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Abstract

This paper presents a model of a self-fulfilling price cycle in an asset mar-
ket. Price oscillates deterministically even though the underlying environment
is stationary. The mechanism that we uncover is driven by endogenous varia-
tion in the investment horizons of the different market participants, informed and
uninformed.

On even days, the price is high; on odd days it is low.
On even days, informed traders are willing to jettison their good assets, know-

ing that they can buy them back the next day, when the price is low. The antic-
ipated drop in price more than offsets any potential loss in dividend. Because of
these asset sales, the informed build up their cash holdings. Understanding that
the market is flooded with good assets, the uninformed traders are willing to pay
a high price. But their investment horizon is longer than that of the informed
traders: their intention is to hold the assets they purchase, not to resell.

On odd days, the price is low because the uninformed recognise that the
informed are using their cash holdings to cherry-pick good assets from the market.
Now the uninformed, like the informed, are investing short-term. Rather than
buy-and-hold as they do with assets purchased on even days, on odd days the
uninformed are buying to sell.

Notice that, at the root of the model, there lies a credit constraint. Although
the informed are flush with cash on odd days, they are not deep pockets. On each
cherry that they pick out of the market, they earn a high return: buying cheap,
selling dear. However they don’t have enough cash to strip the market of cherries
and thereby bid the price up.
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1 Introduction

Can the apparent excess volatility of asset prices be explained from within the model
– that is to say, endogenously, without exogenous variation? It is known that bubbles
can be part of a stochastic equilibrium. In this paper we set ourselves the challenge of
generating deterministic price movement in a perfectly stationary environment.

We show that it is possible. In our model the dynamic interaction of adverse selec-
tion (we have informed and uninformed traders) and credit constraints (the informed
traders do not have deep pockets) can endogenously generate variation in the invest-
ment horizons of the different market participants. With these simple ingredients, we
demonstrate a saw-tooth equilibrium in which prices deterministically rise one day and
fall the next, ad infinitum. On even days, the price is high; on odd days it is low.

On even days, informed traders are willing to jettison their good assets, knowing
that they can buy them back the next day, when the price is low. The anticipated drop
in price more than offsets any potential loss in dividend. Because of these asset sales,
the informed build up their cash holdings. Understanding that the market is flooded
with good assets, the uninformed traders are willing to pay a high price. But their
investment horizon is longer than that of the informed traders: their intention is to
hold the assets they purchase, not to resell.

On odd days, the price is low because the uninformed recognise that the informed
are using their cash holdings to cherry-pick good assets from the market. Now the
uninformed, like the informed, are investing short-term. Rather than buy-and-hold as
they do with assets purchased on even days, on odd days the uninformed are buying to
sell.

Notice that, at the root of the model, there lies a credit constraint. Although the
informed are flush with cash on odd days, they are not deep pockets. On each cherry
that they pick out of the market, they earn a high return: buying cheap, selling dear.
However they don’t have enough cash to strip the market of cherries and thereby bid
the price up.

The literature on adverse selection, starting with Akerlof [1970], is vast, and it would
be unwise to review it here. Of particular relevance are the papers by Hendel and Lizzeri
[1999] and Hendel et al. [2005] on dynamic adverse selection in the context of durable
goods markets.

Eisfeldt [2004] and Guerrieri and Shimer [2013] use adverse selection to model liq-
uidity in a dynamic infinite horizon setting. Aggregate dynamics within their models
result from aggregate shocks. A key difference, then, between these papers and our
own is that the aggregate dynamics in our model arise completely endogenously, in a
perfectly stationary environment.

In Section II, we introduce the formal model. In Section III, we examine a constant
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price equilibrium. In section IV, we construct a self-fulfilling price cycle equilibrium.
In section V, we provide a numerical example.

2 Model

The economy is discrete time, with a durable generic consumption good, fruit, and a
single kind of asset, trees. At the start of each day trees mature with probability µ.
The maturation process is i.i.d. across trees, age and time. When trees mature they
bear fruit and immediately die. Trees that do not mature do not bear fruit and do not
die.

There are two types of tree: high quality “cherry” trees and low quality “lemon”
trees. A fraction γ of trees are cherry. When trees mature, lemon trees bear l > 0
(generic) fruit and cherry trees bear h = l + ∆ (generic) fruit, where ∆ > 0.

There is a continuum of risk-neutral traders. At the end of each day traders die
with probability δ. Agents learn earlier in the day, after trees have matured, if they
are to die at the end of the day. Death is i.i.d. across traders, age and time. Agents
consume fruit, only once, just before they die.

There are two types of trader: “informed” traders and “uninformed” traders. In-
formed traders can determine whether an unmatured tree is a cherry or a lemon; unin-
formed traders cannot. A fraction θ of traders are informed.

Each day – after the maturation of a fraction µ of the existing trees, but before
a fraction δ of traders learn if they will die at the end of the day – a mass α of new
traders are born endowed with a mass τ of new, unmatured, trees. A fraction γ of these
new trees are cherry and a fraction θ of these new traders are informed. The overnight
steady-state stock T of trees (of which γT are cherry) solves µT = τ . And the overnight
steady-state mass A of traders (of whom θA are informed) solves δA = α.

There is a daily competitive spot market in which trees are traded for fruit. The
market occurs after traders learn if they will die at the end of the day. That is, the
timing on each day is as follows:

1. A fraction µ of the existing trees mature: they yield fruit and die.

2. A mass α of new traders (of whom a fraction θ are informed) are born endowed
with a mass τ of new, unmatured, trees (of which a fraction γ are cherry).

3. A fraction δ of traders – including a fraction δ of the newly-born1 – learn that
they are dying today (see 5 below).

4. A market occurs in which trees are traded for fruit.
1These traders live short lives.
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5. The dying traders consume their fruit and die.

We can save on notation by assuming τ = µ and α = δ, so that T = 1 and A = 1.

This model typically has several equilibria. Given the stationary nature of the
environment, it is unsurprising that there is an equilibrium where price is constant
through time; see section 2 below.

We do not try to characterise all the non-constant-price equilibria. However, of
particular interest to us is an equilibrium where the price deterministically oscillates: a
high price on (e.g.) even days and a low price on odd days. We analyse this “saw-tooth”
equilibrium in section 3. It is to this surprising equilibrium that we wish to draw the
reader’s attention.

There are features that are common to all the equilibria we study – i.e., common
to a constant-price equilibrium and a saw-tooth equilibrium. Crucially, we assume that
informed traders are able to cherry pick in the market – they only purchase cherry trees,
to the extent that their budgets allow. Uninformed traders purchase the residual supply
of trees. Of the trees purchased by the uninformed on day t, let qt be the equilibrium
fraction that are cherry.

The market price pt will reflect the uninformed buyers’ (rational) beliefs about qt.
That is, pt is determined by an indifference condition for an uninformed buyer: between
holding pt fruit and purchasing a tree of “quality” qt. In all the equilibria we examine
in sections 3 and 4, we assume that the parameters are such that the informed buyers
as a whole cannot afford to purchase all the cherry trees being supplied to the market,
so qt > 0.

Two behaviour patterns are obvious. First, a dying trader sells all his trees so as
to maximise his fruit consumption before he dies. Second, on the day she is born,
an informed trader sells all her endowment of lemon trees: if she uses the proceeds to
purchase cherry trees then she is in effect using the market to replace lemon with cherry.
(To simplify our diagrams, as an accounting convention we assume that informed new-
borns always first replace lemon with cherry, even if they have discovered they are going
to die later that day and so will immediately resell these cherry trees.)

Finally, we make five assumptions on parameters the reasons for which will not be
apparent to the reader until later in the paper:

Assumption 1:

0 < a0 ≡θµ
{
l(1− γ)(1− δ) + l(1− δ)2µ+ ∆γ(1− δ)2µ

}
− γδ[lδ −∆(1− δ)µ] (1)
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Assumption 2: [
1− δ

(1− δ)µ

]
− θ > 0 (2)

Assumption 3:

0 < ã0 ≡ θµ(1− δ)2
{

(2− δ)l + (1− δ)µ∆ + γ[1 + (1− δ)(1− µ)]

[
1− δ(1− µ)

2− µ

]
∆

}

− [γδ − (1− δ)(1− γ)θµ]

{
δ(2− δ)

[
l + γ(1− µ)

(
1− δ(1− µ)

2− µ

)
∆

]
− (1− δ)2µ∆

}
(3)

Assumption 4:

γ >
1

1 + (1− δ)(1− µ)
(4)

Assumption 5:

0 <θµ(1− δ)2
{

(2− µ)(2− δ)(l + ∆)− 2(1− γ)∆[1 + (1− δ)(1− µ)]2

(2− µ)(1− δ)

}
−

{
δ2(2− δ)(l + ∆)− δ(1− γ)∆[1 + (1− δ)(1− µ)] [1− (1− µ)2(1− δ)2]

1− δ)(1− µ)(2− µ)

}
(5)

An analytical proof that parameters consistent with these assumptions exist is left
to the appendix.

3 Constant Price Equilibrium

In this equilibrium the price and market quality of trees is constant: pt = p∗ and
qt = q∗ for all t. Dying traders sell all their trees; new born informed traders switch
any lemon trees they carry for cherry (as described in section 2 above) – no other trees
are sold. Informed traders exchange all their fruit for cherry trees sold by the dying
traders. Uninformed traders purchase the residual stock of trees sold by the dying and
the lemons sold by the new-born informed traders. q∗ is the proportion of these trees
bought by the uninformed that are cherry.

3.1 Incentive Compatibility and Price

The informed and uninformed equilibrium behaviour follows from the fact that p∗ is
the value of a market tree to an uninformed trader. The supply of market trees – the
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residual trees sold after cherry picking by the informed – is positive. Therefore, from
the indifference of the uninformed between market trees and p∗ fruit, the net purchase
of market quality trees by the uninformed is strictly positive i.e., the uninformed do
not sell their market quality trees.

Neither do the uninformed sell trees with which they are born as these trees are
strictly preferred to p∗ fruit. To see this we first derive p∗ from its equivalence with an
uninformed trader’s valuation of a market quality tree:

p∗ = µ(l + q∗∆) + (1− µ)p∗

= l + q∗∆. (6)

Where (l + q∗∆) is the expected yield if the tree matures and p∗ is the value of the
tree if it does not mature.

A proportion γ of trees with which traders are born are cherry – a strictly greater
proportion of cherry than for market trees. If a trader holds a tree with which they are
born it can be sold for a price p∗ if it does not mature. The value of such a tree is then
bounded below by

µ(l + γ∆) + (1− µ)p∗,

which is strictly greater than p∗ as defined in equation (6). Therefore uninformed traders
strictly prefer the trees with which they are born to p∗ fruit. The above argument holds
a fortiori for cherry trees, i.e. informed traders strictly prefer cherry trees to p∗ fruit.
Therefore informed traders exchange all their fruit for cherry trees and never sell cherry
trees if they are not dying that day.

3.2 Market Clearing

As the informed traders hold only cherry trees overnight – call this stock N – the
uninformed must hold the entire overnight stock of fruit in the economy – call this
stock Y . At the equilibrium steady state of Y , Y ∗, the total fruit consumed per day
equals total fruit produced per day.

The equilibrium steady state of N , N∗, is where the outflow of cherry trees from
informed traders’ overnight stock is equal to the inflow. Of the (1− δ)N∗ trees held by
the non-dying, a fraction µ are lost to maturation. δ of the N∗ cherry trees are sold
each period by the dying. The maturing cherry trees held by the non-dying informed
traders yield (1− δ)µN∗(l+∆) fruit – this fruit is then exchanged for cherry trees. The
non-dying new-born informed traders replace their lemons with cherry adding (1−δ)θµ
cherry trees to the stock of informed trees each day. The steady state condition for N∗

is then:

7



(1− δ)µN∗ + δN∗ = (1− δ)µ(l + ∆)
N∗

p∗
+ (1− δ)θµ

Maturing trees Trees held Trees bought Trees of
held by the non- by the dying from proceeds of non-dying
dying informed informed. maturing trees. new-borns.

(7)

We can define all equilibrium stocks and flows in the economy in terms of N∗ and
Y ∗. These stocks and flows are illustrated in figure 1 below:

  

! 1 − ! ! − !∗  
        +!(1 − !)!"  
      cherry trees 

Informed Overnight Holdings 
Fruit:               0 
Cherry trees:   N* 

Uninformed Overnight Holdings 
Fruit:                 Y* 
Cherry trees:   γ – N* 
Lemon trees:  (1– γ) 

New Borns Market 

! 1 − ! !∗ + !" 	  
cherry trees 

!"# 
cherry trees 

!! = (1 − !)!(ℓ + ∆)!∗	  
fruit from maturing trees 

!!
!∗	   cherry trees 

! −
!!
!∗	  

trees !∗! − !! 	  
fruit	  

!!∗ fruit  

total trees 
cherry trees !∗ =    =   

!"  !  (!!!)(!!!)!"  !  !"!∗

!  !  !!!∗
  

(1 − !)! 
trees 

Dying 

maturing trees 

   ! 1 − ! 1 − !  
+!(1 − !)(1 − !)!  
 lemon trees 

(1 − !)!"  
cherry trees 

(1 − !)!"  
lemon trees 

!" + !(1 − !)!"  
cherry trees 

! 1 − ! − !(1 − !)!"  
lemon trees 

Figure 1: Stocks and Flows in the Constant Price Equilibrium

Markets must clear. In figure 1 we see the total number of trees sold by the dying
and the newborn is:

Tree Sales = δ + (1− γ)(1− δ)θµ;

From dying Lemon trees from
informed and non-dying
uninformed. informed new-borns.

(8)
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and the quantity of these tress that are cherry is:

Cherry Sales = γδ.

Cherry trees from dying
informed and uninformed.

(9)

The informed buy only cherry trees:

Informed Cherry Purchases = (1− δ)µ(l + ∆)
N∗

p∗
+ (1− γ)(1− δ)θµ

Cherry trees bought from Cherry trees bought
proceeds of maturing by non-dying
cherry trees held by non- informed
dying informed. new-borns.

(10)
The uninformed purchase the residual trees, a fraction of which are cherry:

Uninformed Cherry = q∗
{
δ + (1− γ)(1− δ)θµ−

[
(1− δ)µ(l + ∆)

N∗

p∗
+ (1− γ)(1− δ)θµ

]}
Purchases

Trees sold − Informed cherry purchases

= q∗
[
δ − (1− δ)µ(l + ∆)

N∗

p∗

]
.

(11)

Hence, the market clearing condition for cherry trees2 is:

γδ = (1− δ)µ(l + ∆)
N∗

p∗
+ (1− γ)(1− δ)θµ + q∗

[
δ − (1− δ)µ(l + ∆)

N∗

p∗

]
Cherry sales. Informed cherry purchases. Uninformed cherry purchases.

(12)

Collecting the
N∗

p∗
terms in the market clearing condition yields:

(γ − q∗)δ − (1− γ)(1− δ)θµ = (1− q∗)(1− δ)µ(l + ∆)
N∗

p∗
(13)

2Which also implies market clearing for lemon trees. Total lemon tree sales is: Lemon Sales =
Tree Sales − Cherry Sales. Total lemon tree purchases is: Lemon Purchases = (1 − q∗)[Tree Sales −
Informed Cherry Purchases]. Letting Lemon Sales = Lemon Purchases and rearranging yields equa-
tion (12).
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and doing the same for the steady state stock of informed cherry holdings given by
equation (7) yields

{
l + q∗∆

l + ∆
[δ + (1− δ)µ]− (1− δ)µ

}
(l + ∆)

N∗

p∗
= (1− δ)θµ (14)

where l + q∗∆ comes from equation (6) for p∗. Using (13) to substitute out
N∗

p∗
in

(14) and rearranging gives the quadratic:

Φ(q∗) ≡(1− δ)2µ2θ(1− q∗)

−
{
l + q∗∆

l + ∆
[δ + (1− δ)]− (1− δ)µ

}
[δ(γ − q∗)− (1− γ)(1− δ)θµ] (15)

=0

Given the equilibrium behaviour of informed and uninformed traders we require that
the solution to this quadratic lies in the interval of [0, γ].

The quadratic function Φ(.) can be written more compactly as:

Φ(q) = a2q
2 + a1q + a0; (16)

where

a2 = δ
∆

l + ∆
[δ + (1− δ)µ] > 0. (17)

The coefficient on the square term, a2, is positive and a0 is less than zero by assump-
tion (Assumption 1 section 2). Therefore, if Φ(γ) > 0, there exists a unique q∗ ∈ [0, γ]
such that Φ(q∗) = 0. Define qN such that:3

δ(γ − qN)− (1− γ)(1− δ)θµ = 0. (18)

From a0 < 0 it follows that

−lγδ2 + θµl(1− γ)(1− δ) > 0

⇒ δγ − (1− γ)(1− δ)θµ > 0 (19)

3qN because from (13) N∗ = 0 where q = qN .
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and therefore
γ > qN > 0. (20)

Evaluate the sign of Φ(.) at 0 and qN :

Φ(0) = a0 < 0 (21)

Φ(qN) = (1− δ)2µ2θ(1− qN) > 0. (22)

Therefore there exists a unique q∗ ∈ [0, γ] such that Φ(q∗) = 0 as shown in figure 2
below:

Figure 2

Next, it is shown that N∗ > 0. Examining the right hand side of the quadratic in
(15), it can be seen that when q∗ = 0 the first term is positive and so too is the final
term in brackets. As Φ(0) < 0 it must be the case that

l + q∗∆

l + ∆
[δ + (1− δ)]− (1− δ)µ > 0. (23)

Which from equation (14) implies that

N∗

p∗
> 0

and therefore N∗ > 0 for q∗ ∈ [0, γ].

The stock of uninformed cherry trees held over night, (γ−N∗), must also be greater
than zero. In steady state the uninformed lose as many cherry trees as they gain. Hence,
(γ −N∗) solves
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(γ −N∗)[δ + (1− δ)µ] = γ(1− δ)(1− θ)µ + q∗
[
δ − (1− δ)µ(l + ∆)

N∗

p∗

]
Cherry lost to death Cherry held by Uninformed cherry purchases.
and maturation. undying newborns.

(24)

If the right hand side is positive then γ − N∗ is positive. The number of cherry
trees gained by the uninformed each period is positive if the number of cherry trees
purchased by the uninformed is positive. Rearranging the market clearing condition
(12) gives:

(γ − q∗)
[
δ − (1− δ)µ(l + ∆)

N∗

p∗

]
= (1− δ)(1− γ)

[
θµ+ (l + ∆)

N∗

p∗

]
> 0, (25)

which implies that uninformed cherry purchases are positive, i.e., their steady state
stock of cherry trees is positive.

Finally, we show that the steady state stock of fruit held overnight by the uninformed
is positive. The uninformed hold all the fruit in the economy. The steady state stock
of fruit in the economy is where total daily fruit consumption equals total daily fruit
production.

Dying traders consume their fruit held from the previous day, δY ∗; the fruit from
selling their trees, δp∗; and the fruit from their maturing trees held from the previous
day, δµ(l+γ∆).4 Fruit production is due only to maturing trees and is equal to µ(l+γ∆).
Thus Y ∗ solves

δY ∗ + δp∗ + δµ(l + γ∆) = µ(l + γ∆).

Fruit Consumed by the Dying Fruit from Maturing Trees
(26)

Substituting out p∗ in (26) and rearranging implies that Y ∗ is positive if:

(1− δ)µ(l + γ∆)− δ(l + q∗∆) > 0.

q∗ ≤ γ hence a sufficient condition for Y ∗ > 0 is:

(1− δ)µ > δ,

which follows immediately from assumption 2.

4Fruit is consumed only by the dying. Death is i.i.d. so the average dying trader holds the average
of the economy.
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4 Saw-Tooth Equilibrium

In this equilibrium the market price deterministically oscillates between low on odd
days, p1, and high on even days, p0. Correspondingly, the quality of trees purchased
from the market by the uninformed oscillates between low on odd days, q1, and high on
even days, q0.

On even days all traders sell their trees. All trees sold on even days are purchased
by non-dying uninformed traders – no tree is purchased by an informed trader. On even
days all trees are sold, the average tree sold is the population average, and informed
traders do not cherry pick the market. Hence, the quality of trees purchased by the
uninformed on even days is the quality of the population, i.e., q0 = γ.5

On odd days the dying traders sell all their trees and new born informed traders
switch any lemon trees they carry for cherry (as described in section 2 ) these are the
only trees sold on an odd day day. Death is i.i.d. so the trees sold by the dying are the
population average. The non-dying informed traders exchange all their fruit for cherry
trees – cherry picking trees sold by the dying. The uninformed purchase the residual
stock of trees sold by the dying and the lemons sold by the new-born informed traders.
Hence, the quality of trees purchased by the uninformed on odd days is lower than the
population average, i.e., q1 < q0 = γ.

4.1 Incentive Compatibility and Prices

Surprisingly, on even days, non-dying informed traders sell trees they know to be cherry
to non-dying uninformed traders who only believe the tree is cherry with probability γ.
This trade is only possible because the differing investment horizons of the (non-dying)
informed and uninformed traders.

On even days the non-dying informed traders have a shorter investment horizon
than the non-dying uninformed: the return to informed traders from purchasing cherry
trees is higher on odd days than on even days – so informed traders want to maximise
the funds they have available for odd day investments. However, tree holdings suffer
a temporary capital loss on odd days when prices drop from p0 to p1 – exactly when
informed traders need funds for investment. Hence, informed traders are willing to pay
a liquidity premium for fruit and take less than the value, (l + ∆), of a cherry tree’s
long-run dividend stream.

Non-dying uninformed traders, on the other hand, intend to hold even day trees
for the long term – only selling the tree (in effect) when they die. The uninformed
traders, if they do not die on the odd day, are unaffected by the temporary capital loss

5Note, that the behaviour of the non-dying uninformed is equivalent to holding their population
average trees, those they hold from the previous even day or with which they were born, and only
selling those trees purchased on odd days.
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as they (mainly) value the asset for its dividend stream. The longer investment horizon
of the uninformed then allows for gains from trade between the non-dying informed
and uninformed traders despite the fact that the informed traders know they are selling
their cherry trees for less than the ‘true’ value.

The volume of trade on odd days is lower than on even days as only the dying and
new-born informed with lemons are selling. Trade between the dying and the non-
dying occurs due to (the more conventional reason of) different preferences over trees
and fruit. Trade between the non-dying informed and uninformed occurs because the
informed are selling trees they know to be lemons to traders who believe that the trees
are cherry with probability q1 > 0.

Incentive compatibility of the uninformed strategy follows from the non-dying un-
informed being indifferent between pt fruit and a tree of quality qt at date t. On even
days they are indifferent between p0 fruit and trees of quality γ and so, on even days,
must strictly prefer p0 fruit to trees of quality q1, so they sell odd day trees on even
days. By the same argument, on odd days, they must strictly prefer trees of quality γ
to p1 fruit, so they don’t sell population trees on odd days.

Before showing incentive compatibility for the informed it is useful to have expres-
sions for prices on odd and even days. The non-dying uninformed are making speculative
purchases with an intent to resell the following day when prices are high. Their hope
is that the tree won’t mature before they have a chance to sell it and claim the capital
gains. Setting p1 equal to the expected return then yields:

p1 = µ(l + q1∆) + (1− µ)p0 (27)

The price on even days is lower than the value, (l + γ∆), of a population tree’s
dividend stream because the uninformed suffer a capital loss if they die on an odd day
before the tree has matured. There are four disjoint outcomes for an uninformed trader
holding a population tree:

Day of Event Event Expected Payoff Probability

Odd Tree Matures (l + γ∆) µ

Odd Tree Doesn’t Mature p1 (1− µ)δ
Trader dies

Even Tree Matures (l + γ∆) (1− µ)(1− δ)µ

Even Tree Doesn’t Mature p0 (1− µ)2(1− δ)

Setting price equal to expected value yields
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p0 = µ(l + γ∆) + (1− µ)δp1 + (1− µ)(1− δ)µ(l + γ) + (1− µ)2(1− δ)p0. (28)

Substituting equation (27) for p1 in (28) and rearranging gives the following expres-
sion for price on even days:

p0 = l + γ∆− (γ − q1)
δ(1− µ)

2− µ
∆. (29)

Which is the expected value of a population tree’s dividend stream less the expected
capital loss from having to sell in the event of dying on an odd day. It is worth noting
for future reference that both p0 and p1 are affine functions of q1.

It is easy to check that the price does in fact oscillate. From equation (27), p0 > p1
if and only if p0 > (l + q1∆). Subtracting l + q1∆ from (29) and rearranging yields

p0 − (l + q1∆) = (γ − q1)
[
1− δ(1− µ)

2− µ

]
∆,

which is greater than zero for q1 < γ. In any feasible saw-tooth equilibrium the price
on even days is higher than the price on odd days.

Returning to incentive compatibility, if an informed trader purchases a cherry tree
on an odd day they can always sell on the subsequent day if it does not mature. Hence,
the value of a cherry tree to an informed trader on an odd day is bounded below by

µ(l + ∆) + (1− µ)p0 > p1,

i.e. it is always optimal for non-dying informed traders, on odd days, to exchange all
their fruit for cherry trees.

From this, on any odd day, informed traders either exchange their portfolio for cherry
trees or, if they are dying, exchange their portfolio for fruit, which they then consume.
In either event the informed traders utility is linearly increasing in the market value
of their portfolio that day. Given, the optimal behaviour on odd days, the non-dying
informed traders’ decision problem on the even day is to maximise the expected value
of their portfolio at price p1 on the subsequent odd day.

Returns are linear so we can restrict attention to the decision of holding p0 fruit
versus holding a single cherry tree at the end of the even day. The expected market
value of a cherry tree held over from the even day is µ(l + ∆) + (1 − µ)p1. Therefore,
the informed traders’ strategy is incentive compatible if and only if

p0 ≥ µ(l + ∆) + (1− µ)p1.

Using the price equations, (27) and (29), to substitute out p0 and p1 above and rear-
ranging gives the following incentive compatibility condition for informed traders:
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0 ≤ F ≡ −(1− γ)− (γ − q1)(1− δ)(1− µ). (30)

We will show later that given the assumptions in section 2 this condition always
holds.

4.2 Market Clearing

The total equilibrium stocks of fruit held over even nights by informed traders and
uninformed traders are W0 and Y0 respectively. The total equilibrium stock of cherry

trees held over odd nights by informed traders is
W1

p1
and the total equilibrium stock of

fruit held over odd nights is Y1.

Figure 3 shows the stocks and flows of trees and fruit on even days.
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Figure 3: Stocks and Flows on Even Days

Looking at figure 3, the non-dying informed exchange all unmatured cherry trees –
both those held over from the odd day and those carried by the new borns – for fruit.
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The total fruit received is

(1− δ)[(1− µ)
W1

p1
+ θµ]p0.

The non-dying informed also receive

(1− δ)µW1

p1
(l + ∆)

fruit from the cherry trees that matured on the morning of the even day. The informed
had no fruit over the odd night and purchased no trees on the even day so the fruit
holdings of the informed over even nights is

W0 = (1− δ){W1

p1
[µ(l + ∆) + (1− µ)p0] + θµp0}. (31)

Figure 4 shows the stocks and flows of trees and fruit on odd days.
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Figure 4: Stocks and Flows on Odd Days

Looking at figure 4, the non-dying exchange their fruit stock for

(1− δ)W0

p1
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cherry trees on the odd day; and gain (1−δ)θµ cherry trees from the non-dying newborn
informed, of which a fraction (1 − γ)θµ were acquired by using the market to replace
lemon trees with cherry. The informed cherry tree holdings over odd nights then is

W1

p1
= (1− δ)(W0

p1
+ θµ). (32)

The informed hold no fruit over the odd night.

We can now go on to define the market clearing conditions on odd days. In figure 4
we see the total number of trees sold by the dying and the newborn is:

Tree Sales = δ + (1− γ)(1− δ)θµ;

from dying lemon trees from
informed and non-dying
uninformed informed new-borns

(33)

and the quantity of these tress that are cherry is:

Cherry Sales = γδ.

cherry trees from dying
informed and uninformed

(34)

The informed buy only cherry trees:

Informed Cherry Purchases = (1− δ)W0

p1
+ (1− γ)(1− δ)θµ

cherry trees bought from cherry trees bought
fruit held over even by non-dying
by non-dying informed
informed new-borns

(35)
The uninformed purchase the residual trees, a fraction q1 of which are cherry:

Uninformed Cherry = q1

{
δ + (1− γ)(1− δ)θµ−

[
(1− δ)W0

p1
+ (1− γ)(1− δ)θµ

]}
Purchases

Trees Sold − Informed Cherry Purchases

= q1

[
δ − (1− δ)W0

p1

]
.

(36)
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Hence, the market clearing condition for cherry trees on odd days6 is:

γδ = (1− δ)W0

p1
+ (1− γ)(1− δ)θµ + q1

[
δ − (1− δ)W0

p1

]
.

Cherry Sales Informed Cherry Purchases Uninformed Cherry Purchases
(37)

Collecting the
W0

p1
terms in the market clearing condition yields:

(γ − q1)δ − (1− γ)(1− δ)θµ = (1− q1)(1− δ)
W0

p1
. (38)

Solving the steady state equations for W0 and
W1

p1
, (31) and (32), in terms of

W0

p1
yields:

W0

p1

{
p1 − (1− δ)2 [µ(l + ∆) + (1− µ)p0]

}
= θµ(1− δ) {(1− δ)µ(l + ∆) + [1 + (1− δ)(1− µ)] p0} (39)

Substituting out
W0

p1
using (38), and rearranging yields:

Φ̃(q1) ≡(1− δ)2(1− q1)θµ {(1− δ)µ(l + ∆) + [1 + (1− δ)(1− µ)]p0}

−
{
p1 − (1− δ)2 [µ(l + ∆) + (1− µ)p0]

}
[(γ − q1)δ − (1− δ)(1− γ)θµ]

=0 (40)

Φ̃(q1) is quadratic in q1 as both p0 and p1 are affine functions of q1:

Φ̃(q1) = ã2(q1)
2 + ã1q1 + ã0 (41)

6Which also implies market clearing for lemon trees. Total lemon tree sales is: Lemon Sales =
Tree Sales − Cherry Sales. Total lemon tree purchases is: Lemon Purchases = (1 − q∗)[Tree Sales −
Informed Cherry Purchases]. Letting Lemon Sales = Lemon Purchases and rearranging yields equa-
tion (37).
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where

ã2 =
δµ∆

2− µ
{

(2− µ)− [1 + (1− δ)(1− µ)](1− δ)2θ(1− µ)
}

+ δ3∆(1− µ)2
2− δ
2− µ

> 0 (42)

ã2 > 0 follows from [1 + (1− δ)(1− µ)] < 2− µ and by assumption 4 ã0 < 0. As in the
constant price equlibrium, Φ̃(0) < 0 and the co-efficient on the quadratic component is
positive so we can show a unique q1 ∈ [0, γ] solves the quadratic if Φ̃(γ) > 0.

Examining (40) it is clear that the argument used in the constant price equilibrium
also applies here: q1 = qN ∈ (0, γ) and Φ̃(qN) > 0 so there exists a unique q1 ∈ (0, γ)
that solves the quadratic.

Examining (38) the left hand side is positive where q1 ∈ (0, qN). Therefore where
q1 solves Φ̃(.) the fruit holdings of the informed over even nights is positive, W0 > 0.
This also implies that the odd night cherry holdings for the informed is positive at the
solution as it follows from (32) that:

(W0 > 0)⇒
(
W1

p1
> 0

)
.

Over even nights the uninformed hold the entire stock of trees in the economy. Over
odd nights the uninformed hold the entire stock of lemon trees and all those cherry
trees not held by informed. The stock of cherry trees held by the uninformed over odd
nights is:

γ − W1

p1
= (1− δ)(1− µ)γ + (1− δ)γ(1− θ)µ + q1

[
δ − (1− δ)W0

p1

]
Uninformed cherry Residual stock Endowment of Cherry trees

trees held over from even night non-dying purchased by
odd nights new-borns uninformed

(43)

The right hand side is positive if the uninformed purchase a positive amount of
cherry trees. Rearranging the market clearing condition (37):

(γ − q1)
[
δ − (1− δ)W0

p1

]
= (1− γ)(1− δ)

[
θµ+

W0

p1

]
. (44)
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The right hand side positive so it follows that

δ − (1− δ)W0

p1
> 0,

and hence cherry purchases of the uninformed on odd days are greater than zero. That
is, the uninformed hold a positive stock of cherry trees over odd nights.

The uninformed hold weakly positive stocks of fruit over even and odd nights: Y0 > 0
and Y1 > 0. Over even nights

Y0 =(1− δ)Y1+
+(1− δ)[ fruit from maturing trees of the uninformed ]

−p0[Number of trees sold excluding the sales of the non-dying uninformed] (45)

fruit. Before the market on even days the market value of all the trees in the economy
not owned by the non-dying uninformed is the expression on the third line.

On the odd days, the non-dying uninformed keep fraction (1 − δ) of the fruit held
over the even night. As they hold all trees in the economy over even nights the non-
dying uninformed receive a fraction (1 − δ) of all the fruit from maturing trees in the
economy. They also purchase all the trees sold by the dying less those bought by the
informed. Over odd nights the uninformed fruit holding then is

Y1 = (1− δ)Y0 + (1− δ)µ(l + γ∆)− p1(δ − (1− δ)W0

p1
). (46)

The uninformed hold over odd nights, as stated earlier, [(1− δ)(1−µ) +(1− δ)(1−θ)µ]
trees of quality γ and

δ − (1− δ)W0

p1

trees of quality q1. This implies that the uninformed maturing trees yield

µ(1− δ)[(1− µ) + (1− θ)µ](l + γ∆) + µ[δ − (1− δ)W0

p1
](l + q1∆)

fruit on even days. Excluding the sales of the non-dying uninformed, the trees sold
on even days are those sold by the dying and those sold by the non-dying uninformed,
which is a total of

δ + (1− δ)2(1− µ)
W0

p1
+ (1− δ)2(1− µ)θµ+ (1− δ)θµ

trees.
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Using these values and substituting for Y1 in equation (45) using equation (46) we
get

Y0 =(1− δ){(1− δ)Y0 + (1− δ)µ(l + γ∆)− p1[δ − (1− δ)W0

p1
]}+

+(1− δ)
{
µ(1− δ)[(1− µ) + (1− θ)µ](l + γ∆) + µ[δ − (1− δ)W0

p1
](l + q1∆)

}
−p0

{
δ + (1− δ)2(1− µ)

W0

p1
+ (1− δ)2(1− µ)θµ+ (1− δ)θµ

}
. (47)

Substituting for p1 above with equation (27) and rearranging implies Y0 ≥ 0 if and
only if

µ(1− δ)2(l + γ∆)(2− θµ) ≥ p0[δ + (1− δ)θµ][1 + (1− δ)(1− µ)].

Given that p0 ≤ (l + γ∆) a sufficient condition for Y0 ≥ 0 is

µ(1− δ)2(2− θµ) ≥ [δ + (1− δ)θµ][1 + (1− δ)(1− µ)]

or,

[1− δ

µ(1− δ)
]− θ > 0 (48)

which is true by assumption 2.

Assumption 2 also implies that Y1 ≥ 0. The value of Y0 ≥ 0 that minimises Y1 is
Y0 = 0. Putting this into equation (46)and rearranging yields

Y1 = [(l + γ∆)(1− δ)µ− δp1] + (1− δ)W0.

Therefore Y1 ≥ 0 if (l + γ∆)(1− δ)µ− δp1. Given (l + γ∆) ≥ p1 a sufficient condition
for Y1 ≥ 0 is

µ(1− δ) > δ

, which is weaker than assumption 2.

It still remains to demonstrate that the equilibrium behaviour for the informed is
incentive compatible. In particular that:

0 ≤ F ≡ −(1− γ) + (γ − q1)(1− δ)(1− µ), (49)

where Φ̃(q1) = 0 for some q1 ∈ (0, γ).
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F is decreasing in q1. Define, qF as that value of q1 which implies F = 0:

qF ≡ q1 −
(1− γ)

(1− δ)(1− µ)
. (50)

Observe that qF > 0 where

γ >
1

1 + (1− δ)(1− µ)

which is assumption 4. From rearranging (18) and subtracting qF :

qN − qF =
(1− γ)

δ(1− δ)(1− µ)

[
δ − (1− δ)2µ(1− µ)θ

]
.

Which is greater than 0 as we know from assumption 1 that δ > (1− δ)2µ.

As qN > qF we must demonstrate that q1 ∈ [0, qF ] solves Φ̃(q1) = 0. This can be
done if it is demonstrated that Φ̃(qF ) > 0, i.e.

Figure 5

It is easy to see that assumption 5 implies Φ̃(qF ) > 0 and hence there exists a unique
incentive compatible q1 ∈ [0, γ] that solves Φ̃(q1) = 0.

5 A Numerical Example

Suppose an economy in which 1% of the population is informed; there are 50% more
cherry trees than lemon and each cherry tree produces 50% more fruit than a lemon.
Finally, one tree matures for every 10 that don’t and 1 trader dies for every 20 that
don’t. Or:
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µ = 1/11

δ = 1/21

γ = 0.6

θ = 0.01

l = 1

∆ = 0.5

In the constant price equilibrium prices and qualities are:

q∗ = 0.57

p∗ = 1.28

(51)

In the saw-tooth equilibrium prices and qualities are:

q0 = 0.6

q1 = 0.12

p0 = 1.29

p1 = 1.27

The price on odd days is 2% lower than on even days. From within a completely
stationary environment prices cycle deterministically from high to low to high.
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Appendix

Proposition 1 There exists a set of parameters that satisfy assumptions 1 through 5.

Lemma 1 If assumption 3 holds when ∆ → 0 and γ > µ then assumption 1 holds
when ∆→ 0.

Proof:

(∆→ 0)⇒ a0 → lθµ(1− δ)[(1− γ)δ + (1− δ)µ]− lγδ2

which is greater than zero if

γδ2 > θµ(1− δ)[(1− γ)δ + (1− δ)µ] (52)

(∆→ 0)⇒ ã0 → (2− δ)l{θµ(1− δ)[1− δγ]− lγδ2}

which is greater than zero if

γδ2 > θµ(1− δ)[1− δγ]. (53)

Inequality (53) is stronger than (52) if γ > µ. �

Lemma 2 There exists a set of parameters consistent with assumption 3 and 5 as
∆→ 0.

As ∆→ 1 assumption 3 requires that

θ <
γδ2

µ(1− δ)(1− δγ)
. (54)

As ∆→ 1 assumption 5 tends to

δ2

µ(1− δ)2(2− µ)
< θ. (55)

Therefore
δ2

µ(1− δ)2(2− µ)
< θ <

γδ2

µ(1− δ)(1− δγ)
. (56)

(56) is possible if:
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γ >
1

1 + (1− δ)(1− µ)
(57)

�

Note that (57) in the proof of lemma 2 is assumption 4. Hence assumption 4 is
compatible with assumptions 3 and 5. From lemma 1 it then follows that there is a set
of parameters consistent with assumptions 1, 3,4 and 5 where γ > µ.

Finally, we show that assumption 2 is compatible. Assumption 2 is easier to satisfy
the lower θ. Assumption 5 provides a lower bound on θ so must show it is possible to
have:

δ2

µ(1− δ)2(2− µ)
< θ < 1− δ

(1− δ)µ
(58)

which is true if δ is sufficiently small relative to µ.

�
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