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Abstract

Association studies have identified several signals at the LRRK2 locus for Parkinson’s disease (PD), Crohn’s disease (CD) and
leprosy. However, little is known about the molecular mechanisms mediating these effects. To further characterize this
locus, we fine-mapped the risk association in 5,802 PD and 5,556 controls using a dense genotyping array (ImmunoChip).
Using samples from 134 post-mortem control adult human brains (UK Human Brain Expression Consortium), where up to
ten brain regions were available per individual, we studied the regional variation, splicing and regulation of LRRK2. We
found convincing evidence for a common variant PD association located outside of the LRRK2 protein coding region
(rs117762348, A.G, P = 2.5661028, case/control MAF 0.083/0.074, odds ratio 0.86 for the minor allele with 95% confidence
interval [0.80–0.91]). We show that mRNA expression levels are highest in cortical regions and lowest in cerebellum. We find
an exon quantitative trait locus (QTL) in brain samples that localizes to exons 32–33 and investigate the molecular basis of
this eQTL using RNA-Seq data in n = 8 brain samples. The genotype underlying this eQTL is in strong linkage disequilibrium
with the CD associated non-synonymous SNP rs3761863 (M2397T). We found two additional QTLs in liver and monocyte
samples but none of these explained the common variant PD association at rs117762348. Our results characterize the LRRK2
locus, and highlight the importance and difficulties of fine-mapping and integration of multiple datasets to delineate
pathogenic variants and thus develop an understanding of disease mechanisms.
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Introduction

The role of LRRK2 in human disease was first recognised in

2004 when dominant mutations in the LRRK2 gene were linked to

Parkinson’s disease (PD). Rare genetic variants located in the

LRRK2 gene contribute to a significant fraction of familial

clustering of the disease [1]. In particular, heterozygous carriers

of the non-synonymous change G2019S have an estimated PD

lifetime risk close to 50% [2,3], which directly implicates the gene

LRRK2 as causally implicated in PD aetiology. In addition, recent

GWAS results suggest that common variants with a more modest

effect on PD risk also exist at this locus [4]. Intriguingly, GWAS

have implicated LRRK2 in the pathogenesis of Crohn’s disease

(CD) and leprosy [5–7]. However, the mechanisms linking PD and

the LRRK2 gene, and more generally the LRRK2 gene and human

disease, remain largely unknown and are the focus of an intense

research effort.

The LRRK2 gene spans 144 kb and is made up of 51 exons. It

produces a 2,527 amino acid protein with multiple functional

domains, including leucine-rich repeats (LRR), a GTPase

domain (Ras of Complex proteins or ROC domain), a domain

of unknown function termed the C-terminal of ROC (COR)

domain, a kinase domain and a WD40 domain [8]. Coding

changes causative for PD are located within the enzymatic core

of LRRK2, namely the ROC-COR-Kinase triad of domains,

and several of the mutations described in this region disrupt the

enzymatic activities of the protein – strongly implicating the

enzymatic function of LRRK2 in the pathogenesis of PD [9–11].

Existing data demonstrates that LRRK2 expression is not

restricted to the human brain, but is also found in liver, kidney

and thymus [12,13]. A number of studies have been undertaken

to investigate the function, expression and cellular localization of

LRRK2 in the human brain [14–17]. However, these findings

have been based on relatively small numbers of individuals.

Consequently, much of the biology of this gene remains

unknown. In particular, very little is known about the pattern

of LRRK2 gene expression across the brain, to what extent it is

the subject of alternative splicing and, if this is the case, whether

splicing is region-specific, and finally how the expression of

LRRK2 is regulated – all information that is likely to be critical

for deciphering how LRRK2 dysfunction results in disease.

A key area of research is the identification of the molecular

mechanisms linking variants in the LRRK2 region with modified

risk for PD, CD and leprosy [1,4,6,7,18]. We hypothesize that

some of these effects are mediated by genetic control of the

expression and/or splicing or LRRK2 mRNA. This hypothesis can

be tested by combining disease GWAS results with expression

datasets and by investigating whether these association signals are

compatible with shared causal variants [19]. In addition to

suggesting causal mechanisms, this analysis can point to tissue

types involved in disease pathogenesis. Therefore, on the basis that

PD is driven by pathophysiological processes resulting in the death

of neuronal cell populations, there is considerable interest in

dissecting the genetic basis of PD susceptibility at the LRRK2 locus

by analysing these results in parallel with expression QTL (eQTL)

studies conducted in multiple human tissues.

Here, we use genotype information generated using a custom

array (Immunochip) and imputation techniques [20] to provide

dense genetic coverage at the LRRK2 locus from 5,556 controls

and 5,802 PD cases of European descent to fine map the PD

association at this locus. We compare these data with quantitative,

exon-specific LRRK2 mRNA expression data generated from 10

brain regions originating from 134 neuropathologically-confirmed

control individuals also of European descent (1,231 Affymetrix

exon arrays). The DNA samples of all 134 individuals were

genotyped using the same dense Immunochip array (as well as the

Illumina Omni-1M Quad chip). The 10 brain regions analysed

include substantia nigra and putamen, brain regions that are

relevant to PD pathophysiology. We then combine these results

with published GWAS and eQTL findings using imputation

techniques [20] in order to obtain insights into the molecular

mechanisms of LRRK2 disease associations.

Results

Fine-mapping of the LRRK2 PD association signals
Using a GWAS of 5,333 cases and 12,019 controls, Nalls et al

[4] identified a PD association in the LRRK2 chromosome region

with a common variant (rs1491942, GWAS P = 3.2361028, MAF

7%). To fine-map this locus and confirm that this result is

independent of the previously described rare variant association at

the nsSNP rs34637584/G2019S, we densely genotyped the

LRRK2 region in the GWAS replication set of 5,802 PD cases

and 5,556 controls using the ImmunoChip (2.3 typed SNPs per kb

on average in the region defined by hg19 chr12:40,351,601-

40,830,814, see Methods and [21]). We further increased marker

density using 1,000 genomes based imputation (Methods and

Table S2).

Direct ImmunoChip genotyping in the GWAS replication set

confirmed the strong and previously reported association at the

rare rs34637584/G2019S non-synonymous SNP (nsSNP,

P = 1.7610212, MAF ,0.001 in controls, Figure 1A). To

investigate the presence of a potential secondary association at

this locus, we performed a stepwise conditional regression analysis

(Methods). We found that several SNPs located 39 and 59 of

LRRK2 remained significant (and with essentially unchanged P-

values) after conditioning on the rs34637584/G2019S variant

(Figure 1A). The strongest evidence of association in this

conditional analysis was found for rs117762348 (imputed A.G

SNP with imputation r2.0.99, P = 2.5661028, UK control MAF

0.083, UK case MAF 0.074, OR 0.86 with 95% CI: 0.80–0.91 for

the minor allele) which is located 59 of LRRK2. rs117762348 is in

moderate LD (D’ = 1, r2 = 0.31, Table S3) with the initial GWAS

SNP rs1491942 (combined GWAS and ImmunoChip data for

rs117762348 is P = 1.55610213). While other SNPs showed a

comparable level of association (Figure 1A), none of them were

coding (P.1024 for all exonic SNPs, either typed or imputed).

After conditioning on both rs117762348 and rs34637584 no other

SNP remained significant (P.1024). The PD association signal

could therefore be summarized using a combination of

rs34637584/G2019S and rs117762348.

CD meta-analysis [7] results indicate that at least two

independent CD associations (Table 1) exist at the LRRK2 locus

Fine-Mapping of LRRK2
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(lead SNPs rs11564258 and rs3761863). The low correlation

coefficient (r2 = 0.05, Table S3) between these two SNPs is

consistent with independent associations. None of the CD SNPs

is associated with PD in the immunoChip dataset (Table 1). In

contrast, we observed suggestive evidence for PD association in the

immunoChip dataset at the leprosy lead SNP rs1491938 (PD

P = 0.001, OR 1.09, 95% CI: [1.04–1.15], Table 1). However, we

found no support for this PD association in the GWAS dataset [4]

(P = 0.43 for PD at rs1491938).
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C− LRRK2 exons 32 and 33 QTL in brain samples
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E− LRRK2 QTL in liver samples
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Figure 1. Multiple association signals in the LRRK2 region chr12:40,351,601-40,830,814. The x-axis shows the physical position (hg19
build) of each variant and the y-axis shows the –log10(p) for association. Typed SNPs are shown in red and imputed SNPs in grey. (A) Fine-mapping of
the PD association using case-control ImmunoChip genotyping. (B) Combined brain expression data across all brain regions and all exons of LRRK2
(C) Exon specific QTL identified in brain samples (combining expression data from ten brain regions). The expression probes showing this signal are
located in exons 32 and 33 of LRRK2. (D) LRRK2 eQTL identified in 1,490 monocytes samples. (E) LRRK2 eQTL identified in 966 liver samples.
doi:10.1371/journal.pone.0070724.g001
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LRRK2 mRNA expression levels in different brain regions
The genetic evidence for a regulatory (rather than protein

coding) mechanism to explain this common variant association

motivated further investigation of LRRK2 mRNA expression. To

assess the pattern of gene expression in human brain, we generated

expression data for n = 134 samples without diagnosed neuropa-

thology [22]. Owing to the heterogeneity of the human brain, our

brain expression dataset separately quantified mRNA regional

levels by Affymetrix GeneChip Human Exon 1.0 ST Arrays in ten

brain regions of adult samples (for the majority of the n = 134

samples: 1,231 arrays overall): frontal cortex, occipital cortex

(specifically primary visual cortex), temporal cortex, intralobular

white matter, thalamus, putamen, substantia nigra, hippocampus,

medulla (specifically inferior olivary nucleus) and cerebellum. No

significant correlation was found between LRRK2 mRNA expres-

sion level and age/gender. We used these data to assess the extent

of brain regional variability in LRRK2 mRNA expression.

Our array results showed evidence of regional variability in

mRNA expression patterns. LRRK2 mRNA levels were two-fold

higher in the occipital cortex (analysis of variance P,10220), the

region expressing the highest LRRK2 levels, as compared to

cerebellum and white matter (Figure 2A). The LRRK2 expression

level in substantia nigra and putamen, the brain regions most

implicated in the pathophysiology of PD, were unremarkable

(Figure 2A). QuantiGene (QG, a non-PCR method based method,

Figure 2B) and real-time qPCR (Figure 2C) were used to confirm

the array results and demonstrated similar regional mRNA

expression patterns in a subset of brain samples within 4 selected

regions. As we have previously documented [22] we found very

good agreement between the different gene expression quantifi-

cation methods.

Identification of several gene QTLs and exon QTLs for
LRRK2

The localization of the secondary PD association signal outside

of the LRRK2 coding region suggests that its effect might be

mediated by mRNA expression levels. We therefore used mRNA

expression datasets generated by our own group, as well as

publically available datasets, to investigate the extent of a genetic

control in cis of LRRK2 mRNA expression levels. In addition to the

brain expression dataset that we generated [22], we investigated a

total of 15 eQTL expression studies (Table S4). Since each of these

studies using probes located in different exons, and these may not

capture the expression level of the entire gene, we generally refer

to exon eQTL to describe these associations. Only the brain

expression datasets covers the majority of LRRK2’s exons, whereas

the liver (exon 51) and monocyte (exon 50) datasets use single good

quality probes.

To perform our exon eQTL analysis we combined our brain

expression dataset with liver ([23], n = 970, Methods) and

monocytes (Gutenberg Health Study [24], n = 1,490) samples.

All expression probes were carefully checked for variants located

within them using the 1,000 Genomes dataset and the NHLBI

exome sequencing project data (http://evs.gs.washington.edu/

EVS/) and excluded if necessary. In brain, and after combining

the data across all the exonic probes, we found no significant

correlation between overall LRRK2 gene expression and genotypes

(Figure 1B). However, we identified a brain eQTL implicating

specifically exons 32 and 33 with rs10784486 (Table 2 and

Figure 1C) across all brain regions (Figure S2). We also identified

two additional and independent eQTLs (Table 2): one in

monocytes (with rs10784428, Figure 1D) and one in liver (with

rs11175518, Figure 1E and S1). For the liver and monocyte data, a

single good quality exonic probe was present on the array. We

therefore expect that these signals capture information about the

expression of the overall LRRK2 gene, in contrast with the brain

eQTL that was observed only for exons 32 and 33.

We found no significant evidence in the brain samples for an

exon eQTL at the liver SNP rs11175518 (P = 0.054 in brain) or at

the monocyte exon eQTL SNP (P = 0.073 in brain for

rs10784428), although this may be a consequence of the smaller

sample size of the brain expression study.

Table 1. Common variant associations in the LRRK2 region for PD, CD and leprosy.

Parkinson’s disease Crohn, first signal Crohn, second signal Leprosy

SNP rs117762348 rs11564258 rs3761863a rs1491938

Position chr12:40,597,612 chr12:40,792,300 chr12:40,758,652 chr12:40,645,630

Alleles (major . minor) A.G G.A C.T T.C

MAF 0.076 0.034 0.32 0.396

Odds ratio for PD (95% CI) in
the immunoChip dataset

0.85 (0.80–0.91) 0.89 (0.75–1.05) 0.97 (0.91–1.02) 1.09 (1.04–1.15)

Odds ratio for minor allele
(95% CI) for each of the respective
disease

0.85 (0.80–0.91) 1.74 (1.55–1.95) 1.1 (1.05–1.15) 0.86 (0.80–0.92)

Other SNP in LD (r2, Table S3) rs1491942 (r2 = 0.31,
PD GWAS SNP)

- rs10784486 (r2 = 0.7,
brain eQTL)

rs10784428 (r2 = 0.3,
monocyte eQTL)

P-values for overlap with eQTL datasets (direction of effect for the minor allele)

P-value brain LRRK2 eQTL,
exon 32–33 specific

NS NS 1.35E-11 (2) NS

P-value LRRK2 eQTL liver NS NS NS NS

P-value monocyte LRRK2 eQTL 9.4E-4 (+) NS NS NS

The CD GWAS results indicate a minimum of two independent associations. For each disease association we list the P-values in the expression datasets. NS: not-
significant (P.0.001). (a): See Figure S3.
doi:10.1371/journal.pone.0070724.t001
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Investigation of the RNA mechanism explaining the brain
exon 32–33 eQTL

Given the evidence of an exon specific QTL in exons 32–33 of

LRRK2, we investigated whether we could identify the RNA

mechanism explaining this result. As a first step, we used junction

and exon-specific primers (Table S5), and reverse transcriptase

PCR (RT-PCR) in 12 randomly selected brain samples and four

brain regions to further explore the splicing patterns of exons 32–

33. Our data indicate that we can indeed amplify isoforms with

spliced out exons 32–33 (Figure 3). These isoforms may however

be rare.

In order to better understand the splicing pattern around these

exons using a quantitative approach, we generated RNA-Seq data

(101 bp reads paired end using the Illumina HiSeq instrument)

from total RNA in n = 8 post mortem brain samples (4 brain

donors, 2 brain regions: substantia nigra and occipital cortex,

Methods). These four samples were selected from the set of

n = 134 brain samples with microarray data with the following

constraints (in order of priority): male, same ischaemic heart

disease as cause of death, similar ages at death and post mortem

intervals. The genotypes of these 4 brain donors at the lead brain

exon 32–33 eQTL SNP rs11175518 are CC, AC, AA and AA.

We aligned the sequencing reads against the hg19 version of the

human reference genome using the STAR aligner [25], which is

designed for RNA-Seq alignment, including the incorporation of

known exon-exon junctions as well as the discovery of novel ones.

We complemented the known junction category by adding the

exon junctions 32–34 and 31–34 in the known junction file, to

maximize the power to detect these events.

A summary of the number of sequencing reads (mapped and

overall) for the RNA-Seq data is provided in Table S6. Table S7

summarizes all junction reads, split into 3 categories: (i) predicted

junctions for the canonical LRRK2 transcript (Ensembl identifier

ENST0000029891), (ii) predicted junctions for the non-canonical

LRRK2 transcript (iii) novel junctions. Overall expression of

LRRK2 was sufficient to detect all canonical junctions with strong

support in all 8 samples (Table S7). The only non-canonical

junction observed with strong support (. 10 junction reads) in the

region of exons 29–35 involved the skipping of exon 34 (Table S7).

Only 3 reads supported the skipping of exon 32 and none skipped

exon 33 (Table S7). Based on these data, we conclude that no

novel junction event present at high frequency was obviously

capable of explaining the exon 32–33 eQTL, leaving this question

unsolved. However, we note that the canonical junctions in the

exons 29–35 region of LRRK2 had an overall lower read count

than the other LRRK2 canonical junctions, suggesting that there

may be unexplained splicing complexity in this region of LRRK2.

Relevance of genetic control of expression for PD, CD
and leprosy

Owing to the multiple exon eQTLs and disease association

signals in the LRRK2 region, we then assessed whether the data are

compatible with shared causal variants for eQTLs and disease

studies. This analysis identified a mRNA/exon eQTL pair

consistent with a shared causal variant. The secondary LRRK2

CD association (lead SNP rs3761863) was strongly correlated with

LRRK2 mRNA expression of exons 32 and 33 in brain samples

(Table 2 and Figure S3). The minor allele T of rs3761863

increases CD risk and is associated with a decrease in LRRK2

expression (Table 1 and Figure S3). While the low typing density

of the latest CD meta-analysis (for the rs3761863/CD exon eQTL)

does not enable a formal test of co-localization between disease

and eQTL signals [19], these results suggest a plausible mRNA

Figure 2. Regional variability in LRRK2 expression. (A) Box plot
of mRNA expression levels for LRRK2 in 10 brain regions, based on
microarray experiments and plotted on a log2 scale (y axis). Whiskers
extend from the box to 1.5 times the inter-quartile range. (B) Box plot of
mRNA expression levels for LRRK2 in 4 brain regions, based on
QuantiGene experiments. Whiskers extend to the maximum and
minimum values. Stars indicate significant differences in expression
between brain regions (p-value ,0.01, Wilcoxon signed rank testing).
(C) Dot plot of mRNA expression levels for LRRK2 in 3 brain regions
based on TaqMan Real Time PCR experiments. The expression levels
were normalized to the geometric mean of 3 housekeeping genes. The
graph shows higher expression in OCTX compared with other regions.
Abbreviations: frontal cortex (FCTX), occipital cortex (specifically
primary visual cortex, OCTX), temporal cortex (TCTX), intralobular white
matter (WHMT), thalamus (THAL), putamen (PUTM), substantia nigra
(SNIG), hippocampus (HIPP), medulla (specifically inferior olivary
nucleus, MEDU) and cerebellum (CRBL).
doi:10.1371/journal.pone.0070724.g002
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mechanism to mediate this secondary CD association signals.

Denser fine-mapping data for CD is required to answer this

question.

We also observed a weak association between the PD associated

lead SNP rs117762348 and the LRRK2 eQTL in monocyte cells

(P = 9.461024, Table 1). However, while the lead SNPs for PD

(rs117762348) and monocyte exon eQTL (rs10784428) are

physically close (separated by 6,996 bp, Figure 1), these two SNPs

are not in LD (r2 = 0.05, Table S3). Accordingly, the strength of

the monocyte exon eQTL association at the PD lead SNP is much

weaker than the signal observed at the lead monocyte exon eQTL

SNP (P = 961024 for rs117762348 in Table 1 versus

P = 1.3610210 for rs10784428 in Table 2). Hence, the data are

not supportive of a shared causal variant for the PD association

and the monocyte exon eQTL.

Discussion

Motivated by the role of LRRK2 in PD, we fine-mapped this

locus in a large case-control collection and found firm support for

the presence of a common non-coding variant PD association at

this locus (MAF ,8%). However, several SNPs show comparably

high level of PD association and we cannot at this stage make a

firm statement about the exact causal variant, but instead highlight

a group of SNPs in high LD. The analysis of gene expression

datasets highlighted the complexity of the genetic control of

LRRK2, with at least three independent exon QTLs at this locus.

The convincing exon QTL found in brain tissue involves exons 32

and 33 of LRRK2 but does not co-localize with the PD association.

Similarly, the exon QTLs identified in liver and monocyte

populations do not co-localize with the PD association.

The most recent meta-analysis results for CD indicate a

secondary association for CD, for which the nsSNP rs3761863 is

a leading associated variant (P = 3.061026) [7]. rs3761863/

M2397T is also strongly associated with the exon 32–33 brain

exon eQTL (lead SNP rs10784486) that we identified

(P = 1.35610211, Table 1). The human intestine is heavily

innervated and therefore brain tissue may not be irrelevant to

CD, but it is also plausible that this exon/expression correlation

is shared across other tissue types. Our data suggest a potential

mechanism to mediate the CD association but additional CD

fine-mapping will be required to test whether the CD and brain

exon QTL datasets are fully consistent with a shared variant. We

also note that a previous study has associated the same nsSNP

rs3761863 with LRRK2 protein stability [26]. These results

highlight several factors that complicate the follow-up of

associated variants at the LRRK2 locus in all diseases and in

particular PD: the existence of multiple LRRK2 isoforms,

variability in mRNA expression and splicing across brain regions,

and localisation of LRRK2 protein to both neuronal and non-

neuronal cell types.

On the basis of both exon array and RT-PCR data we predict

that alternative isoforms including the splicing of either one or

both of exons 32–33 must exist. However, in our brain samples

RNA-Seq data, we could not find a strong support for junction

reads that support the splicing out of exons of 32 and/or 33. While

we cannot fully exclude that unexpected artefacts generated a false

positive result for that exon 32–33 specific brain eQTL, an

alternative scenario would implicate a more complex set of splicing

events, potentially involving more than exons 32–33. Analytical

challenges, limited read depth and short length of RNA-Seq reads,

may prevent us from characterising this event. The lower number

of junctions in the exons 29–35 region of LRRK2 suggests that this

Table 2. List of identified LRRK2 eQTLs in three gene expression datasets: brain (n = 134), liver (n = 970) and monocytes (n = 1,490).

Lead SNP Position Alleles MAF Probe location

P-value (direction
of effect for minor
allele)

PD association
P-value (estimated OR
for minor allele)

n = 134 brain samples, imputation from Immunochip, Affymetrix exon array

rs10784486a chr12:40,677,029 C.A 0.33 exons 32 and 33 2.24E-13 (2) 0.11 (0.95)

n = 966 liver samples, imputation from Illumina 660W, custom Affymetrix array (exons 5, 19, and 51)

rs11175518b chr12:40,580,318 C.T 0.0709 exon 51 4.18E-21 (+) 0.015 (0.88)

n = 1,372 monocyte samples, probes located in exons 50

rs10784428 chr12:40,604,608 C.A 0.44 exon 50 1.3E-10 (2) 0.66 (0.99)

For the P-value computations in brain samples, LRRK2 expression values are averaged across all 10 brain regions. MAF: minor allele frequency. a: See Figure S2. b: See
Figure S1.
doi:10.1371/journal.pone.0070724.t002

Figure 3. RT-PCR results showing evidence of amplifiable splice
forms across exons 32–33 of LRRK2 in selected brain regions,
occipital cortex (OCTX), substantia nigra (SNIG), medulla
(MEDU) and cerebellum (CRBL). (A) RT-PCR results confirming the
splicing out of exons 32–33 in SNIG, compared with the other brain
regions tested. The expected band size for the isoform with exon 32–33
included is 470 bps, whereas that for the isoform with exon 32 alone
spliced out is 270 bps. These results show splicing out of exons 32–33
in substantia nigra and the existence of an isoform with exon 32 alone
spliced out in OCTX, MEDU and CRBL. (B) RT-PCR results further confirm
the splicing out of exon 33 in SNIG. While OCTX, MEDU and CRBL show
the expected band size of 195 bps suggesting that exon 32–33 is not
spliced out in these regions, SNIG does not.
doi:10.1371/journal.pone.0070724.g003
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may be the case, but further analysis will be required to confirm

this hypothesis.

In summary, this study provides novel insights into LRRK2

expression, splicing and regulation with a potential link to the

etiology of CD. It also highlights the relevance of imputation

techniques to provide the dense coverage required to integrate

multiple disease association and gene expression studies. The

localization of the common variant PD association outside of the

coding region of LRRK2 suggests that it is likely that the effect on

disease risk is mediated by control of mRNA expression. However

the tissue type where this effect might take place remains an open

question. These data, together with our recent analysis of the

MAPT locus, illustrate the complexities of defining precisely how

risk loci contribute to disease and illustrate that there is as much

work required to dissect a locus as to identify it in the first place

[27]. We expect that future gene expression studies will increase

the quality and quantity of data to maximize the power to dissect

the genetic control of LRRK2 expression in all those diseases in

which it is implicated.

Materials and Methods

Case control collections
Participating studies were genotyped using the ImmunoChip as

part of a collaborative agreement with the ImmunoChip

Consortium. Genotyping of the UK cases using the Immunochip

was undertaken by the WTCCC2 at the Wellcome Trust Sanger

Institute which also genotyped the UK control samples. The

constituent studies comprising the IPDGC have been described in

detail elsewhere [4]. All samples were of Caucasian origin from the

following countries: UK (1,864 cases and 1,271 controls), USA

(2,215 cases and 2,807 controls), Dutch (402 cases and 304

controls), German (712 cases and 1,153 controls) and French (363

cases and 267 controls).

Genotyping
4 ul of 50 ng/ul gDNA and whole genome amplified DNA

samples were marked on the Illumina Infinium Omni1-Quad

BeadChip (Illumina), which characterizes over 1.1 million SNPs

across the genome, according to the manufacturer’s instructions.

The BeadChips were scanned using an iScan (Illumina) with an

AutoLoader (Illumina).

Brain and case control samples were also genotyped using the

Immunochip, a custom genotyping array designed for the fine-

mapping of auto-immune disorders. The ImmunoChip also

contains 2,000 SNPs selected for replication of a Parkinson’s

disease genome-wide association study performed by the Interna-

tional Parkinson’s Disease Genomics Consortium [4,21]. Geno-

meStudio v.1.8.X (Illumina Corp.) was used for analysing the data

and generating SNP calls. SNP calls were created using the

HumanOmni1-Quad_v1-0_B (C) cluster file provided by Illumina

as a reference. Standard quality control checks carried out on both

dataset include the removal of SNPs that are either labelled as

copy number variations, labelled as indels, monomorphic in this

data, have less than 95% genotyping rate across samples, deviate

from Hardy-Weinberg Equilibrium at p,0.0001, had no genomic

position information, had less than two heterozygotes or redun-

dant with an existing SNP. After quality control, we had 815,859

SNPs from the Illumina Omi 1M chip and 137,456 from

Immunochip and obtained a total of 905,943 after merging the

two dataset and resolving for overlapping SNPs. All manipulation

with genotyped data was performed in PLINK version 1.07 [28].

Next, we imputed un-typed SNPs from the autosomes and

chromosome X using the MACH [29,30], minimac software

(http://genome.sph.umich.edu/wiki/Minimac) and the 1000

Genomes Project (May 2011 Haplotype release) which is based

on 381 individuals of European descent. For this paper, we

restricted the imputed data to SNPs with imputation quality (R2)

greater than 0.5.

QTL and disease association analysis
We tested the association between each SNP and each

expression profile using the R package snpStats (available as part

of the suite of packages Bioconductor). We assumed an additive

genetic model for each SNP (1 degree-of-freedom trend test)

without additional covariates. Unless otherwise specified, compu-

tations using brain expression data use the averaged expression

values for each sample across the ten regions surveyed.

Liver and monocyte expression datasets
The liver dataset has been previously described in [23]. It

consists of n = 966 liver samples typed using a custom Affymetrix

gene expression array, with DNA typed using the Illumina 660W

platform. The unique LRRK2 probe is located in exon 51 of the

canonical transcript. The monocyte Gutenberg Health Study

dataset has been described in [24]. It consists of n = 1,372

monocyte samples, with expression data measured using the

Illumina HT12 BeadChip expression array and DNA was typed

using the Affymetrix 6.0 genotyping array. The unique LRRK2

probe is located in exon 50 of the canonical transcript.

Human post-mortem brain tissue collection and
dissection

Brain and CNS tissue originating from 137 control individuals

was collected by the Medical Research Council (MRC) Sudden

Death Brain and Tissue Bank, Edinburgh, UK [31], and the Sun

Health Research Institute (SHRI) an affiliate of Sun Health

Corporation, USA [32].

Samples originating from the MRC Sudden Death Brain and

Tissue Bank were removed from whole brains as fresh tissue and

anatomical regions of interest were sampled from brain coronal

slices at autopsy and immediately flash frozen. In the case of

samples originating from the SHRI, whole brains were removed as

fresh tissue at autopsy and brain coronal slices were frozen.

Anatomical regions of interest were sampled from brain coronal

slices on dry ice. In all cases control status was confirmed by a

consultant neuropathologist. A detailed description of the samples

used in the study, tissue processing, pH determination, dissection,

quality controls and rationale for covariate correction and

statistical analysis of this data set is provided in Trabzuni et al.,

2011 [22]. All samples had fully informed consent for retrieval and

were authorized for ethically approved scientific investigation

(Research Ethics Committee number 10/H0716/3, The national

Hospital for Neurology and Neurosurgery & Institute of Neurol-

ogy Joint Research Ethics Committee). Brain gene expression data

are available within the GEO archive, accession number

GSE46706.

DNA extraction from brain samples
DNA was extracted from human post-mortem brain tissues

using Qiagen DNeasy kit (Qiagen, UK). The DNA quality was

accessed using ethidium bromide stained agarose gel. The

concentration and purity of each DNA sample was assessed using

the NanoDrop ND-1000 Spectrophotometer V3.3.0. The con-

centration of each sample was calculated, together with the ratio of

absorbance at 260 nm/280 nm and 260 nm/230 nm.
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RNA isolation, processing, and microarray hybridization
Total RNA was isolated from human post-mortem brain tissues

based on the Single-step method of RNA isolation [33] using the

miRNeasy 96 kit (Qiagen, UK). The quality of total RNA was

evaluated by the 2100 Bioanalyzer (Agilent, UK) and RNA 6000

Nano Kit (Agilent) before processing with the AmbionH WT

Expression Kit and Affymetrix GeneChip Whole Transcript Sense

Target Labelling Assay, and hybridization to the Affymetrix Exon

1.0 ST Arrays following the manufacturers’ protocols. Hybridized

arrays were scanned on an Affymetrix GeneChipH Scanner 3000

7G and visually inspected for hybridization artefacts. Further

details regarding RNA isolation, quality control and processing are

reported in [22].

Exon array data analysis
All arrays were pre-processed using RMA quantile normalisa-

tion with background correction and probe set summarisation with

median polish according to the Robust Multi-array Average

(RMA) [34] algorithm in Affymetrix Power Tools 1.14.3 (http://

www.affymetrix.com/partners_programs/programs/developer/

tools/powertools.affx). After re-mapping the Affymetrix probe sets

onto human genome build 19 (GRCh37) as documented in the

Netaffx annotation file (HuEx-1_0-st-v2 Probeset Annotations,

Release 354 31), we restricted analysis to 294,943 probe sets that: i)

had gene annotation according, ii) did not target intronic regions

and iii) contained at least two 25-mer probes with the following

properties: a) unique hybridization to target sequence and b) did

not contain SNPs as identified at 1% minor allele frequency from

the 1,000 Genomes project (haplotype release May 2011). Since

most exons are represented by only one probe set, we used the

probe set signal intensity as a synonym of exon expression level,

unless explicitly mentioned. Gene-level summary data for 26,684

transcripts was also generated by calculating the 10% trimmed

mean of the expression values from the corresponding probe sets.

In all types of analysis, the date of array hybridisation, brain bank

(SHRI or MRC Sudden Death Brain Bank) and gender were

included as co-factors to eliminate confounding effects as

investigated in detail in [22].

Array validation using direct RNA quantification with
branched DNA, QuantiGeneH 2.0 assay

Cerebellum, occipital cortex, putamen and white matter

samples from 12 individuals were analysed using the QG platform

for validation of exon array results. We focused on the target gene

for validation, Leucine-rich repeat kinase 2 (LRRK2). We selected

ribosomal protein, large, P0 (RPLP0) and ubiquitin C (UBC) as

housekeeping genes to normalize the target genes as they showed

relatively low variability in expression levels (i.e. low coefficient of

variation) in all brain regions in our dataset. The approach to the

selection of reference genes is explained in previous studies

[35,36]. In addition, a recent study confirms the efficiency of using

this approach in selecting housekeeping genes to normalize in

different tissues [37]. Further details regarding sample processing

for this section are reported in Trabzuni et al., 2011 [22].

Quantitative RT-PCR
Gene expression was quantified by TaqMan real-time PCR

technique (Invitrogen, UK) from 30 individuals in cerebellum,

occipital cortex and white matter. The LRRK2 specific assays

which cover exon-exon boundary included (Hs00968193),

(Hs00411194). Fluorescence was collected using the MxPro system

(Agilent, UK). All runs were performed in triplicates and were

normalized to a geometric mean of three housekeeping genes

(PPIA, RPL0, and UBC). The relative expression values were

calculated using the delta delta Ct method (DDCt).

Semi-quantitative Reverse-Transcriptase RT- PCR
The validation for the array splicing events was done by using

QIAGEN Long Range 2step RT-PCR kit (Qiagen, UK). All

primers for this analysis were designed using the Primer3 software

(fokker.wi.mit.edu/primer3/input.htm), and then they were

BLAST searched against UCSC human. In-silico PCR tools. An

aliquot of total RNA from 48 samples, originating from four brain

regions (occipital cortex, substantia nigra, medulla and cerebellum)

and 12 individuals were used as a subset for a further validation.

cDNA was synthesis from 1–2 mg of total RNA using gene specific

designed primers under the following conditions: Incubation at

42uC for 90 minutes, followed by enzyme activation at 85uC for

5 minutes. 2.5 ml of cDNA was used to perform the Semi-

quantitative RT-PCR for the targeted exons under the following

conditions: Initial activation at 93uC for 3 min, followed by

denaturation at 93uC for 15 sec, annealing 59uC for 50 sec,

elongation 68uC for 50 sec for 30–40 cycles. PCR products were

run on a 2% agarose gel (Invitrogen, UK) and photographed using

UV illumination to visualize GelRed staining. Images were

inverted in Adobe Photoshop.

RNA-Seq data and alignment
cDNA was produced using 100 ng of total RNA and the

Ovation RNA-seq system v2 (NuGEN, UK). The concentration of

ds-cDNA was determined using the QuBit dsDNA BR assay kit

(Invitrogen, UK). Fragmentation of the cDNA was done using a

Covaris S220 to a fragment size of 100–900 bp with a median size

of 250. DNA libraries were prepared using 1.2 mg cDNA with the

TruSeq DNA LT Sample prep kit (illumine, UK). Library

concentrations were determined using the KAPA library Quant

Kit (KAPAbiosystems) before being pooled into pools of three

samples. Each pool was sequenced on a single lane of a Paired End

HiSeq v3 Flow cell (Illumina) using a read length of 101 bp for

each read. Reads were aligned against the hg19 reference genome

using STAR with default parameters. The STAR alignment used

the default standard junctions data provided with the software

with the addition of junctions 31–34 and 32–34. We then

extracted the count data for all junctions (previously known and

novel) from the output of STAR.
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