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Abstract 

A synthesis fit for a king: The total synthesis of (±)-kingianins A, D, and F has been achieved in ten steps. 

Key features include the gram-scale synthesis and partial reduction of a conjugated tetrayne to a (Z,Z,Z,Z)-

tetraene, the domino 8π–6π electrocyclic ring closure of a (Z,Z,Z,Z)-tetraene, and the radical-cation-catalyzed 

formal Diels–Alder dimerization of functionalized bicyclo[4.2.0]octadiene precursors. 

 

Main text 

The kingianin natural products are a unique group of complex racemic bicyclo[4.2.0]octadiene dimers, 

isolated from the bark of Endiandra kingiana (Lauraceae) by Litaudon and co-workers.
[1] 

The first reported 

kingianin, (±)-kingianin A (1),
[1a] 

formulates as a dimer of bicyclo[4.2.0]octadiene 2, and the Litaudon group 

proposed a biosynthesis involving spontaneous (non-enzyme-mediated) Diels–Alder dimerization (Scheme 

1).
[1] 

Several reports, however, describe the need for temperatures in excess of 150 °C for Diels–Alder 

dimerization of 1,3-cyclohexadiene.
[2] 

The notion that a structural feature within compound 2 may lower the 

barrier to thermal Diels–Alder dimerization was investigated by Moses and co-workers in 2011.
[3] 

An elegant 

synthesis of monomer 2 was achieved by the Moses group, but all attempts to induce thermal dimerization 

failed.
[3]

Inspired by the pioneering work of Bauld and co-workers,
[4 ]

we hypothesized that a radical cation 

Diels–Alder dimerization could explain the formation of the kingianins in nature. 

 

 

Scheme 1. Diels–Alder biosynthetic pathway to (±)-kingianin A (1), as proposed by Litaudon et al.
[1]

 

 

The bicyclo[4.2.0]octadiene framework present within Litaudon’s proposed biosynthetic monomer 2 is a 

skeletal feature found in several natural products.
[5–9] 

The endiandric acids, which were isolated in racemic 

form in the early 1980s by Black and colleagues, were the first reported examples.
[5] 

Black proposed that the 

bicyclo[4.2.0]octadiene structure was formed through a spontaneous 8π–6π domino electrocyclization of 

either an (E,Z,Z,E)-tetraene or a (Z,Z,Z,Z)-tetraene (Scheme 2).
[5b–f] 

Beautiful biomimetic syntheses of various 
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bicyclo[4.2.0]octadiene natural products by Nicolaou,
[10] 

Trauner,
[11] 

Baldwin,
[12] 

Parker,
[13]

 and Moses
[14] 

have 

successfully utilized the proposed (E,Z,Z,E)-tetraene precursors. Evidently, the difficulty associated with 

preparing conjugated all-(Z)-polyenes has precluded their use in synthesis. In fact, (2Z,4Z,6Z,8Z)-decatetraene 

is both the highest all-(Z)-conjugated polyene and the only (Z,Z,Z,Z)-tetraene synthesized thus far.
[15]

 

Given the unprecedented structure and puzzling biosynthetic origin of the kingianin natural products,
[1] 

we 

decided to embark upon efforts towards their synthesis. The wealth of synthetic work in the literature utilizing 

(E,Z,Z,E)-tetraene precursors to access bicyclo[4.2.0]octadiene structures
[3, 10–14] 

convinced us that we should 

take this opportunity to investigate the alternative biosynthetic precursor, namely the (Z,Z,Z,Z)-tetraene 

(Scheme 2).
[5b–f] 

Although initially drawn to the sp
2
–sp

2
 cross-coupling strategy utilized by Negishi for the 

synthesis of (Z,Z,Z)-trienes,
[16] 

we elected instead to investigate the feasibility of a four-fold stereoselective 

partial reduction of a conjugated tetrayne. We anticipated that if this unprecedented
[17] 

and highly 

challenging
[18] 

synthetic transformation were realized then a remarkably short synthesis of the kingianins 

could be achieved. 

 

 

Scheme 2. The 8π–6π biosynthesis of bicyclo[4.2.0]octadiene structures, as proposed by Black et al.
[5b–f]

 

 

The application of previously reported methods
[19]

 for the synthesis of unsymmetrical tetraynes was met with 

great difficulties. The instability of the requisite intermediates and problems associated with scaling up these 

approaches led us to develop a new scalable synthesis of unsymmerical tetraynes. It is well known that steric 

bulk can stabilize polyyne structures.
[20]

 We took advantage of this fact by targeting TBS-protected 

(TBS=tert-butyldimethylsilyl) alcohol tetrayne 3,
[21]

 using Mori–Hiyama conditions for TMS-alkyne 

(TMS=trimethylsilyl) dimerization,
[22]

 thereby avoiding unstable halogenated and terminal polyynes. The two 

requisite diynes 4 and 5 were successfully prepared in three and two steps, respectively, on a multi-gram scale 

(Scheme 3). Thus, an Alami modified
[23]

 Cadiot–Chodkiewicz coupling of known bromobutynol 6
[24]

 with 

ethynyltrimethylsilane afforded TMS-diyne 7, which was converted into TBS-ether 4under standard 

conditions.
[25]

 Meanwhile, known benzyl bromide 8
[26]

 was employed in a Negishi reaction
[27]

 with organozinc 

reagent 9,
[28]

which was derived from 1,4-bis(trimethylsilyl)buta-1,3-diyne.
[29]

 Following extensive 

optimization, tetrayne 3 was isolated in 40 % yield on a gram scale.
[30]

 This is the first reported crossed Mori–

Hiyama coupling reaction
[22] 

and the first gram-scale synthesis of an unsymmetrical tetrayne.
[19]
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With significant quantities of tetrayne 3 now available, investigation into the daunting four-fold reduction 

could begin.
[17, 18] 

Following extensive experimentation, it was found that Rieke zinc in ethanol afforded 

(Z,Z,Z,Z)-tetraene 10 in a completely chemoselective and highly diastereoselective manner (Scheme 4).
[17, 31] 

A 

solution of tetraene 10 in toluene was immediately heated to 100 °C, which triggered the domino 8π–6π 

electrocyclization sequence.
[32] 

Following deprotection, the two diastereomeric alcohols 11 and 12 were 

isolated in a combined yield of 21 % from tetrayne 3 (Scheme 4). 

 

 

 

Scheme 3. Gram-scale synthesis of unsymmetrical tetrayne 3. dppf=1,1′-bis(diphenylphosphino)ferrocene, 

NBS=N-bromosuccinimide, TBS=tert-butyldimethylsilyl, TMS=trimethylsilyl. 

 

We were delighted to find that both alcohols 11 and 12 underwent fast radical cation Diels–Alder 

dimerizations using catalytic quantities of the Ledwith–Weitz aminium salt, (p-BrC6H4)3N⋅SbCl6 (13; Scheme 

4).
[33] 

Amide 2, the proposed biosynthetic precursor to (±)-kingianin A (1),
[1a] 

failed to dimerize under these 

reaction conditions (Scheme 4). 
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Scheme 4. Completion of the total synthesis of (±)-kingianins A, D, and F. EDC=1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide, HOBt=hydroxybenzotriazole, NMO=N-methylmorpholine-N-oxide, 

TBAF=tetrabutylammonium fluoride, TPAP=tetrapropylammonium perruthenate. 

 

The synthesis of (±)-kingianins A (1) and D (14) was eventually optimized to a sequence involving oxidation 

of alcohol 11 using the tetrapropylammonium perruthenate/ N-methylmorpholine-N-oxide (TPAP/NMO) 

conditions of Stark et al.,
[34] 

with the product directly subjected to radical cation Diels–Alder dimerization 

using the Ledwith–Weitz salt (13; 5 mol %).
[4, 33] 

The resultant mixture of diastereomeric diacids was directly 

converted into the corresponding diamides. Column chromatography afforded a mixture of three dimeric 

diamides in 17 % yield over the three steps from alcohol 11. Reverse-phase preparative HPLC allowed the 

isolation of analytically pure samples of (±)-kingianin A (1), (±)-kingianin D (14) and a third, as yet 

undetermined, structure.
[1] 

This radical cation Diels–Alder dimerization is a remarkably selective reaction, 

with only three of the potential thirty-two isomeric products isolated. Both (±)-kingianin A (1), a homochiral 

dimer, and (±)-kingianin D (14), a heterochiral dimer, are the result of endo-selective formal Diels–Alder 

reactions occurring at the convex faces of both diene and dienophile. Previous studies have shown that the 

radical cation Diels–Alder dimerization of 1,3-cyclohexadiene is endo selective,
[4] 

however, a full explanation 

of the site and orientational regioselectivity observed in the present study will require further investigation. 

The natural product (±)-kingianin F (15) was similarly obtained by dimerization of the other 

bicyclo[4.2.0]octadiene diastereomer 12, followed by double oxidation and diamide formation.
[35]
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In summary, our highly divergent biomimetic strategy has resulted in the total synthesis of (±)-kingianins A 

(1), D (14) and F (15), in a longest linear sequence of ten steps. The noteworthy synthetic aspects of our 

successful approach include the gram-scale preparation of an unsymmetrical tetrayne, the unprecedented 

reduction of a conjugated tetrayne to a (Z,Z,Z,Z)-tetraene, and radical cation Diels–Alder dimerization of 

functionalized bicyclo[4.2.0]octadienes. From these studies, we conclude that the kingianins are not formed 

through spontaneous Diels–Alder dimerization. Instead, we propose that nature uses a SET-mediated 

cycloaddition analogous to the approach described herein.
[36, 37] 

Our results, in conjunction with previous 

biomimetic syntheses,
[3, 10–14] 

demonstrate that (E,Z,Z,E)-tetraenes, and not their all-(Z) congeners,
[32] 

are the 

likely biosynthetic precursors to bicyclo[4.2.0]octadiene natural products.
[38]
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