
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimal Punishment in Contests with Endogenous Entry

Citation for published version:
Thomas, J & Wang, Z 2013, 'Optimal Punishment in Contests with Endogenous Entry' Journal of Economic
Behavior & Organization, vol 91, pp. 34-50., 10.1016/j.jebo.2013.02.007

Digital Object Identifier (DOI):
10.1016/j.jebo.2013.02.007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Journal of Economic Behavior & Organization

Publisher Rights Statement:
© Thomas, J., & Wang, Z. (2013). Optimal Punishment in Contests with Endogenous Entry. Journal of Economic
Behavior & Organization, 91, 34-50. 10.1016/j.jebo.2013.02.007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28974211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jebo.2013.02.007
http://www.research.ed.ac.uk/portal/en/publications/optimal-punishment-in-contests-with-endogenous-entry(6186b7f2-dea7-444e-88cb-a598c3f33c81).html


Optimal Punishment in Contests with

Endogenous Entry∗
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Abstract

We study optimal punishment in an all-pay contest with endogenous entry, where

the participant with the lowest performance may be punished. When a small punish-

ment is introduced, the lowest ability players drop out and those of medium ability

exert less effort, while only the highest ability players exert more effort. A suffi cient

condition is given for the optimal punishment to be zero if the objective is to max-

imize the expected total effort. As cost functions become more convex, punishment

becomes less desirable. When the objective is to maximize the expected highest indi-

vidual effort, a positive punishment is desirable under much weaker conditions. (JEL

C72, D72, D82)
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1 Introduction

In daily life, “carrots and sticks” refers to a policy of offering a combination of

rewards and punishments to induce some desired behavior. In the literature on

contests, focus has been on the carrots (allocating prizes to the top players), with

little attention paid to the sticks (punishing the bottom players). A possible reason

why punishments have received little theoretical attention is that if players have

to participate in a contest then it is trivial that introducing a punishment will be

effective in increasing effort. That is, for a given group of players who have to

participate, punishing the player who exerts the lowest effort level will increase the

total effort for sure. In fact, punishments should be made as large as possible in order

to maximize effort. However, adding a punishment, especially when the punishment

is large, may violate individual rationality constraints, i.e., a player can find that

his expected utility in equilibrium is below his outside option.

In this paper we assume that potential players observe the reward/punishment

scheme before deciding whether or not to participate in a contest. We call this type

of contest an open contest and consider whether punishments are desirable in this

context. For example, a profession in which low performers lose their jobs– which

can be regarded as a punishment– may discourage entry; is it the case that this

in turn may lead to less competition among those who do enter, and so negate the

positive effect on effort of a punishment mentioned above? Should essay contests

announce only the winners, or should they announce the entire ranking, subjecting

the worst performers to potential humiliation? Should promotion contests where

employees can choose whether or not to participate only announce the winner, or
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would it lead to a better top candidate if the bottom candidates were penalized in

some way?

To make progress on this sort of question, we analyze whether punishments are a

useful incentive mechanism for increasing effort in an open, perfectly discriminating

contest (where efforts exerted are perfectly observable to the contest designer), where

players differ by ability (cost of effort), which is private information. We assume

that there is a fixed prize for the highest effort, but that the contest designer can

choose to impose a punishment on the lowest performer. The punishment neither

consumes resources nor yields resources to the designer. We build on the seminal

model of Moldovanu and Sela (2001) which explains prize structures in contests

within the framework of private value all-pay auctions.

Our results can be summarized as follows. If the contest designer wants to

maximize the total effort from all potential players, the optimal punishment will be

zero for a wide class of cases (a positive optimal punishment can only occur when

high ability players are relatively probable). As cost functions become more convex,

starting from linear costs, the optimal punishment decreases, i.e., punishment be-

comes less desirable. If the contest designer seeks only to maximize the effort of the

top player, a strictly positive punishment should be set under weaker conditions,

and certainly if there are a suffi cient number of players.

Our work is closely related to Moldovanu, Sela and Shi (2010), who also look

at punishments in perfectly discriminating contests. In one section of their paper, a

model in which players can choose whether or not to participate is also analyzed.1

1Moldovanu, Sela and Shi (2010) also consider a range of other scenarios, starting with situations

where punishments can only be administered at a cost (subject to a fixed budget), and where

players have to participate. If only punishments can be administered, they establish under a

likelihood ratio condition that using all resources on a single punishment on the worst performer is

optimal. If both rewards and punishments are feasible, then resources may be expended on a single
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Their result appears to contradict the corresponding result in our paper: In order

to maximize expected total effort, they find that a strictly positive punishment is

always optimal while we find the optimal punishment is zero in a wide range of

cases.2 The reason for this difference lies in the assumption about the support of

the distribution of the marginal cost of effort. Our paper follows the assumptions

of Moldovanu and Sela (2001) in assuming that this distribution has positive and

bounded support. By contrast, in Moldovanu, Sela and Shi (2010) the inverse of the

marginal cost (denoted by a) is assumed to be distributed on the interval [0, 1], so the

marginal cost (i.e., 1/a) is distributed on the interval [1,+∞). Our results show that

with a bounded support [s, s] (where s > s > 0), the desirability of a punishment

depends critically on the shape of the cost parameter distribution.3 In this respect,

our results can be seen as complementary to theirs, and we would argue that in

practice a bounded support is often realistic. For example, in contests involving

professionals, the support of the ability distribution is typically bounded due to

prior constraints on entry to the profession. Thus, in these situations, punishment

is likely to be undesirable. This seems to be more consistent with what we observe

in reality: explicit punishment is rarely used in open contests.

Intuitively, introducing a punishment has two effects. Firstly, a selection effect:

some players will drop out, and these will be those towards the bottom of the ability

range who are likely to lose anyway. This leads to the competition between the

actual participants becoming less fierce since fewer players are involved. Those

prize/punishment depending on the distribution of abilities. Alternatively, if the size of punishment

is fixed, and punishments are costless, they characterize the optimal number of punishments.
2See Proposition 3 and Example 1 for details.
3Replacing [s, s] with [1,+∞), our model (with linear cost functions) would be exactly the

same as that in Moldovanu, Sela and Shi (2010). We confirm this equivalence in Section 3.1 below.

While Moldovanu, Sela and Shi (2010) focus on the case with linear cost functions, as already

mentioned with convex cost functions we find that, in order to maximize expected total effort,

punishment becomes less desirable when the cost function becomes more convex.
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who participate but are near the nonparticipation threshold will put in less effort,

since they anticipate being beaten by higher ability players (at the threshold, effort

must be zero). Secondly, there is an incentive effect due to the desire to avoid

the punishment. The two effects occur at the same time. We show that when a

suffi ciently small punishment is introduced, the low ability players drop out and

the medium ability players exert less effort, while only the high ability players exert

more effort. This explains our contrasting results. When a punishment is introduced,

expected total effort is likely to fall because of the loss of the lowest ability players

and the fact that the medium ability ones exert less effort. On the other hand

because the highest ability players exert more effort, the expected highest individual

effort will increase for a wider range of ability distributions.

An entry fee (or minimum-effort requirement) is in some respects similar to

a punishment in that it also excludes low-ability players from a contest. Higgins,

Shughart and Tollison (1985) study a contest where there is a fixed entry cost

for everyone and contestants enter randomly in equilibrium. In an all-pay auction

model, Kaplan and Sela (2010) provide a rationale for entry fees in contests by

analyzing a two-stage model4 with privately known entry costs. Fu and Lu (2010)

investigate an imperfectly discriminating contest where the potential contestants

bear fixed entry costs and the contest designer has a fixed budget with two strategic

instruments: the prize purse and monetary transfers (subsidy/fee). Fu, Jiao and Lu

(2011) study imperfectly discriminating contests with endogenous and stochastic

entries.5 They show that the designer may benefit from noisier contests and prefers

to invite only a subset of potential contestants to participate. Finally there has

4In the first stage, potential players make entry decisions given entry costs being privately

known; in the second stage, participants make efforts (bids) after finding out who else has entered.
5Myerson and Warneryd (2006), Munster (2006), Lim and Matros (2009) and Fu, Jiao and Lu

(2010) also examine contests with stochastic participation.
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been some recent experimental work on the contest entry decision, although not

with explicit punishments, see Cason, Masters and Sherementa (2010) (where there

is a positive outside option which is lost upon entry, so this is similar to an entry

fee) and Morgan, Orzen and Sefton (2010).

The difference between an entry fee and a punishment should be emphasized.

First, with an entry fee, all participants have to suffer some cost to enter the contest,

while in our model only the participant with the lowest effort will be punished by

suffering a loss. Secondly, it has been proved that with linear cost functions, a contest

with a single first prize and an (optimally set) entry fee is total effort maximizing

among all feasible mechanisms that are incentive compatible and individual rational

(Myerson, 1981; Riley and Samuelson, 1981), while in this paper, with no entry fee,

we show that for the same objective function, a punishment on the worst performer

is often not desirable.

In a seminal paper of a large literature on contests (or tournaments), Lazear and

Rosen (1981) argue that rank-order contests help to solve a moral hazard problem. In

a Lazear-Rosen contest, Nalebuff and Stiglitz (1983) discuss (among other matters)

how punishments can affect the global incentive compatibility condition– ensuring

that contestants are not better offchoosing zero effort over the effort identified by the

usual marginal conditions. More recently, Gilpatric (2009) considers how the balance

of prizes and punishment affect risk-taking in a Lazear-Rosen tournament, showing

that adding a punishment enables the contest designer to control contestants’incen-

tives to exert effort and to alter output variance according to the designer’s aims.6

Akerlof and Holden (2010) extend Lazear and Rosen’s (1981) analysis to the case

6For example, as here, Gilpatric (2009) analyzes two possible aims of the contest organizer:

maximizing total effort when she values all contestants’effort equally, or maximizing highest indi-

vidual effort when she only values the highest of the contestants’efforts.
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with multiple prizes and show that it is often optimal to give rewards that differ

between top performers by a smaller magnitude than the corresponding punish-

ments to poor performers. We stress that the context of the above papers is very

different from the one which we deal with: they focus on the symmetric case where

all players are homogeneous but effort and performance is stochastically related,

whereas we look at a perfectly discriminating contest with endogenous entry where

heterogeneous contestants have private information on their abilities. In a setting

of perfectly discriminating contests (as in Moldovanu and Sela, 2001, and this pa-

per), Minor (2012) shows that with strictly convex costs, having an inverted reward

structure– in which a larger prize goes to second place than to first place– may

be optimal as the less able are more incentivized. Likewise punishment, considered

here, leads to a “steep” reward structure and may create adverse incentives, the

more so as convexity of costs increase. In this sense, Minor’s results are consistent

with ours.

The contest literature has mostly focussed on the case of maximizing expected

total effort. However in practice, the contest designer may not value all contestants’

efforts equally, and may care more about the performance of the top (one or several)

contestants. Given this motivation, and as mentioned earlier, we also analyze what

the optimal punishment would be when the contest designer seeks to maximize the

expected highest individual effort. For example, in the research contests studied by

Taylor (1995), the contest designer will only use the best submission from among all

contestants. In sporting competitions, the contest designer may be interested only

in the performance of the top player(s). Levitt (1995) argues that in many contexts

where multiple players are assigned to a task, only one of their outputs will be used:

This is especially true of creative endeavors such as the development of advertising

campaigns. Another example is suggested by Gilpatric (2009): “If one considers
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a group of junior faculty competing to win tenure, the department may value the

output of all contestants, but the output of the winners may be valued more than

that of the losers because the winners will be retained and their output will provide

greater ongoing reputation benefits to the department.”

The remainder of the paper proceeds as follows. In section 2, after setting up the

model formally with a linear cost function, we derive a symmetric equilibrium where

the effort levels of participants in the contest are characterized by an equilibrium

effort function. By analyzing this equilibrium effort function, we elaborate on what

happens when a small or large punishment is introduced. In sections 3 and 4,

we discuss what the optimal punishment should be when maximizing the expected

total effort and the expected highest individual effort respectively. In addition, the

relationship of our work to that of Moldovanu, Sela and Shi (2010) is analyzed in

section 3.1. In section 5, we extend our previous analysis (with linear cost functions)

to the convex cost case. Concluding remarks are provided in section 6.

2 The Model

There are k ≥ 3 potential players in a perfectly discriminating contest with a fixed7

prize V > 0. Assuming there is at least one participant, the player with the highest

effort will win the prize, and the player with the lowest effort will be punished by

bearing a loss P , 0 ≤ P ≤ V , which is a choice variable of the contest designer. If

only one player participates in the contest, he receives the prize and the punishment

7We assume the prize is simply fixed in value, and it is indivisible. While we do not show that

with divisibility it is still optimal to have a single prize, Moldovanu and Sela (2001) show that,

with linear and concave cost functions, it is optimal to allocate the entire prize sum to a single

first prize in order to maximize the expected total effort.
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at the same time.8

Ex ante all potential players choose simultaneously whether or not to enter this

contest, and (at the same time) conditional on entry, player i chooses an effort level

xi.9 Effort level xi causes player i a disutility of cixi, where ci denotes player i’s

(constant) marginal cost of effort, which is private information. Parameter ci is also

called the ability parameter of player i, a low ci indicating a high ability and vice

versa. Ability parameters are drawn independently of each other on the interval

[s, s] (where s > s > 0) according to a distribution function F that is common

knowledge. We assume that F has a continuous density function f = dF/dc > 0.

Each player maximizes expected utility given the values of the prize and the

punishment. We assume that if a potential contestant chooses not to enter the

contest, he receives an outside option of 0. Thus, for each player, the participation

constraint requires his (ex ante) expected utility to be non-negative. The contest

designer determines the size of the punishment in order to maximize the expected

value of the sum of the efforts (i.e.,
∑k

i=1 xi) or the expected value of the highest

individual effort.10

2.1 The Objective Function and Entry Decision

Given the commonly known values of V and P , a participant (who chooses to enter

the contest) with ability parameter c, solves the following problem by choosing effort

8If more than one player exerts the highest (lowest) effort, the prize (punishment) is randomly

allocated among them. In the equilibrium we study this happens with zero probability.
9Take an essay contest for example: students have to submit their essays by the deadline, so

they do not know the number of participants until after the deadline.
10We assume that the contest designer only focuses on effort levels and does not get any material

benefit or cost directly from the prize or the punishment. The value of the punishment thus cannot

be used to finance the prize.
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level x:

Max
x
{V × Pr(x is the highest)− P × Pr(x is the lowest)− cx}.

We look for an equilibrium such that players with c ∈ [s, e) participate in the

contest and every player exerts effort according to a strictly decreasing differentiable

equilibrium effort function x = b(c) when c ∈ [s, e). Players with c ∈ [e, s] do not

participate in the contest.

A player with c = e is indifferent between participating in the contest or not;

we refer to such a player as the marginal player. If he enters he will exert zero

effort, b(e) = 0. This follows as the marginal player has the lowest effort of any

entrant: in equilibrium he will lose against all other entrants with probability one,

so if he was putting in positive effort a deviation to zero effort would be profitable.

He anticipates being punished with probability one which is exactly offset by the

chance he is the only entrant, in which case he would win the prize. So the marginal

player’s expected utility is:

V × Pr(effort is the highest)− P × Pr(effort is the lowest)− e× 0 = 0,

which implies

F (e) = 1− (P/V )
1

k−1 . (1)

Players with c ≥ e are indifferent about entering and setting e = 0; we consider

only equilibria in which they do not enter.11 Equation (1) implies that the larger

P is, the smaller F (e) is, and so the smaller e is, i.e., fewer players would enter the

contest. In particular, if the contest designer sets the punishment to the same value

as the prize, i.e., P = V , then from (1), 1 − F (e) = 1 so that F (e) = 0 and e = s.

11Note that if there was a positive measure of zero-effort entrants, increasing effort a tiny amount

would be a profitable deviation, so we can rule out symmetric pure-strategy equilibria with higher

cost agents (c > e) also entering.
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Consequently no player will enter.12 Only when P < V do potential entrants exist

and exert positive effort.

If a player’s ability parameter is c, the probability of another player’s ability

parameter being smaller than c is F (c). Moreover by the fact that entrants’effort

is strictly decreasing in c, a participant who makes an effort x in equilibrium has

ability c = b−1(x). Then, given the equilibrium behavior of other competitors, a

player who enters the contest solves the following problem:13

Max
x
{V × [1− F (b−1(x))]k−1︸ ︷︷ ︸

Pr(x is the highest)

− P × [F (b−1(x)) + 1− F (e)]k−1︸ ︷︷ ︸
Pr(x is the lowest)

−cx} (2)

where [1−F (b−1(x))]k−1 is the probability that all other potential players exert less

effort than x and [F (b−1(x))+(1−F (e))]k−1 is the probability that all other players

either exert more effort than x or do not participate in the contest.14

2.2 The Equilibrium

Proposition 1 In a symmetric equilibrium with prize V and punishment P where

0 ≤ P ≤ V , players with c ∈ [e, s] do not participate in the contest, while players

with c ∈ [s, e) participate in the contest and exert effort according to the following

strictly decreasing equilibrium effort function:

b(c) = (k − 1)
∫ e

c

1

t
{V [1− F (t)]k−2 + P [F (t) + 1− F (e)]k−2}f(t)dt, (3)

where e satisfies (1).

12This is intuitive, since otherwise with the value of the punishment being equal to the value of

the prize, by collecting the punishment from the bottom participant and awarding it to the top

participant, the contest designer could get a positive total effort for no cost.
13Note that the objective function (2) is relevant only for types c < e, i.e., the players who

actually participate in the contest.
14In equilibrium, for player i, Pr(xi is the lowest) equals the probability that every other player’s

type resides on the interval [s, ci) ∪ [e, s], i.e., every other player either participates in the contest
with an effort higher than xi, or does not participate in the contest.
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Proof. See Appendix.

From (3), we can get

b′(c) = −(k − 1)f(c)
c

{V [1− F (c)]k−2 + P [F (c) + 1− F (e)]k−2}. (4)

As V, P > 0 and b′(c) < 0, the equilibrium effort function is strictly decreasing in c,

i.e., the more able a participant is, the higher the effort he exerts in equilibrium.15

2.3 Introducing a Small Punishment

With zero punishment, e = s and F (e) = F (s) = 1, so by (4) we obtain

b′(c)|P=0 = −
(k − 1)f(c)

c
V [1− F (c)]k−2. (5)

When a punishment P > 0 is introduced, we can write (4) as

b′(c)|P>0 = b′(c)|P=0−
(k − 1)f(c)

c
P [F (c) + 1− F (e)]k−2︸ ︷︷ ︸

<0

. (6)

Thus for every c ∈ [s, e),

b′(c)|P>0 < b′(c)|P=0. (7)

We can interpret the slope of b(c) as the degree of relative competition between

participants, so this shows that a positive punishment leads to more intense relative

competition. This is what we referred to as an incentive effect in the introduction.

However, it does not follow that participants will exert more effort than before.

Marginal participants, that is with abilities close to e, will exert less effort, and

15From (4), it also follows that a consolation prize (a negative punishment, P < 0) for the

bottom player will never be optimal as everyone exerts less effort compared to the case with P = 0

(e = s for P ≤ 0, so there is no gain from increased participation). To the extent they exist in the

real world, it could be argued that there may be a psychic loss for the bottom participant from

being revealed as the loser; therefore, a consolation prize to cancel out this “punishment”would

be optimal whenever P = 0 is optimal in the corresponding model with zero psychic costs.
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it may even be that all players exert less effort because fewer players participate.

The following proposition summarizes the relative competition effect, and conditions

under which some players exert more effort and those under which all players exert

less effort.

Proposition 2 (a) The equilibrium effort function b(c) becomes steeper as P in-

creases, that is, b′(c)|P1 < b′(c)|P2 for P1 > P2 and every c such that b(c)|P1 > 0.

(b) The two equilibrium effort functions b(c)|P>0 and b(c)|P=0 either cross once

or do not cross at all. For P suffi ciently small they will cross once, while for P

suffi ciently large they do not cross. When they cross once, say at point c = c∗,

b(c)|P>0 > b(c)|P=0 for every c ∈ [s, c∗) and b(c)|P>0 < b(c)|P=0 for every c ∈ (c∗,

s). When they do not cross, b(c)|P>0 < b(c)|P=0 for every c ∈ [s, s).

Proof. See Appendix.

In the proof of (b) it is shown that if the contest designer introduces a (suf-

ficiently) small punishment into an open contest, players with the highest ability

(lowest values of c) will increase their effort. Because it is always the case that some

low ability (high c) players drop out when P > 0 and the effort function is steeper

when positive, this means the effort functions must cross once. This is illustrated

in Figure 1 (where b1(c) corresponds to P = 0 and b2(c) to some small P > 0). The

players with c ∈ [s, c∗), whom we call the high ability players, will exert more effort;

the players with c ∈ (c∗, e], whom we call the medium ability players, will exert less

effort; and the players with c ∈ [e, s] whom we call the low ability players, will drop

out.

However, when the punishment is (suffi ciently) large, as in Figure 2 (where b1(c)

corresponds to P = 0, and b2(c) now to some large P > 0), all participants will exert

12



less effort than before since too many players drop out, i.e., b(c)|P>0 < b(c)|P=0 for

all potential values of c.

 b(c)

)(2 cb

)(1 cb

S     c*                                                              e S c

Figure 1 Effort functions when a small punishment is

introduced

  b(c)

)(2 cb

)(1 cb

S                                  e S c

Figure 2 Effort functions when a large punishment is

introduced
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This characterization leaves open the question of whether a positive punishment

is desirable. Even though the effort of the most able unambiguously rises with the

introduction of a relatively small P , it does not follow that the expected highest

effort rises since the most able may not be present in a given population of players.

Moreover if the contest designer is interested in the sum of efforts, even if the most

able are present, the fact that when P > 0 others reduce their effort or do not

participate, implies that a positive punishment is even less likely to be desirable.16

We now turn to analyze this question in more detail.

3 Maximizing Expected Total Effort

In this section, it is assumed that the contest designer’s aim is to maximize the

expected total effort. For example a university wants to set an essay contest in

some specific field to improve the overall academic level of all students in that field.

It wants all the students to contribute as much as possible, i.e., it wants to maximize

the expected total effort.

In equilibrium, the expected average effort (AE) of each potential player is

given by

AE :=

∫ s

s

b(c)f(c)dc. (8)

We have shown that there is an equilibrium effort function x = b(c) which is strictly

decreasing for participants with c ∈ [s, e), and b(c) = 0 for all players with c ≥ e.

There are k potential players, so from (3) the expected total effort (TE) is

TE := k × AE =
∫ s

s

b(c)f(c)dc = k(k − 1)R1, (9)

16Although either way it is clear that a large punishment is never optimal.
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where

R1 =

∫ e

s

∫ e

c

1

t
{V [1− F (t)]k−2 + P [F (t) + 1− F (e)]k−2}f(t)dtf(c)dc. (10)

Maximizing TE is equivalent to maximizing R1. In the appendix, we prove the

following result by analyzing (10):

Proposition 3 In an open contest with k ≥ 3 players, if the density function f(c)

is non-decreasing in c on the interval [s, s], in order to maximize expected total effort

it is optimal to set P = 0.

Proof. See Appendix.

Proposition 3 states that a non-decreasing density constitutes a suffi cient condi-

tion for optimal punishment being zero.17 This is not a necessary condition, however,

and the optimal punishment can be zero with a decreasing density distributions.

When f(c) is non-decreasing (i.e., increasing or staying constant) with c, the

contest designer anticipates relatively few high ability players. Then, adding even

a small punishment, which will exert the low ability players drop out and medium

players exert less effort, will decrease the expected total effort.

When f(c) is decreasing with c, to maximize expected total effort, the optimal

punishment may still be zero (see Example 1) or strictly positive (see Example 2).

A decreasing density function implies that the contest designer expects there to be

a relatively large number of high ability players. Since their effort levels respond

positively to a small punishment, in order to maximize total effort punishment may

be desirable.
17In this section, we focus on monotone density functions. We do not have general results with

non-monotone density functions.
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Figure 1: Figure 3 Density Functions in Example 1 [LEFT] and Example 2 [RIGHT].

Example 1 Let V = 1, k = 3, s = 1, s = 11. and consider the (linear) density

function f1(c) = (31 − c)/250, which is strictly decreasing in c on [1, 11]. In this

case e = 31− 10
√
4 + 5P 1/2. It can be shown that dTE/dP < 0 for any P ∈ [0, 1),

and the optimal punishment is zero.

Example 2 Let V = 1, k = 3, s = 1, s = 11 and consider the (linear) density

function f2(c) = (11− c)/50, which is also strictly decreasing with c on the interval

[1, 11]. In this case e = 11− 10P 1/4
, and TE is maximized when P ≈ 0.011. Thus,

the optimal punishment is strictly positive.

Note that in Example 2 (RIGHT in Figure 3) f2(c) is decreasing in c at a faster

rate compared to f1(c) in Example 1 (LEFT in Figure 3), which is consistent with

the intuition given above.18

18Examples 1 and 2 can be established analytically. In general with k = 3 and support [1, 11],

and assuming the density function is linear with a slope a (so that a ∈ [−0.02, 0.02] which ensures
that the density function is always strictly positive on the interior of the support [1, 11]), and grid

step of 0.001, numerical simulations show that, the optimal punishment P ∗ > 0 when −0.020 ≤
a ≤ −0.006 and P ∗ = 0 when −0.005 ≤ a ≤ 0.020. Examples 1 and 2 are then two special cases
of those simulations with a = −0.004 and a = −0.02 respectively.
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3.1 Relationship to Moldovanu, Sela and Shi (2010)

Moldovanu, Sela and Shi (2010) analyze a similar situation to the above.19 They

prove that to maximize expected total effort the optimal punishment is always

strictly positive. This seems to contradict our above result that when f(c) is non-

decreasing in c, the optimal punishment is zero, and even when f(c) is decreasing

in c, the optimal punishment may still be zero (see Example 1). As discussed in

the introduction, however, translated into our model they assume that the density

function for c must be positive everywhere on the interval [1,+∞).

If we let the support of F be [1,+∞) instead of [s, s], our model would be the

same as that in Moldovanu, Sela and Shi (2010), and we get the following:

Case 1 (Proposition 7 of Moldovanu, Sela and Shi, 2010) When the support of F

is [1,+∞),
dTE

dP
|P=0 = k(k − 1)

∫ +∞

1

1

t
[F (t)]k−1dF (t) > 0.

Therefore the optimal punishment is strictly positive.

Proof. See Appendix.

If the support of F is [1,+∞) then this excludes the possibility that the Propo-

sition 3 condition holds that f(c) should be non-decreasing with c on the support

since f(c) must be decreasing as c → +∞ given
∫ +∞
1

f(c)dc = 1; consequently the

two results are not in fact in conflict.

To get some rough intuition, consider starting with a finite support for F , and

suppose a small punishment P̃ is introduced. By (1), this fixes F (e) and hence

e. As argued above, the effect of introducing P̃ is that this increases the effort

19See section 4.2 of their paper.
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levels of the most able while reducing effort levels of those with costs close to (but

below) e. Moreover all players with costs above e drop out. As we have seen, the

benefit of introducing P̃ may be positive or negative depending on F . Suppose now

that we change F by increasing its support (letting s increase) and “stretching”the

distribution across this wider support, but leaving F unchanged for c ≤ e. Clearly,

the equilibrium of the game with punishment P̃ is unchanged as exactly the same

players participate as before (e is unchanged). However the benefit of introducing

P̃ is different now: when P = 0 the players with c > e are likely to exert very low

levels of effort as they mostly have high values for c. Moreover even the players

with c close to e will have very low levels of effort because there is effectively no

competition from players with lower ability (see (3)). So when P̃ is introduced,

not only is the cost of players with c > e dropping out very small, but also the

drop in effort made by those close to e is also small. Effectively what we called the

selection effect becomes insignificant, and the incentive effect of the punishment on

the higher ability players dominates for a suffi ciently stretched support. The benefit

of introducing P̃ will thus become positive.

In other words, c being distributed on [1,+∞) with f(c) > 0 implies, from the

contest designer’s point of view, the weakest (possible) players are always a group

of extremely low ability players (with c = 1/a → +∞ as a → 0), so starting from

a situation without punishment, introducing a small punishment will make these

extremely low ability players drop out and the high ability players exert more effort.

Because those players with extremely low abilities exert little (almost zero) effort in

the situation without punishment, the selection effect is dominated by the incentive

effect. Therefore, the expected total effort increases after the introduction of an

appropriately small punishment.
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4 Maximizing Expected Highest Individual Effort

Instead of maximizing expected total effort, in this section, we focus on the case

where the contest designer wants to elicit the highest individual effort. As we men-

tioned in the introduction, in many contexts, such as research contests and contests

among creative endeavors, the contest designer may only care about the best sub-

mission from among all contestants, i.e., she seeks to maximize the expected highest

individual effort. Or in our previous example, assume now the university only needs

the best essay from its students, with all essays of a lesser quality than the best

being of no interest. Even though we have seen that a positive punishment will raise

the effort of the highest ability players, this does not mean that the expected highest

effort will increase as it may be that all k players have abilities below the critical

level above which effort increases (i.e., with c above c∗ as defined in Proposition

2). Nevertheless given that it only the highest effort level that matters, we will find

that there are more circumstances under which a positive punishment is called for

compared to the previous case.20

Rank the players’ability parameters as follows: c1 < c2 < ... < ck, so c1 is the

most able player. First consider G1(c), defined as the distribution function of c1.

The probability that all potential players are less able than type c, is (1 − F (c))k,

then the probability that at least one player is more able than c is 1− (1− F (c))k.

Therefore,

G1(c) := Pr(c1 < c) = 1− (1− F (c))k.
20For a given P, the punishment is ex post beneficial if the most able player, type c1, is more

able than type c∗, i.e., c1 < c∗. This is more likely to occur than the total effort being ex post

higher (it follows from Proposition 2 that c1 < c∗ is a necessary but not suffi cient condition for the

total to be higher). This suggest that the ex ante comparison will go the same way.
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Hence, the probability density function of c1 is

g1(c) = G′1(c) = k(1− F (c))k−1f(c).

Therefore, the expected highest individual effort can be expressed as

E[b(c1)] =

∫ s

s

g1(c)b(c)dc = k(k − 1)R2,

where

R2 :=

∫ e

s

∫ e

c

1

t
{V [1− F (t)]k−2 + P [F (t) + 1− F (e)]k−2}f(t)dt(1− F (c))k−1f(c)dc.

(11)

Proposition 4 In an open contest with k ≥ 3 players, given a distribution function

F, there exists a number k∗ such that for any number of players k > k∗, the optimal

punishment is always strictly positive when the contest designer’s aim is to maximize

the expected highest individual effort.

Proof. See Appendix.

In Proposition 4, a suffi ciently large k ensures that the optimal punishment is

strictly positive. Intuitively, when the number of potential players is suffi ciently

large, the chance of the top player being a high ability player will be close to one,

in which case a strictly positive punishment is optimal.

Allowing the density function f(c) to take any form, the proposition gives a

relatively strong condition on the number of potential players (k > k∗) to guarantee

a positive optimal punishment. For specific forms of f(c), k∗ need not be large, and

may not bind at all. For example:

Case 2 In an open contest where abilities are drawn from a uniform distribution on

[s, s], i.e., f(c) = 1/(s−s), and when s/s ≥ 1.47, then for any k ≥ 3 it is optimal to

set a strictly positive punishment to maximize the expected highest individual effort.

20



Proof. See Appendix.

The requirement that the most able player is at least 1.47 times as effi cient as

the least possible able player seems to be fairly mild for practical applications.21

Thus, when abilities are drawn from a uniform distribution and s/s ≥ 1.47, to

maximize the expected highest individual effort the optimal punishment is strictly

positive, while by Proposition 3, to maximize expected total effort the optimal

punishment is zero.

5 Strictly Convex Costs

So far we assumed a linear cost function. In this section, we look at the case with

a strictly convex cost function.22 This is arguably a more realistic assumption.23

We look at the same model described in Section 2 with the only difference that we

assume now that an effort x will cause a player with ability c a disutility of cγ(x).

Assume γ(0) = 0, γ′ > 0 and γ′′ > 0, so the cost function cγ(x) is convex. Let g

be the inverse function of γ, i.e., g := γ−1, then it is straightforward to show that

g′ > 0 and g′′ < 0. The following can be obtained by a simple transformation of the

equilibrium strategies we found in the linear case.

Proposition 5 In a symmetric equilibrium with prize V and punishment P where

0 ≤ P ≤ V , players with c ∈ [e, s] do not participate in the contest, while players

with c ∈ [s, e) participate in the contest and exert effort according to the following
21When s/s < 1.47, the optimal punishment can be zero or positive depending on k.
22Henceforth we call this the convex case, and similarly we call the case with a linear cost function

the linear case.
23Though Moldovanu and Sela (2001) consider linear, concave and convex cost functions, they

argue that the convex case is the most applicable.
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strictly decreasing equilibrium effort function:

B(c) = g[b(c)], (12)

where e satisfies (1) and b(c) is the equilibrium effort function in the linear case,

which is defined by (3).

Proof. See Appendix.

Given g′ > 0, equation (12) implies that our previous results (in Proposition

2 (b)) on the ranking of effort functions as P changes still hold. In particular,

B(c)|P>0 >,=, < B(c)|P=0 when b(c)|P>0 >,=, < b(c)|P=0.

Let TEX denote the expected total effort in the convex case (where the super-

script X refers to the case with convex cost functions). Thus,

TEX = k

∫ e

s

g(b(c))f(c)dc. (13)

From (13),
dTEX

dP
= k

∫ e

s

g′
db(c)

dP
f(c)dc. (14)

By Proposition 2, there are two possible cases regarding the sign of of db(c)
dP
:

either db(c)
dP

< 0 for all c or there exists a c∗, s < c∗ < e, such that db(c)
dP

> 0 for small

c (c < c∗) and db(c)
dP

< 0 for large c (e > c > c∗). In the former case, dTE
X

dP
defined

by (14) will be negative as g′ > 0. In the latter case, g′′ < 0 and b (c) decreasing

imply that the negative terms of db(c)
dP

in the integral defining dTEX

dP
are multiplied by

higher values of g′ than the positive terms. Thus, other parameters held constant,

dTEX

dP
is negative if dTE

dP
(in the linear case) is negative, and dTEX

dP
will be negative

for some parameters even when dTE
dP

is positive. Thus Proposition 3 extends to the

convex case, as asserted in Propositon 6 (i) below. However, since convexity of the

cost function enlarges the set of parameters for which dTEX

dP
is negative when dTE

dP
is
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positive, it will be optimal to set P = 0 in more situations. Indeed, for γ suffi ciently

convex (e.g., take γ (x) = xα, α > 1, and let α → ∞), the weight placed on (the

negative value of) db(c)
dP

in a neighbourhood of c = e, relative to lower values of c,

becomes arbitrarily large, and part (ii) of the proposition follows straightforwardly.

Likewise as γ (·) becomes more convex, i.e., if a strictly convex transformation

is taken of γ, then again dTEX

dP
will be negative for a wider constellation of parame-

ters in the more convex case.24 Finally, by the same logic, starting from a strictly

positive optimal punishment, so dTEX

dP
= 0 at some P > 0, when the cost functions

become more convex, ceteris paribus, dTE
X

dP
will become negative and so the optimal

punishment will decrease, which justifies part (iii) of the following proposition.

Proposition 6 (i) In an open contest with k ≥ 3 players and strictly convex cost

functions, if the density function f(c) is non-decreasing in c on the interval [s, s],

it is optimal to set P = 0 in order to maximize expected total effort; (ii) For a given

f (·), suffi cient convexity of the cost function implies that it is optimal to set P = 0;

(iii) Starting from a situation where the optimal punishment is strictly positive, when

the cost functions become more convex (ceteris paribus), the optimal punishment will

decrease.

Roughly speaking, with convex cost functions, it becomes increasingly costly for

a player to exert additional effort. Since, in equilibrium, a more able player exerts

more effort than a less able player, the more able player is more discouraged by the

increasing marginal cost of exerting effort. As P is increased, the extra effort exerted

by higher ability players– the only ones who increase effort– is reduced relative to

the reduced effort of the lower ability players. Consequently when cost functions

24From equation (20) in the Appendix, db(c)dP is decreasing in c, so that as costs become more

convex an increasingly higher weight is placed on the more negative terms.
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become more convex, total effort is more likely to fall when a punishment is either

introduced or increased.

6 Concluding Remarks

We have studied a contest with a fixed prize where potential players can freely choose

whether or not to enter. The contest designer can punish the bottom participant

and we focused on the optimal punishment for maximizing either the expected to-

tal effort or the expected highest individual effort. By introducing a (suffi ciently)

small punishment, some low ability players drop out, medium ability players exert

less effort and the highest ability players exert more effort. When the punishment

is large enough, low ability players drop out and all participants exert less effort

than without punishment. We further show that in order to maximize the expected

total effort, punishment is guaranteed to be undesirable when the density function

for the effort cost is nondecreasing– the contest designer expects there to be rela-

tively few high ability players; on the other hand, to maximize the expected highest

individual effort, punishment is considerably more likely to be desirable. In some

circumstances there is a trade-off between maximizing the expected total effort and

maximizing the expected highest individual effort. In addition, as cost functions

become more convex, punishment becomes less desirable. Hence, depending on the

objectives of the contest designer, the distribution of abilities and the convexity of

costs, punishment may be part of the (optimal) answer.

In our model the prize is exogenously fixed, and we focussed on finding the

optimal amount of punishment. It is however straightforward to see that if the

exogenous prize becomes larger (smaller), the corresponding optimal punishment

should be increased (decreased) by precisely the same proportion. When both the
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prize and punishment are endogenously set, and increasing the prize is costly for

the contest designer,25 then the optimal prize (and corresponding punishment) will

depend on the cost function of increasing the prize. This is beyond the scope of this

paper and is left for future research.

We have maintained the assumption that the outside options of potential con-

testants are zero, so that there is no cost to staying out of the contest. However,

it may not unreasonable to suppose that contestants have negative outside options.

For instance, if an economics department increases its failure rate, students may

have to suffer a cost in switching to a different course. This would allow a positive

punishment to be introduced at no cost in terms of participation. Our model can

be extended in a straightforward fashion to encompass such cases.

7 Appendix

7.1 Proof of Proposition 1

To maximize (2), the first-order condition is:

−(k−1)f(b−1(x))db
−1(x)

dx
{V [1−F (b−1(x))]k−2+P [F (b−1(x))+1−F (e)]k−2}−c = 0.

Rearranging:

1 = −1
c
(k−1)f(b−1(x))db

−1(x)

dx
{V [1−F (b−1(x))]k−2+P [F (b−1(x))+1−F (e)]k−2}.

(15)

Let y denote b−1(x). As in equilibrium b(c) = x, c = b−1(x) = y. Then (15)

can be written as

1 = −1
y
(k − 1)f(y)y′{V [1− F (y)]k−2 + P [F (y)) + 1− F (e)]k−2}. (16)

25This must be the case, otherwise the contest designer will want to set an infinite prize.
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The marginal player with ability c = e makes zero effort in equilibrium, this gives

the boundary condition y(0) = e. The solution to the differential equation with the

boundary condition is given by:
∫ 0
x
dt = −G(y) where

G(y) =

∫ e

y

1

t
(k − 1)f(t){V [1− F (t)]k−2 + P [F (t)) + 1− F (e)]k−2}dt. (17)

Then we obtain that x = G(y) = G(b−1(x)), therefore, b ≡ G, thus the effort

function of every participant (who enters the contest actively) is given by

b(c) = (k − 1)
∫ e

c

1

t
{V [1− F (t)]k−2 + P [F (t) + 1− F (e)]k−2}f(t)dt.

Thus,

b′(c) = −(k − 1)1
c
{V [1− F (c)]k−2 + P [F (c) + 1− F (e)]k−2}f(c) < 0,

i.e., b(c) is strictly decreasing and differentiable for c ∈ [s, e), as we assumed initially.

Assuming other players with c ∈ [s, e) exert effort according to b(c), we need to show

that for any type c, the effort b(c) maximizes the expected utility of that type. The

necessary first order condition is satisfied by construction of b(c). Let

π(x, c) := V [1− F (b−1(x))]k−1 − P [F (b−1(x)) + 1− F (e)]k−1 − cx

be the expected utility of player i with type c that makes an effort x. We will show

that the derivative πx(x, c) is nonnegative if x is smaller than b(c) and nonpositive

if x is larger than b(c). As π(x, c) is continuous in x, this implies that π(x, c) is

maximized at x = b(c). Let x < b(c), and let ĉ be the type who is supposed to bid

x, that is b(ĉ) = x < b(c). Note that ĉ > c because b is strictly decreasing. Thus,

by πxc(x, c) = −1 < 0, we obtain πx(x, c) ≥ πx(x, ĉ). Since x = b(ĉ), πx(x, ĉ) = 0

by the first-order condition, and therefore πx(x, c) ≥ 0 for every x < b(c). A similar

argument shows that πx(x, c) ≤ 0 for every x > b(c).
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7.2 Proof of Proposition 2

From (4), we derive

|b′(c)| = (k − 1)f(c)
c

{V [1− F (c)]k−2 + P [F (c) + 1− F (e)]k−2}.

Recall that when P increases, e decreases, so F (e) decreases and P [F (c)+1−F (e)]k−2

increases. Thus |b′(c)| gets larger as P increases and claim (a) follows. Hence b(c)|P>0

is steeper than b(c)|P=0. Thus, If b(c)|P>0 and b(c)|P=0 cross, they cannot cross more

than once because b(c)|P>0 is always steeper than b(c)|P=0. Suppose they cross at

point c = c∗; clearly b(c)|P>0 > b(c)|P=0 for c < c∗ and b(c)|P>0 < b(c)|P=0 for c > c∗.

If they do not cross, b(c)|P>0 < b(c)|P=0 for all c.

Next, we prove that when the punishment is suffi ciently small, b(c)|P>0 and

b(c)|P=0 will cross, or equivalently, that when the punishment is very small, b(s)|P>0 >

b(s)|P=0 (as b(c)|P>0 = 0 at c = e < s). From (3):

db(c)

dP
= (k − 1){( de

dP
)
1

e
(V [1− F (e)]k−2 + P )f(e)

+

∫ e

c

1

t
[F (t) + 1− F (e)]k−2f(t)dt

+ P (k − 2)(−f(e)) de
dP

∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)dt}.

From (1),

P = (1− F (e))k−1V, (18)

so that
de

dP
=

−1
(k − 1)f(e)(1− F (e))k−2V . (19)
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Substituting (18) and (19) into the above equation:

db(c)

dP
= (k − 1){− 1

(k − 1)e(2− F (e))

+

∫ e

c

1

t
[F (t) + 1− F (e)]k−2f(t)dt

+
(k − 2)
(k − 1)(1− F (e))

∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)dt}. (20)

Let P = 0 and c = s; P = 0 implies e = s so that F (e) = F (s) = 1; thus

db(s)

dP
|P=0 = (k − 1){

∫ s

s

1

t
F (t)k−2f(t)dt− 1

(k − 1)s}

= (k − 1){
∫ s

s

1

t
F (t)k−2f(t)dt−

∫ s

s

1

s
F (t)k−2f(t)dt}

= (k − 1){
∫ s

s

(
1

t
− 1
s
)F (t)k−2f(t)dt} > 0.

Thus when a suffi ciently small punishment is introduced, b(s)|P>0 > b(s)|P=0 will

hold and it follows that b(c)|P>0 and b(c)|P=0 cross once.

When P → V , recall from (1) that e→ s, so b(s)|P>0 → 0 and consequently for

large enough P we have b(s)|P>0 < b(s)|P=0 and b(c)|P>0 and b(c)|P=0 do not cross.

7.3 Proof of Proposition 3

Recall that

R1 =

∫ e

s

∫ e

c

1

t
{V [1− F (t)]k−2 + P [F (t) + 1− F (e)]k−2}f(t)dtf(c)︸ ︷︷ ︸

Z

dc.

Differentiating:

dZ

dP
=

de

dP
(
1

e
)[V (1− F (e))k−2 + P ]f(e)f(c)

+

∫ e

c

1

t
[F (t) + 1− F (e)]k−2f(t)dtf(c)

− (k − 2)f(e) de
dP

P

∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)dtf(c).
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Thus,
dR1
dP

=
de

dP
× Z|c=e +

∫ e

s

dZ

dP
dc =

∫ e

s

dZ

dP
dc.

That is:

dR1
dP

=
de

dP
(
1

e
)[V (1− F (e))k−2 + P ]f(e)

∫ e

s

f(c)dc︸ ︷︷ ︸
(α)

+

∫ e

s

{
∫ e

c

1

t
[F (t) + 1− F (e)]k−2f(t)dt}f(c)dc︸ ︷︷ ︸

(β)

−(k − 2) de
dP

f(e)P

∫ e

s

{
∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)dt}f(c)dc︸ ︷︷ ︸
(γ)

. (21)

Our aim is to prove that when f(x) is non-decreasing in x,
dR1
dP

< 0 for 0 ≤ P < V ,

and thus the optimal punishment is zero. Substituting (18) and (19) into (α), we

get

(α) = − 1

(k − 1)e [2− F (e)]F (e). (22)

In (β), reversing the order of integration we can write

(β) =

∫ e

s

∫ t

s

1

t
[F (t) + 1− F (e)]k−2f(t)f(c)dcdt

=

∫ e

s

F (t)

t
[F (t) + 1− F (e)]k−2f(t)dt. (23)

By assumption f ′(t) ≥ 0. Let g(t) := F (t)/t, h(t) := tf(t) − F (t), so that

h′(t) = tf ′(t) ≥ 0; thus h(t) > 0 as h(s) = sf(s) > 0. Consequently g′(t) =

(tf(t)− F (t)) /t2 = h(t)/t2 > 0. Hence for all t < e, F (t) /t < F (e)/e. Substitut-

ing into (23):

(β) =

∫ e

s

F (t)

t
[F (t) + (1− F (e))]k−2f(t)dt

<

∫ e

s

F (e)

e
[F (t) + (1− F (e))]k−2f(t)dt

=
F (e)

e(k − 1)[1− (1− F (e))
k−1] ≤ F (e)

e(k − 1) . (24)
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By a similar argument,∫ e

s

∫ e

c

1

t
[F (t) + (1− F (e))]k−3f(t)f(c)dtdc < F (e)

e(k − 2) . (25)

Substituting (18), (19) and (25) into (γ), we derive

(γ) ≤ F (e)(1− F (e))
(k − 1)e (26)

(equality occurs when P = 0). From (22), (24) and (26), we obtain

dR1
dP

= (α) + (β) + (γ) < −(2− F (e))F (e)
(k − 1)e +

F (e)

(k − 1)e +
F (e)(1− F (e))
(k − 1)e = 0.

Therefore, dR1/dP < 0 for all P ∈ [0, V ).

7.3.1 Proof of Claim in Case 1:

Substituting (22) and (23) into (21), and noting from substituting (18) and (19) into

(21) that (γ) = 0 at P = 0,

dR1
dP
|P=0 = −

1

(k − 1)s +
∫ s

s

1

t
[F (t)]k−1f(t)dt.

For s = +∞ the first term on the R.H.S. is zero, and so dR1/dP |P=0 > 0.

7.4 Proof of Proposition 4

Recall that

R2 =

∫ e

s

∫ e

c

V

t
([1− F (t)]k−2 + P [F (t) + 1− F (e)]k−2)f(t)(1− F (c))k−1f(c)dt︸ ︷︷ ︸

X

dc.

We get

dX

dP
=

de

dP
(
V

e
)[(1− F (e))k−2 + P ]f(e)(1− F (c))k−1f(c)

+

∫ e

c

1

t
[F (t) + 1− F (e)]k−2f(t)(1− F (c))k−1f(c)dt

+ (− de
dP
)P (k − 2)f(e)

∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)(1− F (c))k−1f(c)dt.
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Consequently,

dR2
dP

=
de

dP
X|c=e +

∫ e

s

dX

dP
dc =

∫ e

s

dX

dP
dc

=
de

dP
(
V

e
)[(1− F (e))k−2 + P ]f(e)

∫ e

s

(1− F (c))k−1f(c)dc︸ ︷︷ ︸
(a)

+

∫ e

s

∫ e

c

1

t
[F (t) + 1− F (e))]k−2f(t)(1− F (c))k−1f(c)dtdc︸ ︷︷ ︸

(b)

+ (− de
dP
)P (k − 2)f(e)

∫ e

s

∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)(1− F (c))k−1f(c)dtdc︸ ︷︷ ︸

(c)

.

Substituting (18) and (19) into (a) and (c), we get

(a) = − [2− F (e)][1− (1− F (e))
k]

k(k − 1)e

(c) =
(k − 2)(1− F (e))

(k − 1)V

∫ e

s

∫ e

c

1

t
[F (t) + 1− F (e)]k−3f(t)(1− F (c))k−1f(c)dtdc.

When P = 0, e = s and F (e) = F (s) = 1, so that (c) = 0; thus

dR2
dP
|P=0 = (a) + (b) > 0

if and only if ∫ s

s

∫ s

c

1

t
F (t)k−2f(t)(1− F (c))k−1f(c)dtdc > 1

k(k − 1)s. (27)

We can change the order of integration so

LHS of (27) =

∫ s

s

∫ t

s

[
1

t
F (t)k−2f(t)(1− F (c))k−1f(c)dc]dt

=
1

k

∫ s

s

1

t
F (t)k−2f(t)[1− (1− F (t))k]dt.

So (27) holds if and only if∫ s

s

1

t
[1− (1− F (t))k]F (t)k−2f(t)dt > 1

s(k − 1) . (28)
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We can express 1/(s(k − 1)) as
∫ s

s

1
s
F (t)k−2f(t)dt. Thus (28) holds if and only if

∫ s

s

1

t
[1− (1− F (t))k]F (t)k−2f(t)dt−

∫ s

s

1

s
F (t)k−2f(t)dt

=

∫ s

s

[(1− t

s
)− (1− F (t))k∗ ]1

t
F (t)k

∗−2f(t)dt > 0. (29)

Consider the two terms inside the square brackets in (29), (1− t
s
) and (1− F (t))k.

On (s, s),
d(1− F (t))k

dt
= −k(1− F (t))k−1f(t) < 0, (30)

and moreover at t = s,

d(1− F (t))k
dt

= −k(1− F (t))k−1f(t) = 0. (31)

Also y = (1−F (t))k crosses the y and t axes at points (t = s, y = 1) and (t = s, y = 0)

respectively and the linear function y = (1 − t
s
) crosses the y and t axes at points

(t = s, y = 1− s
s
) and (t = s, y = 0) respectively. Consider increasing k: the function

y = (1− t
s
) is unchanged but from (30) (1− F (t))k is decreasing in k on (s, s) and

converges to 0 as k → ∞, with the two points (t = s, y = 1) and (t = s, y = 0)

staying fixed. Thus for any ε > 0 and t∗ > s, there exists a k∗1 such that for k > k∗1,

(1 − F (t))k < ε and (using (31)) (1 − F (t))k < (1 − t
s
) on [t∗, s). Consequently

[(1− t
s
)− (1− F (t))k] < 0 on an arbitrarily small set close to s.

Next consider 1
t
F (t)k−2f(t). Since F (t) increases from 0 to 1 when t increases

from s to s, when k gets larger, 1
t
F (t)k−2f(t) will assign a relatively larger/smaller

weight to [(1 − t
s
) − (1 − F (t))k] for a large/small t. It is then straightforward to

show that by letting ε→ 0 and t∗ → s, the last two facts together imply that there

must exist a k∗2 such that (29) holds for all k > k∗2. This completes the proof.
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7.5 Proof of Case 2

Substituting F (t) =
t− s
s− s and f(t) =

1

s− s into (11), we have:

R2 =
1

(s− s)2k−1
∫ e

s

[

∫ e

c

V

t
(s− t)k−2 + P

t
(t− s+ s− e)k−2(s− c)k−1dt︸ ︷︷ ︸]

Y

dc.

It then follows that

dY

dP
=

de

dP
(
V

e
)[(s− e)k−2 + P (s− s)k−2](s− c)k−1

+

∫ e

c

1

t
(t+ s− s− e)k−2(s− c)k−1dt

+ (− de
dP
)P (k − 2)

∫ e

c

1

t
(t+ s− s− e)k−3(s− c)k−1dt.

Hence

dR2
dP

=
1

(s− s)2k−1{
de

dP
Y |c=e +

∫ e

s

dY

dP
dc} = 1

(s− s)2k−1
∫ e

s

dY

dP
dc

=
1

(s− s)2k−1{
de

dP
(
V

e
)[(s− e)k−2 + P (s− s)k−2]

∫ e

s

(s− c)k−1dc︸ ︷︷ ︸
(a1)

+

∫ e

s

∫ e

c

1

t
(t+ s− s− e)k−2(s− c)k−1dtdc︸ ︷︷ ︸

(b1)

+ (− de
dP
)P (k − 2)

∫ e

s

∫ e

c

1

t
(t+ s− s− e)k−3(s− c)k−1dtdc︸ ︷︷ ︸

(c1)

}.

Using (1) and F (e) =
e− s
s− s ,

P = (
s− e
s− s)

k−1V ; (32)

de

dP
=

−(s− s)k−1
(k − 1)(s− e)k−2V . (33)

Substituting (32) and (33) into (a1) and (c1), we have

(a1) = −
(s− s)k−2(2s− s− e)

(k − 1)e

∫ e

s

(s− c)k−1dc,
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and

(c1) =
(k − 2)(s− e)
(k − 1)V

∫ e

s

∫ e

c

1

t
(t+ s− s− e)k−3(s− c)k−1dtdc.

When P = 0, e = s, and

(a1) = −
(s− s)k−1
(k − 1)s

∫ s

s

(s− c)k−1dc = −(s− s)
2k−1

k(k − 1)s ;

(b1) =

∫ s

s

∫ s

c

1

t
(t− s)k−2(s− c)k−1dtdc;

(c1) = 0×
∫ s

s

∫ s

c

1

t
(t− s)k−3(s− c)k−1dtdc = 0.

Thus we have

dR2
dP
|P=0 =

1

(s− s)2k−1{
∫ s

s

∫ s

c

1

t
(t− s)k−2(s− c)k−1dtdc− (s− s)

2k−1

k(k − 1)s }.

Therefore, dR2/dP |P=0 > 0 if and only if∫ s

s

∫ s

c

1

t
(t− s)k−2(s− c)k−1dtdc > (s− s)2k−1

k(k − 1)s . (34)

So the optimal punishment is strictly positive when (34) holds. We can change the

order of integration, so

LHS of (34) =

∫ s

s

∫ t

s

1

t
(t− s)k−2(s− c)k−1dcdt

=
1

k

∫ s

s

1

t
(t− s)k−2[(s− s)k − (s− t)k]dt.

Let v :=
s− t
s− s ; then t = s − (s − s)v, so dt = −(s − s)dv . Since s ≤ t ≤ s, 0 ≤

(s− t) / (s− s) ≤ 1, i.e., 0 ≤ v ≤ 1. Notice that v = 1 when t = s and v = 0 when

t = s. Then we have

LHS of (34) =
1

k

∫ s

s

1

t
(t− s)k−2[(s− s)k − (s− t)k]dt

=
(s− s)2k−1

k

∫ 1

0

(1− v)k−2(1− vk)
s− v(s− s) dv.
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We claim that for all k ≥ 3, (34) holds if∫ 1

0

(1− v)k−2{ (1− v3)
1− v(1− (s/s)) − 1}dv > 0. (35)

This is true because

(35)⇒ 1

s

∫ 1

0

(1− v)k−2{ (1− v3)
1− v(1− (s/s)) − 1}dv > 0

⇒
∫ 1

0

(1− v)k−2{ (1− v3)
s− v(s− s) −

1

s
}dv > 0

⇒
∫ 1

0

(1− v)k−2{ (1− vk)
s− v(s− s) −

1

s
}dv > 0 (since k ≥ 3)

⇒
∫ 1

0

(1− v)k−2(1− vk)
s− v(s− s) dv >

1

s

∫ 1

0

(1− v)k−2dv

⇒
∫ 1

0

(1− v)k−2(1− vk)
s− v(s− s) dv ≥ 1

(k − 1)s

⇒ (s− s)2k−1
k

∫ 1

0

(1− v)k−2(1− vk)
s− v(s− s) dv ≥ (s− s)

2k−1

k(k − 1)s .

Let

j(v) :=
(1− v3)

1− v(1− (s/s)) − 1;

then the LHS of (35) becomes∫ 1

0

(1− v)k−2j(v)dv. (36)

We can see that the sign of (1 − v)k−2j(v) is determined by j(v) as 0 ≤ v ≤ 1.

Graphically, the value of (36) is equal to the area between the v axis and the curve

(1− v)k−2j(v) on the interval [0, 1]. From the expression for j(v), we can prove that

when 0 ≤ v ≤ 1,

j(v)


>

=

<

 0 when v


<

=

>

√1− (s/s).
As k increases in (36), more relative weight is put on j(v) for lower values of v, and

as j(v) crosses the axis only once (when v =
√
1− (s/s)), a positive integral cannot
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become negative. Therefore, we conclude that if
∫ 1
0
(1 − v)k−2j(v)dv|k=3 > 0, then

for all k ≥ 3,
∫ 1
0
(1− v)k−2j(v)dv > 0. We have:∫ 1

0

(1− v)k−2j(v)dv|k=3 =
∫ 1

0

(1− v){ (1− v3)
1− [1− (s/s)]v − 1}dv

= (1/12)[(s/s)− 1]−5{−3 + 28(s/s)− 30(s/s)2 − 6(s/s)3 + 17(s/s)4

−6(s/s)5 + 36(s/s)2 ln(s/s)− 36(s/s)3 ln(s/s) + 12(s/s)4 ln(s/s)}.

By analyzing the above equation, it is easy to check that when 0 < (s/s) ≤ 0.68,

i.e., when (s/s) ≥ 1.47,
∫ 1
0
(1− v)k−2j(v)dv|k=3 > 0. Thus, the optimal punishment

is strictly positive for all k ≥ 3.

7.6 Proof of Proposition 5

As now the cost function is cγ(x) instead of cx, player i′s maximization problem

becomes:

Max
x
{V × [1− F (B−1(x))]k−1︸ ︷︷ ︸

Pr(x is the highest)

− P × [F (B−1(x)) + 1− F (e)]k−1︸ ︷︷ ︸
Pr(x is the lowest)

−cγ(x)}.

Let y be the inverse of B, i.e., y(·) = B−1(·). As B(c) = x, c = B−1(x) = y(x).

Then the FOC can be written as

γ′(x) = −1
y
(k − 1)f(y)y′{V [1− F (y)]k−2 + P [F (y)) + 1− F (e)]k−2}.

Using boundary condition y(e) = 0 and integration, we can derive that γ(x) = G(y)

where G(y) is defined exactly by (17). Thus, x = γ−1(G(y)), then B = x =

g(G(y)) = g(b(c)). The equilibrium effort function (12) is strictly decreasing since

for all c ∈ [s, e), it can be shown that dg
dc
= g′b′ < 0. For the suffi cient second-order

condition we proceed exactly as in the proof of Proposition 1.
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