig. 8. It should be noted that these

images have had been padded with zeroes in the spatial Fourier

domain to make the images twice the size of the reconstructed

images. This is done to more clearly display the point targets

which are sometimes unable to be clearly viewed when they

consist of only a single or a small number of non-zero pixels.

Fig. 7(a) and Fig.8(a) demonstrate the adverse effects of

phase errors and under-sampling. The side-lobes of the four

targets contain a large amount of energy which deteriorates

the SAR image quality. The images in Fig. 7(c) and Fig.8(c)

which were produced using an �1 sparse recovery algorithm

have an improved visual quality over the previous images

due to the sparsity promoting algorithm. However, due to

the model inaccuracies there are a large number of non-zeros

pixels that may be mistaken for additional targets. Finally,

Fig. 7(e) and Fig.8(e) show the results of Algorithm 2. In these

images the energy from each target is highly concentrated

around the target locations. It is clear that in these scenarios,

Algorithm 2 can produce a visually improved SAR image, with

a rectangular spatial Fourier support and a sparse number of

point targets, from a phase history that is under-sampled and

contains model inaccuracies.

VIII. CONCLUSION

We have investigated the effects of phase errors on an under-

sampled SAR system. We have shown that post-processing

autofocus algorithms are typically unsuitable when there is

under-sampling and a sparse reconstruction method is em-



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

ployed. Instead, phase errors should be corrected during the

image reconstruction.

We have proposed a new algorithm that corrects phase errors

within the image reconstruction algorithm. Algorithm 2, which

is an algorithmically stable generalisation of a recently pro-

posed non-convex sparsity based autofocus method, performs

consistently well for a variety of phase errors and under-

sampling ratios and was found empirically to converge in a

much smaller number of iterations.

We have also demonstrated through additional realistic

simulations that Algorithm 2 could be used in practical non-

standard SAR image reconstruction systems to produce sparse

SAR images from under-sampled phase histories which con-

tain model inaccuracies.

Although we have concluded that post-processing autofocus

algorithms are typically unsuitable for under-sampled SAR,

there may be some instances where they may warrant further

consideration. In the scenario where the under-sampling is

only in the range dimension, for example the UWB scenario,

an �1-based sparse recovery algorithm could be used to

perform range compression and then a standard reconstruc-

tion method could be used to form the final image which

could then be autofocused using a standard post-processing

algorithm. CS theory suggests that this will be sub-optimal,

however, this type of method may be justified as a means

of reducing complexity. Further research into autofocus and

image reconstruction algorithms for under-sampled data where

there are specific system constraints could be an avenue for

future research.

APPENDIX A

Using ideas from the dictionary learning literature [28] we

can define a set of sufficient conditions for the uniqueness of

φ and X given Y ′ = diag {d′}A′XB. These conditions are

as follows:

1) the spark condition: any 2KX columns of A′ are

linearly independent

2) the columns of X have exactly KX non-zero elements

3) for each of the
(

M
KX

)
possible KX -sparse supports, there

are at least KX + 1 columns of X
4) any KX + 1 columns of X which share the same

support, span a k-dimensional space

5) any KX + 1 columns of X , which have different

supports, span a (KX + 1)-dimensional space

Proposition 1 (see [28, Theorem 3]): If the above con-

ditions hold then there is a unique X̃ which satisfies Y ′ =
diag

{
d̃′
}

A′X̃B. Where uniqueness is up to a unit magni-

tude scalar β and a circular permutation P n of the true X ,

i.e. X̃ = βP nX

As is the case in dictionary learning, the richness condition 3

is completely unrealistic for compressively sampled SAR.

However, this condition is only sufficient and is likely to

be very pessimistic. It should also be noted that recovering

the unique solution involves solving Eq. (15) which requires

combinatorial many operations to solve and is unsuitable for

practical problems that involve noise.
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Fig. 7. UWB SAR image reconstructions: (a) was reconstructed using filtered back-projection, (c) was reconstructed using an �1-norm SPG method and (e)
was reconstructed using Algorithm 2. (b), (d) and (f) are a zoomed in view of (a), (c) and (e) around the origin, respectively.
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Fig. 8. Multifunction SAR image reconstructions: (a) was reconstructed using filtered back-projection, (c) was reconstructed using an �1-norm SPG method
and (e) was reconstructed using Algorithm 2. (b), (d) and (f) are a zoomed in view of (a), (c) and (e) around the origin, respectively.


