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Abstract 

 

 

Adverse selection may thwart trade between an informed seller, who knows the 

probability p that an item of antiquity is genuine, and an uninformed buyer, who does not 

know p.  The buyer might not be wholly uninformed, however.  Suppose he can perform a 

simple inspection, a test of his own: the probability that an item passes the test is g if the item 

is genuine, but only f < g if it is fake.  Given that the buyer is no expert, his test may have 

little power: f may be close to g.  Unfortunately, without much power, the buyer’s test will 

not resolve the difficulty of adverse selection; gains from trade may remain unexploited. 

But now consider a “store”, where the seller groups a number of items, perhaps all with 

the same quality, the same probability p of being genuine.  (We show that in equilibrium the 

seller will choose to group items in this manner.)  Now the buyer can conduct his test across a 

large sample, perhaps all, of a group of items in the seller’s store.  He can thereby assess the 

overall quality of these items; he can invert the aggregate of his test results to uncover the 

underlying p; he can form a “prior”.  There is thus no longer asymmetric information between 

seller and buyer: gains from trade can be exploited.  This is our theory of retailing:  by 

grouping items together – setting up a store – a seller is able to supply buyers with priors, as 

well as the items themselves.   

We show that the weaker the power of the buyer’s test (the closer f is to g), the greater the 

seller’s profit.  So the seller has no incentive to assist the buyer – e.g., by performing her own 

tests on the items, or by cleaning them to reveal more about their true age. 

The paper ends with an analysis of which sellers should specialise in which qualities.  We 

show that quality will be low in busy locations and high in expensive locations. 

 

  



 
1. Introduction 

 

Antiquities are valuable if they are genuine.  We take a simple-minded view, and say that 

the “quality” – and hence the value – of an item is proportional to the probability p that the 

item is genuine.  But determining p is not easy.  And the ease with which cheap and 

convincing fakes can be produced only serves to make worse the problem of a more informed 

seller, who might know p, trying to strike a deal with a less informed buyer, who might not.  

The difficulty of adverse selection can be so severe that it thwarts all trade.  

Buyers may not be completely uninformed, however.  Suppose that a buyer can perform a 

simple inspection, a test of his own.  The probability that an item passes the buyer’s test is g 

if the item is genuine, but only f < g if it is a fake.  Given that the buyer is no expert, his test 

may have little power: f may be close to g.  Unfortunately, without much power, the buyer’s 

test will not resolve the difficulty of adverse selection.  A single item may remain unsold 

even when there are gains from trade. 

But now consider a “store”, where the seller groups a number of items, perhaps all with 

the same quality, the same probability p of being genuine.  (We show that in equilibrium the 

seller will choose to group homogeneous items in this manner.)  Now the buyer can conduct 

his test across a large sample, perhaps all, of a group of items in the seller’s store.  He can 

thereby assess the overall quality of these items; he can invert the aggregate of his test results 

to uncover the underlying p; he can form a “prior”.  There is thus no longer asymmetric 

information between seller and buyer: gains from trade can be exploited.  

This, then, is our theory of retailing.  By grouping (possibly homogeneous) items together 

– setting up a store – a seller is able to supply buyers with priors, as well as the items 

themselves. 

In colloquial terms, when we visit a store to buy something, particularly a large store, we 

scan the items for sale to form a general assessment of quality.  Armed with this belief, we 

then proceed to test out, and perhaps purchase, an item that, on aesthetic or practical grounds, 

either takes our fancy or meets our needs.  Our belief is our security against being fleeced: 

against being sold a fake. 



A central question is: will a seller want to group homogeneous items?  Might she not, for 

example, seed the better items with others that she knows are cheap fakes?  The upside of 

doing so would be to masquerade a fake as a genuine item, and thereby sell it at a profit.  The 

downside would be to reduce the buyer’s overall assessment of the store’s quality. 

We show that the seller’s discounted expected profit is strictly convex in p.  That is, she 

does not want to mix qualities, and, in particular, she does not want introduce fakes. 

Another issue is testing.  Should the seller assist the buyer – e.g., by performing her own 

tests on the items, or by cleaning them to reveal more about their true age?   No.  We show 

that the seller’s payoff is an increasing function of f: the seller benefits from the low power 

of the buyer’s test.  Of course, there is a discontinuity at the limit:  if f were to equal g, then 

the buyer would be unable to form a prior and the problem of adverse selection would 

typically kill the possibility of trade. 

The paper ends with an analysis of which sellers should specialise in which qualities.  We 

show that, in equilibrium, quality will be low in busy locations and high in expensive 

locations. 

 
 

2. Background Environment 

 

A buyer values an item of antiquity at  pbv  if he likes the item aesthetically, and zero if he 

doesn’t, where    is his assessment of the probability that the item is genuine, the “quality” 

of the item.  We normalise v to equal 1. 

The buyer does not have the expertise to form a direct assessment of   .  But he can 

perform a simple pass/fail test on the item, where 

 

probability of passing test │ item is genuine   =   g    

probability of passing test │ item is fake         =   f   <   g 

 



We take g to equal 1.  Because the buyer has little expertise, the power of the test may be 

low:  f may be close to 1. 

The seller does have a private assessment, p  >  0, of the probability that the item is 

genuine, and her cost/opportunity cost of it is strictly increasing in p.  For example, suppose 

the seller can buy fakes (that she knows are definitely not genuine) at zero cost, but she has a 

strictly positive opportunity cost of selling her current item now (she may be able to sell it at 

a later date).  Then, because of the asymmetric information, the buyer will be exposed to an 

extreme Akerlof lemons problem (Akerlof, 1970): the seller always strictly prefers to 

substitute a fake item for her current one. 

The basic premise of the paper is that retailing – selling clusters of items together – is a 

mechanism for overcoming the Akerlof lemons problem. 

The seller has a cost c > 0 per unit measure of items on sale, per unit of time. 

 

 

3. A Static Model 

 

Suppose the seller has s items for sale, and they are all of the same quality, the same 

probability p that they are genuine. 

Not knowing p directly, the buyer tests all the items (the outcomes of his tests are 

independent across items).  He finds that 

 

   [   (   )]  

 

items pass.  From these results, he can infer the value of p: 

 



   
(  ⁄ )   

(   )
 

 

That is, the buyer indirectly learns p. 

 His (and the seller’s) Bayesian update on the posterior probability that an item that 

has passed his test is genuine equals 

 

      
 

   (   )
 

 

which of course exceeds p because f < 1.  The point is that this item is of better quality than p 

because the positive test result has raised the posterior probability above the prior – for both 

the buyer and the seller. 

 For simplicity (in this static model), assume that the buyer aesthetically likes all the 

items on offer in the seller’s store.  Then he will be willing to pay    for all d items that 

passed his test. 

 We suppose throughout that the seller has all the bargaining power. So she charges    

per item: 

         
 

   (   )
 

 

Hence her profit equals 

 

                                         

 



 One suggestive thought-experiment is to ask what happens if, instead, the seller 

doubles the size of her store (assume best case: the additional cost is cs), filling it up with 

fakes? 

 By the earlier logic, her overall profit then equals 

 

  [(  ⁄ )        ]                  

 

 

 

which is lower than before.  Fakes reduce profit, because their storage cost (c) exceeds their 

contribution to quality (zero). 

 On the other hand, had the seller mixed two different groups of items, each of 

measure s, one of quality      and the other of quality     , then her profit from the 

“mixed” store would be 

 

  [
     
 

         ]        (        )    (         ) 

 

which is the same as if she had sold the groups separately in two different stores (or if she 

had maintained separate areas in the double-sized store).  In other words, mixing qualities in 

this static model is neither a good nor a bad strategy. 

 However, this static model is extreme, insofar as the seller disposes of all her genuine 

items in one go (more precisely: her ex post assessment, of the probability that the items she 

hasn’t sold are genuine, equals zero).  Arguably, a better model slows down her rate of sales; 

inter alia, this endogenises her opportunity cost of selling an item on any given date.  To this 

buyer’s assessment 

of average quality 



end, we introduce time into the model, and no longer assume that the buyer aesthetically likes 

(or can afford to buy!) all the items on offer. 

 

 

4. The Dynamic Model 

 

Time is continuous,    .  Let the common interest rate be     .  Per item, suppose 

that the flow of buyers that like it aesthetically equals  . 

At time  , let the seller’s stock be   , and have quality   : i.e., the seller assesses that all 

the items in    have a probability    of being genuine.  Behind this lies a conjecture:  the 

seller does not mix qualities. 

Consider a buyer visiting the seller’s store between   and       .  The number of 

genuine items in the seller’s stock equals 

 

ptst 

 

The number of fake items in the seller’s stock equals 

 
(1 − pt)st 

 

The number of the seller’s items that fail the buyer’s test equals 

 
(1 − f)(1 − pt)st 

 

The number of the seller’s items that pass the buyer’s test equals 

 
ptst + f(1 − pt)st 



– a fraction b∆t of which the buyer likes aesthetically.  Hence 

 
st+∆t   =   st   −   (b∆t)[ptst + f(1 − pt)st] 

 

Taking the limit      , 

 

dt

dst   =    −  b[ptst + f(1 − pt)st]              (1) 

 

The updated fraction of genuine items in the seller’s store at time       equals 

 

        
      (   )    

    (   )[      (    )  ]
 

  

 

Taking the limit      , 

 

       
   

  
       (   )  (    )             (2) 

 

Equations (1) and (2) are nested first-order differential equations in st and  pt.  Note that pt 

falls through time, because the genuine items are purchased disproportionately often. 

An item that passes the buyer’s test at time t thus has a posterior quality 

 

)1( tt

t

pfp

p


 

 

And, given that the seller has all the bargaining power, at time t she posts a price equal to this 

posterior quality.   

The buyer purchases   (b∆t)[ptst + f(1 − pt)st]  items at this price, and so the seller’s 

gross flow revenue, price x quality, equals   



 

bptst 

 

           With a flow storage cost of c, this means that the seller’s net profit flow equals  

 

 (bpt − c)    

 

The seller’s initial stock is   , with quality p0. To ensure profitability, we assume 

 

                                        c/b  <  p0             –  requiring c < b. 

 

It is optimal for the seller to jettison her remaining stock at time t*, where t* solves 

 

                                  pt*  =   c/b 

 

Hence the seller’s maximised discounted total profit at t = 0 is given by  

 

   ∫(     )   
     

  

 

 

   

where    and    solve (1) and (2). 

 
 
 

 

  



Claim 
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where              [(
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)]
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Proof:  See Appendix. 

 
 

From the Claim, note that   is proportional to   : the seller operates in an 

environment with constant returns to scale (constant flow storage cost per item; constant 

arrival flow of buyers per item).  Also note that if     (so that     ), then 

 

   
 

   
     

 

which is both proportional to    and independent of  .  But these properties do not hold for  

c > 0. 

 We now use the expression for   to prove the following three propositions. 

 
Proposition 1.     is increasing and strictly convex in   .   

 

Proof:  See Appendix. 

 
 This proposition confirms our conjecture at the start of this Section: the seller strictly 

prefers not to mix qualities.  But this conclusion should be tempered somewhat.  Were the 

seller to mix qualities but then adopt the strategy of removing lower qualities once the 



threshold   ⁄  is reached, then discounted profit would be as great as if no mixing had 

occurred.  However, such a strategy would entail the seller keeping an eye on each subgroup 

in order to jettison it at the optimal time (when the quality of the subgroup drops to   ⁄ ).  

Even then, mixing confers no benefit.  From the seller’s perspective, it is simpler to keep the 

qualities separate.   

 

Proposition 2.      is strictly increasing in  . 

 
Proof:  See Appendix. 

 
 This is perhaps a more intriguing result: the seller strictly prefers the buyer’s test to 

have less power.  An implication is that the seller won’t choose to assist the buyer – e.g., by 

performing her own tests on the items, or by cleaning them to reveal more about their true 

age. 

 Of course, there is a discontinuity at    .  If the buyer’s test were useless, then he 

could not learn the average quality of the seller’s items, and there would be no rationale for 

grouping items together, for retailing. 

 

Proposition 3.   There exists a threshold function,  f(b, c, r, p0) say, with 0  ≤  f(b, c, r, p0)  <  

1, such that whenever f(b, c, r, p0)  <  f  <  1,  ∂Π/∂p0 is increasing in c and decreasing in b.   

 
Proof:  See Appendix. 

 

A corollary of Proposition 3 is that higher c or lower b retailers specialise in higher p0 

items.  That is, high quality items are sold in high rental outlets (high c); low quality items are 

sold in busy locations (high b).  These conclusions appear to accord with reality. 

  
 
  



Appendix 

 

Claim 

The solution to  

 

  

  
    (   ) ( )(   ( ))  ( )     

 

is 

 

 ( )   
 

  (
    
  

)   (   ) 
 

 

Proof 

The equation 

 

  

  
    (   ) ( )(   ( ))  ( )     ( ) 

 

is a first-order, second degree ordinary differential equation (ODE). One can always 

transform ODEs of this type into a linear ODE which can be solved in closed form.  

 

First re-write equation 1 in standard form 

 



  

  
  (   ) ( )    (   ) ( )  

 

and then divide through by  ( )  to obtain the following. 

 

 ( )  
  

  
  (   ) ( )    (   ) ( ) 

 

Now define a new variable  ( ) as  ( )   ( )   and note that 

 

  

  
 
  

  

  

  
   ( )  

  

  
 

 

This result can be used to transform equation 2 into the following non-homogenous, linear 

ODE. 

 

  

  
  (   ) ( )    (   )  ( )   ( )     

   ( ) 

 

Standard method for solving linear ODEs of this type is to express the solution as the sum of 

the complementary function,   ( ), and the particular integral,   ( ).  

 

 ( )    ( )    ( ) 

 

The complementary function   ( ), is just the general solution to the homogenous form of 

equation 3. 



 

  ( )    
 (   )  

 

The particular integral is simply any particular solution to equation 3. Try the simplest 

possible solution:  ( )   , where   is some constant. If  ( )   , then 
  

  
  . Setting 

  

  
   in equation 3 and solving for  ( ) yields the desired expression for the particular 

integral.      

 

  ( )    

 

Combining the complementary function and the particular integral yields the general form for 

the solution to equation 3. 

 

 ( )       (   )  ( ) 

 

To get the definite solution, we first use the initial condition to solve for the constant   

   ( )    
 

  
   

    
  

 

and then substitute this result into equation 4 in order to obtain the final, definite solution to 

equation 3. 

 

 ( )    (
    
  

)   (   )  ( ) 

 

To obtain the final, definite solution to equation 1, we now substitute  



 

 ( )   ( )   

 

into equation 5 and solve for  ( ).   

 

 ( )  
 

  (
    
  

)   (   ) 
 ( ) 

 

Claim 

The solution to  
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is 

 ( )       (
 

 ( )
)      

 

Proof 

Begin by dividing through by  ( ) to obtain the following. 

 

 

 ( )

  

  
    [ ( )   (   ( ))] ( ) 

 

Integrating both sides of equation 7 yields: 



 

∫
 

 ( )
    ∫  [ ( )   (   ( ))]   

   ( )  ∫  [ ( )   (   ( ))]     

 ( )    ∫  [ ( )  (   ( ))]   ( ) 

 

Thus in order to find an expression for  ( ) we need to evaluate the following integral. 

 

∫  [ ( )   (   ( ))]   

 

Substituting for  ( ) using equation (6) yields the following.  
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  (
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Define a new variable  ( ) as follows. 
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This implies that 
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which reduces to  

  ( )    ( )     (   (
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Equations 10 and 11 can be used to rewrite the integral in 9 as follows. 
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 ∫(
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 ∫
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 ( )
  ∫   

    ( )       (  ) 

 

Substituting this result into equation 8 yields the following general solution for  ( ). 
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To solve for   we need to make use of the initial condition  ( )    : 
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which implies that       . Therefore the definite solution is 
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Claim 

     
   
   

{    
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where              [(
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Proof 

Begin by solving for    (i.e., the point in time at which a seller will jettison her entire 

remaining stock). From our work so far we know that  

 

 (  )  
 

  (
    
  

)   (   ) 
 
 
 

 
 

Solving for    yields: 
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Next, substitute equations (6) and (14) into the expression for profits and simplify to obtain: 
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Taking the integral yields: 
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Evaluating the integral yields: 
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In order to simplify further, it is useful to define a new variable   as follows: 
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Using our definition of   equation 18 can be re-written as  
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Lemma 1 

Although   is strictly decreasing in p0, whether or not   is strictly concave (convex) depends 

on p0. 

 



Proof 

First, we need to show that 
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Next, we need to show under what conditions   will be strictly concave (convex) in   . 

Differentiating again with respect to    yields: 
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It follows that   will be strictly concave (convex) if and only if 
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Substituting for 
  

   
 and re-arranging shows that   will be strictly concave (convex) if and 

only if the initial quality satisfies 
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Lemma 2  

  is strictly decreasing in f. 



 

Proof 

We need to show that 
  

  
  . Differentiating with respect to f yields: 
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which is negative because, by assumption,    
 

 
 which insures that  
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Proposition 1    

Π is increasing and convex in p0.   

Proof 

First, we need to show that 
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From this expression it is clear that 
  

   
   if an only if  
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After substituting for 
  

   
 using the result from Lemma 1, and re-arranging the above 

inequality simplifies to  
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This inequality must hold because, by assumption,    (
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Next we need to show that 
   

   
   . Differentiating again with respect to    yields: 
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which will be strictly positive if and only if 
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Using the results from Lemma 1 we can re-write this inequality as  
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A bit of re-arranging yields 
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which implies that the inequality holds as  
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Proposition 2    

Π is strictly increasing in f. 

Proof 

We need to show that 
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Thus we find that 
  

  
   if and only if 

 

(
   

    
) (   )  (   )

  

  
   

 

Substituting for 
  

  
 using Lemma 2 and simplifying the left-hand side of the above inequality 

yields 
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which is strictly positive if and only if 

 

(   )         

 

To confirm that this inequality holds for all      , it is sufficient to note that  

 

(   )       

 

obtains a unique global minimum of zero at    . 

 

Proposition 3:  There exists a threshold function,  (        ) say, with   

   (        )    such that whenever  (      )     , 
  

   
 is increasing in   and 

decreasing in  .    



 

Proof 

Set     and re-write the expressions for   and   as 
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Differentiating  ̂ with respect to   and   yields: 
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Differentiating  ̂ with respect to   and   yields: 
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In order for 
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  , we need 
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  . A necessary and sufficient condition 

for the desired inequalities to hold is that  
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If we define  
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(     )(     )
   ̂( ) 

then there exists a threshold value    (        )    such that sets  ( )    and for 

values of  (        )     , we have that 
   ̂

    
   which implies that 

  

   
 is increasing in 

  and decreasing in  . 
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