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Abstract 

Dimethyl Ether (DME) is a clean and economical alternative fuel. In addition it is also an ozone-

friendly refrigerant. Burnett measurements were carried out at temperatures from (344 to 393) K 

and at pressures from (0.055 to 4.015) MPa. A total of 138 experimental points, taken along 15 

isotherms and 12 different temperatures, were obtained. The apparatus was calibrated by helium. 

The derived second coefficients were compared with the selected correlations and with literature 

data. 
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Introduction 

Dimethyl ether (DME) is the simplest ether, with a chemical formula of CH3OCH3. It is an 

important chemical material and it has many engineering applications. It is generally produced in a 

two step process: synthesis gas (syngas) is first converted to methanol and then DME is obtained by 

dehydration of methanol. The direct synthesis process technique from synthetic gas is still under 

development.1 It can be made from coal, natural gas, residual oil, oil coke, and biomass and its 

production cost is rather low. In addition DME is non-toxic and non-carcinogenic.  

Its physical properties are similar to those of liquefied petroleum gases (i.e., propane and butane), 

while burning DME, there are no emissions of SOx, NOx, or particulates. Its GWP is 0.3 per 100 

years.2 

Besides its use as an assistant solvent and an aerosol propellant, recently it was shown to be a good 

alternative fuel.1 In addition, because of its favorable thermodynamic properties, it has been 

suggested as an alternative refrigerant (RE170). In particular for air conditioning applications, a 

mixture of mass fraction of 60 % ammonia and 40 % dimethyl ether forms an interesting azeotrope 

(R723). 

For all these reasons, its thermophysical properties were recently studied3 and a preliminary 

fundamental equation of state was derived.4  

DME vapor pressure measurements were carried out at temperatures from (219 to 361) K and at 

pressures from (0.022 to 2.622) MPa, and a total of 71 experimental points were obtained in 

previous research at our laboratory.5 

After a literature search, a very limited number of second virial coefficients for DME were found in 

the open literature.6-11 In addition, the data are rather old and, excluding 2 points,10 they were 

derived at a reduced temperature range that spans from 0.68 to 0.82. In this work, 138 experimental 

points were collected in the superheated vapor region and at higher reduced temperature range, 

spanning from 0.86 to 0.98. Derived second virial coefficients were compared with the predicted 

values by the Tsonopoulos correlating method.12  



 
Experimental apparatus and procedures 

The sample was provided by Aldrich Inc., USA. It was degassed by immersion in liquid nitrogen 

and evacuation. Its purity was checked by gas chromatography using a thermal conductivity 

detector and its mass fraction was found to be better than 99.8 % by analysis of peak area.  

A diagram of the apparatus, since it is the same as described elsewhere,13 is not reported here. It 

consisted of two pressure vessels, a measurement chamber, VA, and an expansion chamber, VB, 

with volumes of approximately (70 and 35) cm3, respectively, and several auxiliary systems for 

filling and mixing the compounds in the Burnett vessels and for controlling and measuring the 

pressure and temperature. The measurement vessel was connected to a diaphragm-type differential 

pressure transducer (Ruska Model 2413) coupled to an electronic null indicator (Ruska Model 

2416).  

The pressure was regulated by a precision pressure controller (Ruska Model 3981), while a digital 

pressure indicator (Ruska Model 7000) was used to measure the pressure. Nitrogen is used as the 

pressure-transmitting fluid, and the nitrogen system consists of a reservoir, expansion vessels, and 

pressure regulating systems. 

The vessels were immersed in a thermostatic bath filled with about 45 liters of silicon oil. The 

temperature of the bath was kept constant by means of a system with a PID device, controlled by a 

computer to which the temperature measurement system is also connected. The control and 

acquisition system relies on two platinum resistance thermometers calibrated according to ITS 90 at 

the Istituto Metrologico G. Colonnetti (IMGC) of Turin. In particular, for data acquisition and 

control measurements, a Hart Scientific Pt 25 resistance thermometer (Hart 5680) and a Tersid Pt 

100 resistance thermometer were used, both connected to a digital temperature indicator (Corradi, 

RP 7000). 

The Burnett constant, N, defined as the ratio of the volumes of cell A and the sum of the volumes of 

cells A and B at zero pressure, was found to be N = 1.5220 ± 0.0001 for present measurements. 



Measurements were performed using the classical Burnett experimental procedure. Initially, the 

first vessel was filled with the sample and its temperature and pressure were measured. Then, after 

evacuating the second vessel, the expansion valve was opened. Once the pressures between the 

vessels had equalized, the second vessel was isolated and evacuated again. This procedure was 

repeated until low pressures were achieved.  

The uncertainty in the temperature measurements is due to the thermometer and any instability of 

the bath. The stability of the bath was found to be better than ±0.015 K, and the uncertainty of the 

thermometer was found to be better than 0.010 K in our temperature range. The total uncertainty in 

the temperature measurements was thus less than 0.025 K.  

The uncertainty in the pressure measurements is due to the transducer and null indicator system, and 

to the pressure gages. The digital pressure indicator (Ruska Model 7000) has an uncertainty of 

±0.003 % of full scale. The total uncertainty in the pressure measurement is also influenced by 

temperature fluctuations due to bath instability and was found to be less than ±1 kPa. 

 

Results 

The second and third virial coefficients obtained from the Burnett expansions of helium are reported 

in Table 1 together with deviations obtained from the McCarty equation of state.14 Results showed a 

good agreement with reference data14 in terms of the second virial coefficients (AAD=0.9 cm3/mol) 

and slightly poorer in terms of the third virial coefficients (AAD=321 cm6/mol2). However, in terms 

of pressure an AAD=0.125 kPa was obtained. 

For DME, in total 138 experimental points were collected along 15 isotherms in a temperature 

range from (344 to 393) K and for pressures from (0.055 to 4.015) MPa. Adopting the critical 

temperature value of Tc = 400.3 K,16 the experimental reduced temperature range spanned from 0.86 

to 0.98. The experimental data are shown in Table 2.  

The experimental PVT measurements were used to derive the second, B, and third, C, virial 

coefficients of the virial equation, 
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In the regression, each run was treated separately and (dP)2 was used as an objective function 

applying the Burnett constant from the helium calibration.  

Defining the average absolute deviation in pressure as  
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we found AAD = 0.63 kPa, well within the estimated experimental uncertainty. The second and 

third virial coefficients are shown in Table 3, together with the pressure deviations from the fit.  

The second virial coefficients (B) are also reported in Figure 1. This figure shows that the second 

virial coefficients, especially for values at Tr < 0.92, are rather scattered. This was probably caused 

from the small pressure range, limited by the saturation pressure of DME. This limitation also 

produced scattered values at low reduced temperatures for the third virial coefficients. 

In order to overcome this problem, data were refitted keeping the third virial coefficients as fixed 

values according to the Orbey and Vera correlating method.16 The resulting values for the second 

virial coefficients, B’, and initial density, ρ (1), are also reported in Table 3.  

The B’ were plotted in Figure 1 together with second virial coefficients calculated by eq 1 as 

described above (B). Even if from the analysis of the deviations for reproducing the pressures by the 

different methods the B’ values appear to have a slightly higher AAD, comparing the B’ with the B 

values, a significant improvement was evident, especially at lower reduced temperatures, where the 

obtained B’ values were clearly less scattered than the B values. For this reason the B’ were taken as 

reference values and fitted according to the following temperature function: 

B’=bo+b1/Tr         (3) 

with bo = 350.3812 cm3⋅mol-1 and b1 = -565.7195 cm3⋅K⋅mol-1. Eq 3 predicts the B’ values with and 

AAD = 3.2 cm3⋅mol-1. The second virial coefficients calculated by eq 3 are also reported in Figure 1 

as a dashed line. 



In Figure 2, the second virial coefficients (B’) are plotted over a different reduced temperature scale 

and compared with values reported in the literature.6 In the Figure, the values predicted by the 

Tsonopoulos7 correlating method are also shown. Considering that the literature second virial 

coefficients were generally obtained at very different temperatures and that only two points were 

obtained (by one of us) about four decades ago at our reduced temperature range (from 0.86 to 

0.98), the trend of the present results can be considered satisfactory. 

The uncertainties in the second virial coefficients, estimated on statistical base, are of about 4 

cm3⋅mol-1.  

If the data from the Burnett expansions cover only low pressures and the number of expansions are 

limited, it may not be possible to tune all three parameters, namely B, C and ρ (1), especially 

considering the real accuracy in the pressures measurements. Moreover, the contribution from the 

third virial coefficient to the values of the compressibility is much smaller than from the second 

virial coefficient, hence it may be better to use an alternative method for the Burnett data reduction. 

Keeping in mind that the contribution from the third virial coefficient is very small but not 

negligible, we choose the option of “a priori” estimation from one of the predictive methods of the 

values of the third virial coefficients, thus tuning only two parameters, namely B and ρ (1). After 

testing, we choose the third virial coefficients from the Orbey and Vera method: in this way B’ and 

ρ’ (1) are considered as the most acceptable from our experimental data.  

The eventual adsorption contribution should be detected while plotting Pi/Pi+1. The Burnett ratio 

Pi/Pi+1 was reported in Figure 3 for three runs obtained at different temperatures and taken as 

example. The adsorption should be greater at lower temperatures, what is not evident from the 

graph. 

 

Conclusions 

The PVT properties of an important alternative fuel such as DME were measured at temperatures 

from (344 to 393) K. The second and third virial coefficients were derived and compared with 



empirical correlating methods and with data found in the literature. After different attempts, we 

decided to fix the third virial coefficients according to the Orbey and Vera correlating method. The 

second virial coefficients derived in this way followed approximately the same trend as the 

literature ones that were obtained at a different reduced temperature range.  
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Table 1. Second (B) and third (C) virial coefficients for helium; ρ(1) denote regressed initial 
densities. 
 

Series T 
/K 

B 
/cm3⋅mol-1 

abs (dB) 
/cm3⋅mol-1 

C 
/cm6⋅mol-2 

abs (dC) 
/cm6⋅mol-2

ρ (1) 
/mol⋅dm-3

abs (dP) 
/kPa 

bias (dP) 
/% 

1 343.87 10.6 1.2 534 535 1.98072 0.239 0.051 
2 343.87 9.7 2.1 905 906 1.80089 0.271 0.066 
3 354.02 11.0 0.7 427 428 1.87893 0.156 0.039 
4 354.12 11.5 0.2 272 273 1.87300 0.138 0.034 
5 363.36 12.8 1.1 -146 145 1.90409 0.072 -0.009 
6 364.36 11.9 0.2 135 136 1.88208 0.051 0.013 
7 374.64 12.4 0.8 -10 9 1.85374 0.035 0.008 
8 374.65 12.8 1.2 -140 139 1.85231 0.040 -0.002 

AAD   0.9  321  0.125 0.033 
 



 
 
Table 2. Experimental pressures measured during Burnett expansions of DME. 
 

Series 1  Series 2 Series 3 Series 4 Series 5 
T/K T/K T/K T/K T/K 

343.86 343.86 343.86 348.96 354.08 
P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 
1.3265 0.5535 1.3654 0.5744 1.6973 0.7651 1.5747 0.6794 1.7013 0.7260 
0.9286 0.3637 0.9589 0.3774 1.2256 0.5027 1.1211 0.4464 1.2129 0.4770 
0.6340 0.2390 0.6564 0.2480 0.8510 0.3303 0.7749 0.2933 0.8392 0.3134 
0.4280 0.1570 0.4427 0.1629 0.5784 0.2170 0.5261 0.1927 0.5699 0.2059 
0.2857 0.1032 0.2958 0.1070 0.3890 0.1426 0.3534 0.1266 0.3827 0.1353 
0.1898 0.0678 0.1966 0.0703 0.2592 0.0937 0.2358 0.0832 0.2552 0.0889 
0.1257 0.0445 0.1302 0.0462 0.1718 0.0616 0.1567 0.0547 0.1694 0.0584 
0.0831 0.0293 0.0861 0.0304 0.1137 0.0404 0.1039 0.0359 0.1122 0.0384 
0.0550 0.0192 0.0570 0.0199 0.0751 0.0266 0.0689 0.0236 0.0743 0.0252 

 
Series 6  Series 7 Series 8 Series 9 Series 10 

T/K T/K T/K T/K T/K 
359.21 364.35 364.36 369.49 374.64 

P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 
2.0459 0.9065 2.2596 0.9953 2.4857 1.1491 1.9759 0.8077 2.7299 1.2338 
1.4868 0.5956 1.6477 0.6540 1.8485 0.7550 1.4070 0.5307 2.0291 0.8107 
1.0408 0.3913 1.1557 0.4297 1.3092 0.4960 0.9736 0.3487 1.4405 0.5326 
0.7124 0.2571 0.7903 0.2823 0.9019 0.3259 0.6616 0.2291 0.9948 0.3500 
0.4809 0.1689 0.5345 0.1855 0.6107 0.2141 0.4446 0.1505 0.6751 0.2299 
0.3218 0.1110 0.3572 0.1219 0.4090 0.1407 0.2966 0.0989 0.4532 0.1511 
0.2142 0.0729 0.2373 0.0801 0.2721 0.0924 0.1970 0.0650 0.3021 0.0993 
0.1420 0.0479 0.1571 0.0526 0.1802 0.0607 0.1305 0.0427 0.2004 0.0652 
0.0941 0.0315 0.1038 0.0346 0.1191 0.0399 0.0862 0.0281 0.1326 0.0428 

 
Series 11  Series 12 Series 13 Series 14 Series 15 

T/K T/K T/K T/K T/K 

379.80 384.95 390.14 390.15 393.24 
P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 P/MPa ρ/mol⋅dm-3 
3.1183 1.4494 3.5918 1.7846 3.7219 1.7780 3.9365 2.0082 4.0152 1.9932 
2.3529 0.9523 2.7910 1.1725 2.8615 1.1682 3.0949 1.3195 3.1377 1.3096 
1.6872 0.6257 2.0457 0.7704 2.0770 0.7676 2.2913 0.8670 2.3023 0.8605 
1.1718 0.4111 1.4294 0.5062 1.4540 0.5043 1.6144 0.5696 1.6238 0.5654 
0.7979 0.2701 0.9803 0.3326 0.9952 0.3314 1.1134 0.3743 1.1169 0.3715 
0.5365 0.1775 0.6622 0.2185 0.6714 0.2177 0.7554 0.2459 0.7561 0.2441 
0.3579 0.1166 0.4431 0.1436 0.4489 0.1430 0.5070 0.1616 0.5067 0.1604 
0.2375 0.0766 0.2946 0.0943 0.2984 0.0940 0.3380 0.1062 0.3373 0.1054 
0.1571 0.0503 0.1951 0.0620 0.1975 0.0617 0.2244 0.0697 0.2235 0.0692 
0.1038 0.0331 0.1289 0.0407     0.1477 0.0455 

 



Table 3. Second (B and B’) and third (C) virial coefficients for DME; ρ(1) and ρ’(1) denote 
regressed initial densities. 
 
 
 T 

/K 
B 

/cm3⋅mol-1 
C 

/cm6⋅mol-2 
ρ (1) 

/mol⋅dm-3
abs (dP)

/kPa 
bias (dP) 

/% 
B’ 

/cm3⋅mol-1
ρ’ (1) 

/mol⋅dm-3 
abs (dP’) 

/kPa 
bias (dP’) 

/% 
Series           

1 343.86 -301 15190 0.55367 0.232 0.128 -302 0.55355 0.234 0.100 
2 343.86 -293 1770 0.57356 0.158 0.124 -303 0.57440 0.266 0.032 
3 343.86 -274 -17560 0.75968 0.270 0.089 -306 0.76514 1.016 -0.224 
4 348.96 -323 34880 0.68182 0.390 0.217 -308 0.67942 0.521 0.316 
5 354.08 -301 24820 0.72744 0.239 0.139 -294 0.72604 0.264 0.176 
6 359.21 -296 26570 0.90953 0.392 0.153 -286 0.90653 0.589 0.244 
7 364.35 -267 15860 0.99792 0.284 0.042 -269 0.99531 0.287 0.000 
8 364.36 -257 8430 1.14436 0.062 0.000 -269 1.14906 1.047 -0.194 
9 369.49 -280 30970 0.81090 0.291 0.122 -266 0.80774 0.589 0.235 

10 374.64 -260 20150 1.24000 0.300 0.077 -256 1.23379 0.496 0.131 
11 379.80 -246 18010 1.45152 0.106 0.012 -244 1.44945 0.200 0.031 
12 384.95 -236 15670 1.78343 1.576 -0.037 -237 1.78459 1.736 -0.110 
13 390.14 -229 16790 1.77933 0.086 0.002 -229 1.77798 0.105 -0.005 
14 390.15 -238 19720 2.02045 1.777 0.035 -230 2.00824 2.868 0.233 
15 393.24 -228 17740 1.99930 0.207 0.047 -225 1.99319 0.976 0.137 

AAD     0.420 0.080   0.750 0.140 
⋅ 
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Figure 1. Second virial coefficients, B = ( ) and B’ = ( ), against reduced temperature. The values 

fitted by equation (3) are presented by a dashed line.  
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Figure 2. Second virial coefficients, B’, against reduced temperature. The values correlated by the 

Tsonopoulos7 correlating method are presented by a solid line.  

, Present work; , ref 7; , ref 8; , ref 9; , ref 10; , ref 11. 
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Figure 3. Pi/Pi+1 against the expansion number for three runs. 

, T = 343.86 (series 3); , T = 364.35 K (series 7); , T = 393.24 K (series 15). 

 


