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Abstract. It is known that subjects vary in their head movements. This
paper presents an analysis of this variety over different tasks and speakers
and their impact on head motion synthesis. Measured head and articula-
tory movements acquired by an ElectroMagnetic Articulograph (EMA)
synchronously recorded with audio was used. Data set of speech of 12
people recorded on different tasks confirms that the head motion variate
over tasks and speakers. Experimental results confirmed that the pro-
posed models were capable of learning and synthesising task-dependent
head motions from speech. Subjective evaluation of synthesised head mo-
tion using task models shows that trained models on the matched task
is better than mismatched one and free speech data provide models that
predict preferred motion by the participants compared to read speech
data.

Keywords: head motion variety, head motion synthesis

1 Introduction

Head movement demonstrates a wide variety of meaning. For example, nodding
can be used not only for agreement, but also for emphasis, indicating attention
and to indicate thinking during dis-fluencies [10, 12]. Such motion can be different
for the same speaker in other tasks or for others speakers doing the same task.

In recent years, the problem of driving head motion from speech has become
a popular topic for research. Head motion may considered as complementary
information for speech or other visual information (e.g. movements of mouth;
lips, jaw and tongue, and also eyebrows, eyelids movements). This information
increases speech intelligibility. Munhall et al. [12] found that the display of head
motion also improves speech perception.

Research on speech-driven talking faces began with work on synthesis of
lip and mouth motions that are synchronised with speech, (lip sync.) [11]. In
contrast to the lip sync on which a significant number of studies has been done,
automatic synthesis of head motion from speech has not been studied extensively,
especially in terms of the use of machine learning techniques. However, existing
speech-driven head motion system often ignore the variance of head movements
over different situation and speakers.
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Graf et al. [4] showed a link between the prosody expressed by the voice and
that given by the head. Yehia et al. [17] proposed a frame-wise mapping based
on a linear-regression model to estimate head rotation angles (Euler angles)
from FO. They found that the linear model had to be separately trained on each
utterance sample otherwise the correlation between FO and head motion almost
disappeared. A GMM-based simple frame-wise mapping has also been employed
for a talking head [7], longer temporal information was used in [3,2] and [9]. In
the former, HMMSs were employed to map F0 and energy to a frame-wise VQ code
of head rotation angles, whereas in the latter a discrete HMM was used to decode
a sequence of animation cluster codes from the pitch and intensity features at
every input syllable. Sargin et al. [13] developed a fully HMM-based approach for
mapping the trajectory of FO and intensity to the one of head rotation angles,
in which parallel HMMs were used to cluster trajectories of speech and head
motion separately. Hofer et al. [6, 5] proposed the use of human-understandable
head-motion units (e.g. nodding and shaking) as the model unit of HMMs. In
their approach HMMs are trained with the combined streams of audio speech
features (MFCC, F0, and energy) and head rotation angles. Despite the very low
frame-wise correlations they found between the speech and head motion features,
it was shown that head motion units were correctly recognised with an accuracy
of approximately 70% on a free-speech data set, and reasonably natural head
motions were synthesised. Lee et al. [8] evaluate 3 different machine learning
techniques in head nods and eyebrow movements prediction. They found that
the behaviors generated by the different models affect the human perception of
the agent.

In this paper, we used an ElectroMagnetic Articulograph (EMA) corpus that
contain articulatory and head movements recorded synchronously with audio.
The rationale for considering articulatory features is that there is some evidence
that articulatory movements, e.g. opening the jaws, contribute to the movement
of the head [18]. The goal of the work described in this paper is to analysis the
head motion variety over different tasks and speakers and their impact on head
motion synthesis.

2 Data Set

In the present study, we used 12 English native speakers (4 males and 8 females
denoted by RO0X X _¢sX) of the Edinburgh Speech Production Facility (ESPF)
corpus [15]. This corpus contains articulatory and head movements over time
synchronously recorded with audio and electropalatography. Using two Carstens
AG500 electromagnetic articulometers positioned 8.5m apart to avoid electro-
magnetic inter-machine interference, the articulatory and head movements of
English speakers in dialogue was recorded using 3D positions of sensors glued
on the lips, tongue, jaw, and head. Communication among participants and ex-
perimenters is regulated via a talkback system.
Each speaker recorded different tasks. The recorded tasks were:

— Script reading: the speaker reads the script “Comma gets a cure”



— Map Giver: Map task, the speaker is the instruction giver.

— Map follower: Map task, the speaker is the instruction follower.

— Spot diff.: 3 Spot the difference picture tasks were recorded (Street, Diapix,
Farm), the speakers was collaborating to find the differences.

— Repet. Teller: 2 Repetition task (Dance story, Loch story), the speaker is the
reader.

— Repet. Shadower: 2 Repetition task, the speaker repeats what the teller reads
out.

— Story Teller: Shadowing task, the speaker tell a story of his choice

— Story Shadower: Shadowing task, the speaker follow the the partner’s story.

Depending on the speaker, the duration of the speech is between 11 and 38
minutes and the number of the available task is between 8 and 10.

2.1 Head Motion Data

Head motion is represented by the head correction of the articulatory trajecto-
ries in the data set. Four coils attached to the upper incisor, to the nose and to
the left and right ears served as references to extract the head movements. Head
translations and rotations were calculated in order to remove the contribution of
head movements from the articulatory data. In this study, head motion are rep-
resented by head rotations (R., Ry, R;) about the z, y and x axes, respectively.
In order to use a common frame shift of 10 ms, the data was down-sampled to
100 Hz and their first derivatives was added.

2.2 Speech Data

Articulatory data Articulatory movements correspond to the horizontal and
vertical midsagittal (x,y) coordinates of six coils attached to the speech organs.
A jaw coil is attached to the lower incisors, three coils are attached to the tongue
(tongue tip, tongue middle and tongue back), a coil is attached to the upper lip
and another to the lower lip. The articulatory data (denoted by EMA and
represented by 12 parameters) was down-sampled to 100 Hz to match the head
motion data and their first derivatives were added. Note that audio-speech signal
was recorded synchronously with EMA data (not used in this study).

3 Head Motion Variation

It is well-known that subjects vary greatly in their head movements. Although
head movements is associated with many factors that can be explained by the
settings of more/less speaking, the dialogue partner, the seating arrangement
and also speaker’s personality, social stance, physiological state and visual focus
of attention. Modelling the impacts of these factors and their dependency is a
challenging problem.

This section discuss how the head motion varies between tasks and speakers.
The dispersion ellipses of the head motion is represented in the 3D head space
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Fig. 1. Head motion variation of the same tasks over different speaker

(i.e. x, y and z axes) by the mean and the full covariance matrix over the sets
of the task instance (cf. Fig. 1) and speakers (cf. Fig. 2).

For a clear representation, we display all the task for two speakers in Fig. 2
and all speakers for two tasks in Fig. 1. Fig. 1 presents the distribution of two
different tasks: (a) Read task (i.e. Script reading) when the speaker reads a
script and (b) Map task (i.e. instruction giver) when the speaker is given the
map instruction to the follower. This illustrates the very low variability of the
head motion for the read task, as expected since the speaker’s head is focusing
on the script. The high variability of the head motion observed on the map task,
can be explained by the free speech given by the speaker when he is collaborating
with the follower to find the way. The variation of the head motion changes from
speaker to another specially on the free speech (i.e. map task). Confusion trees
have been built for speakers, based on the matrix of Mahalanobis distances of
the head motion between each pair of speakers We confirm that the head motion
is speaker dependent.

Fig. 2 displays the dispersion ellipses of head motion over all tasks for two
speaker (i.e. male speaker R0020_cs5 and female speaker R0039_cs6), as well
as the confusion trees that have been built for tasks, based on the matrix of
Mahalanobis distances of the head motion between each pair of task. Using hier-
archical clustering to generate dendrograms, we find different distance between
tasks depending on the speaker. We can confirm that head motion is not only
speaker dependent but also task dependent.

Hierarchical clustering was performed based on Mahalanobis distances. The
results are viewed in a dendogram, which displays the nodes arranged into their
hierarchy and also shows how far apart the items were. Dendrograms of Fig. 1
and Fig. 2 that display the Mahalanobis distances between tasks and speakers,
respectively, show that the distance between tasks (up to 6) is lower than the
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Fig. 2. Head motion variation of the same speaker over different tasks

distance between speakers. This illustrate that head motion is depends more on
speaker variation rather than tasks variation.

4 Speech Driven Head Motion Synthesis

The key idea of this paper is to model the head motion variation and its impact
on head motion synthesis from speech.

We recall the experiments published previously in [1]. We found that canoni-
cal correlation analysis (CCA) on a free speech data shows that the articulatory
features are more correlated with head rotation than prosodic and/or cepstral
speech features. Therefore, we used measured articulatory features as input fea-
ture for speech driven head motion synthesis.

4.1 Clustering of Head Motion Data

Data annotation is an essential step in the HMM training process. However,
manual annotation is often time-consuming and expensive. Furthermore, as head
motion is concerned not only one segmentation will necessarily be right.

In our experiments, the training data of head motions were automatically
labelled using an HMM-based clustering technique that may be able to provide
both short and long segments that provide a statistical description of a particular
motion. Algorithm 1 explain the instructions used to label automatically the
data. We used GMM clustering to initialise the HMMs. Over the task data of
a speaker, GMM with K distributions was trained using EM algorithm. Then,
the data was clustered using the trained GMM into K clusters. Each cluster was



used to initialise an HMM. The HMMs parameters were re-estimated using EM
algorithm and then new cluster labels were decoded using Viterbi algorithm.
This process was repeated until convergence was reached.

Algorithm 1: CLUSTERING of head motion data

Input: Head motion data of a task of one speaker
QOutput: Head motion cluster labels with their durations

1 Train GMM with K distributions using EM algorithm.

2 Cluster the data into K cluster labels using the trained GMM based on the
maximum likelihood.

3 Initialise K HMMs with K clusters

4 repeat

5 Re-estimate the HMMs parameters using EM algorithm

6 Decode new cluster labels using the re-estimated HMMs and Viterbi

algorithm
7 until convergence is reached
8 return cluster labels

In order to find the optimal number of clusters and the optimal HMM topol-
ogy that match best with the task of head motion synthesis, we varied the
number of clusters, K. To define the best HMM configuration, we synthesise
the head motion trajectories from the recognised sequence of clusters and the
trained HMMs. Then, we evaluate it by a comparison with the original head
motion trajectories.

Preliminary experiment shows that the optimal number of clusters variate
between 11 and 15, although it varies across the speakers. Busso et al. [3] found
that 16 clusters achieves the best result of generating head motion sequences
from prosodic features.

A similar experiment was done for the number of states per HMM to con-
firm that there is no clear strategy for deciding the optimal number of states
when clustering is concerned. Thus the number was fixed to 5 for the following
experiments.

4.2 Head Motion Synthesis

An overview of the multi-stream HMM-based speech-driven head motion system
is presented in Fig. 3.

In this experiment, we used 15 clusters to train task-dependent multi-stream
HMMs. 5-state left-to-right no-skip context-independent HMMs were used to
model speech and head motion streams of the task. The proposed technique is
based on the joint modelling of articulatory and head motion features, for each
cluster.

In training stage, streams of head motion and articulatory feature vectors are
joined to train multi-stream HMMSs, whose model units are determined by the
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Fig. 3. Overview of the speech-driven head motion system.

HMM-based clustering technique [1]. For each stream, the emission probability
density function of each state is modelled by a multivariate Gaussian distribution
with a diagonal covariance matrix.

The speech driven head motion synthesis is achieved in 2 steps: 1) finding
the most likely HMM state sequence from the articulatory observations; 2) in-
ferring the head motion from the decoded state sequence. For a given speaker’s
articulatory feature vectors X, we predict the head motion features Y such as

X)} (1)

¥ = argmas {p (Y]\/7, QU) P (0, Q-

where A\V** is the parameters set of the head-motion cluster-size HMM and Q¥*
the HMM state sequence. Y is obtained by maximizing separately the two con-
ditional probability terms of Eq. 1. First, we decode the HMM state sequence

by maximising {(5\’”, Q’”) = arg rg\l%zx {P (\¥*, Qyw|X)}} using the Viterbi
algorithm. Second, we synthesise the head motion trajectories by estimating
{Y = arg mgx{p(YD\y’m, Q?“E)}}, using the maximum-likelihood parameter gen-
eration algorithm (MLPG) algorithm [14].

4.3 Evaluation

To evaluate the impact of the head motion variation over tasks, we used data
of two tasks recorded by the same speaker (i.e. R0020_¢s5): map as instruction
giver and script reading. The data of each task was split in two partition:

1. Training partition: two-third of the task was used to train the models (mapH-
MNMs trained from the map task training data and readHMMs trained from
script reading training data).

2. Test partition: the remaining third was used for test. In order to evaluate
the impact of the task on the head motion, cross-task speech-driven head
motion synthesis was tested.
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Table 1. Pearson’s correlation between the original head motion and the synthesised
one using matched models and mismatched models.

Task of speech input \ used models|mapHMMs|readHMMs

Map task 0.47 —0.34
Read task —0.38 0.48

The articulatory speech data of the test task was the input for the two trained
models to form matched and mismatched models on synthesis stage.

Objective evaluation To evaluate the impact of the task difference, Pearson’s
correlation between the original head motion and the synthesised one using the
matched models and mismatched models was calculated. As can be observed in
Table 1, the correlation on the matched condition is higher than the mismatched
one. This result suggests that the synthesised data follow the motion of the
task used for training rather than following the speech input specially for the
mismatched condition.

Mismatched condition gives high, even though negative correlation. This
means that as one rotation angle increases in value, the synthesised one decreases
in value (i.e. when the head moves from up to down, the estimated movements
was from down to up). This confirm that the proposed models was capable of
learning and synthesising task-dependent head motions from speech

Subjective evaluation We performed a subjective A/B comparison test to
measure the opinions on the naturalness of the synthesised head motion. The
participant are asked to chose between two head motion on a scale of A better
than B, no preference and B better than A. 6 side-by-side comparison pairs
was used: 3 pairs for each task. The 3 comparison was between the measured
head motion (org) and two synthesised ones from matched HMMs and from mis-
matched one. Each comparison pairs is 50 seconds video length. The subjective
tests were performed by 11 participants. The average preference are shown in
Fig. 4.

The original data is typically perceived as much more realistic, except for
the Read task, for which the mapHMM appears better. By looking to the map
task results, we found that matched HMMs are more preferred than mismatched
ons. However for read task results, contrary to our expectation, synthesised head
motions using the mismatched models that was trained on free speech (i.e. mapH-
MDMs) are preferred by the participant rather than the matched models. This
can be explained that the free speech data that have more variation compared
to read speech (see Fig. 1) may provide more expressive and preferred motion
compared to read speech.

5 Conclusion

We have presented an analysis of head motion variation and the impact of this
variety on synthesis. Over 12 speakers, we confirm that the head motion varies



mapHMMs

27.3%

mapHMMs

Map task 63.6%

readHMMs
18.2%

readHMMs
9.1% HRERSA

same readHMMs

45.5% 18.2%

same mapHMMs
18.2% 45.5%

0 10 20 30 40 50 60 70 80 90 100
Distribution (%)

Map task

Read task

Read task

Read task

Fig. 4. Subjective A-B tests results over 11 participants.

depending not only on the speaker but also on task. Articulatory features that
have more correlation with head motion than acoustic features were used to drive
head motion [1]. Experimental results confirmed that the proposed model was
capable of learning and synthesising task-dependent head motions from speech.
Synthesised head motion trajectories are more correlated with original motion
when it was synthesised using a models trained on matched tasks than using
mismatched ones. The subjective evaluation tests indicates that the free speech
data may provide more expressive motion compared to read speech. A better
head movement models could be trained using free speech data collected over
similar tasks to the ones the avatar is supposed to perform.

This work could be extended in several ways. The advantage of HMM-based
head motion synthesis is that a possible emotional and personalised motion can
be achieved using adaptation techniques [16]. Further studies will include an
extension to speaker-independent models with speaker adaptation.

In real-world head motion synthesis scenarios, it is not practical to assume
the availability of articulatory measurements from a user. To address this chal-
lenge, acoustic-to-articulatory mapping system may be used to predict articula-
tory features from an acoustic signal. Another motivation of using acoustic-to-
articulatory mapping is to use the predicted articulatory features for lip sync.
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