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Abstract 

A recently built experimental set-up was employed for the estimation of the solid-liquid equilibria 

of alternative refrigerant systems. In this paper two binaries, i.e., carbon dioxide + trifluoromethane 

(CO2 + R23) and nitrous oxide + trifluoromethane (N2O + R23), were studied down to temperatures 

of 117 K. In order to check the reliability of the apparatus, the triple points of the pure fluids 

contained in the mixture were measured, revealing good consistency with the literature.  

The results obtained for the mixtures were interpreted by means of the Schröder equation. 
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1 Introduction 

In the design of cryogenic processes, it is frequently necessary to estimate the solid-liquid equilibria 

(SLE) and the eutectic composition of a mixture. The data on SLE are important in the refrigeration 

industry, defining the lowest temperature limit at which the refrigerant may circulate in the fluid 

state. In addition, SLE provide theoretical information on the behavior of studied systems at low 

temperatures in terms of activity coefficients. In spite of this, the SLE for HFC refrigerants are 

extremely scarce in the literature. 

Due to the expected temperatures of the SLE of systems formed with CO2 and/or N2O + HFC 

refrigerants that usually span from about 100 K up to 217 K (in case of CO2 as the mixture 

component), SLE measurements generally creates difficulties in the visual observation of the 

disappearance of the last amount of the solid phase. Hence, a set-up was specifically built [1] 

avoiding the need of visual observation of phase behavior. Recently, this set-up was used to study 

the SLE of the CO2 + R125 and N2O + R125 systems [1], CO2 + N2O, CO2 + R32, and N2O + R32 

systems [2], and CO2 + R152a and N2O + R152a systems [3]. In this paper, the system’s behavior 

was measured down to temperatures of 117 K for two binaries, i.e., CO2 + R23 and N2O + R23.  

 

2 Description of the apparatus 

2.1 Measurement cell. The experimental set-up is shown in Fig. 1. It is the same as already 

described elsewhere [1-3], so it will be only briefly described here. The measuring cell (1), with a 

volume of approximately 47 cm3, was made out of a stainless-steel cylinder. A stirrer (3) was 

placed in the cell. The stirrer inside the cell was turned by a magnet (4). Two holes were made in 

the cover and a stainless-steel tube was inserted through and welded to the first hole for charging 

the cell with gas, while the second hole was used to contain the platinum resistance thermometer (Pt 

100 Ω, Minco, Mod. S7929) (2). The magnet was housed in a seat made of brass, which was 



connected to the shaft of an electric engine (5) driving the rotation of the magnet and thus also of 

the stirrer inside the cell. 

The cooling system included four parts: 

1. A coil consisting of a copper tube, placed inside a Dewar filled with liquid nitrogen (6), 

which absorbs heat from the carrier fluid (compressed air) flowing inside it;  

2. A coil with the same structural features as above, wrapped around the measuring cell and 

removing heat from the cell by surface contact due to the cold air circulating inside it. The 

assembly consisting of the coil and the cell was placed inside a second Dewar (7) so as to 

increase its thermal isolation;  

3. A double pipe heat exchanger (8) for the carrier fluid pre-cooling. A flow of air at room 

temperature entered the exchanger’s inner tube and, as it moved through the tube, it was cooled 

by the backflow heat exchange with the cold air leaving the coil wrapped around the measuring 

cell;  

4. An ice trap (9) to ensure the stratification on the inside walls of the ice that forms after the 

liquefaction and subsequent solidification of the humidity in the carrier fluid circulating in the 

first coil. 

A dry air supplier (10) was installed to overcome any problems related to air humidity. A mass flow 

control was installed upstream from the dehumidifier (11). The airflow was also measured by a 

rotameter (12). An absolute pressure transducer (HBM, Mod. P8A) (13) was also installed in the 

charging tube.  

 

3 Experimental procedure and uncertainties  

3.1 Experimental procedure. The bottle containing the refrigerant gas (14) was weighed on the 

electronic balance; then the bottle was connected to the apparatus and to the vacuum pump (15) 

(Vacuubrand, Mod. RZ2). A vacuum was created inside the measuring cell and the charging tube as 

recorded on the vacuum pump gauge (Galileo, Mod. OG510). Then the fluid was charged by 



opening the valve on the gas bottle. The temperature of the cell was decreased by a flow of 

compressed air cooled with liquid nitrogen so as to insert the whole mass in the cell, leaving as little 

as possible in the charging tube. Then the on/off valve was closed; and the gas bottle was 

disconnected and weighed again to establish the actual mass charged in the cell. 

The air was cooled by putting the coil inside a Dewar filled with liquid nitrogen. The coil was then 

wrapped around the measuring cell. During the measurement procedure, the temperature of the 

sample inside the cell was carefully controlled to fall at a uniform rate by the air flowing inside the 

coil. Monitoring the time dependence of the temperature, a cooling curve was obtained for each 

sample concentration. While the change of phase occurs, the heat removed by cooling is 

compensated by the latent heat of the phase change, resulting in a temperature drop as shown in Fig. 

2. The arrest in cooling during solidification allows the melting point of the material to be identified 

on the time-temperature curve. To give a phase diagram, the melting points can be plotted versus 

the composition. 

The SLE data are measured with the presence of the vapor phase; however, the measured pressures 

are not reported here as the data were not validated as corresponding to VSLE. 

3.2 Uncertainties. All the uncertainties were calculated using the law of error propagation, as 

reported elsewhere [1]. Here, the previously reported results will be briefly summarized. 

The uncertainty in the mass of fluid charged in the measuring cell was less than 0.008 g for a pure 

fluid. The total uncertainty of the mass of sample mixture was less than 0.01 g. The uncertainty in 

composition measurements was estimated to be always less than 0.005 in mole fraction. The total 

uncertainty for the thermoresistance, using the law of error propagation, was calculated to be less 

than  0.023 K. 

 

4 Experimental Results 

4.1 Chemicals. Carbon dioxide and nitrous oxide were supplied by Sol SpA. Their purities were 

checked by gas chromatography, using a thermal conductivity detector, and were found to be 



99.99% in mass for both fluids, basing all estimations on an area response. R23 was also supplied 

by Sol SpA; its purity was found to be 99.6% in mass on an area response curve. 

4.2 Pure Fluids. Figure 2 shows an example of a measurement taken for carbon dioxide in which 

there was evidence of approximately 10 K of supercooling. Different tests were also conducted for 

N2O and R23, using different configurations (with the stirrer on or off). The results for CO2 and 

N2O were reported elsewhere [2]. For R23, three measurements were carried out, giving the 

following results: triple point at temperatures of 117.5 K, 117.8 K, and 118.0 K. The comparison 

with the literature value (118.02 K [4]) shows generally good agreement in the triple-point 

measurements for R23. The triple-point pressure for R23 was too low to accurately measure it with 

the current apparatus. 

4.3 Results for Mixtures. Regarding the mixtures, there are no data on SLE in the literature, so the 

data we obtained can be used as the starting point for future studies. Measurements were taken 

using different concentrations of the two components, obtaining a satisfactory number of points, 

which were then recorded on a concentration/temperature (T-x) graph.  

Since the measured vapor-pressure data were not accurately measured at very low temperatures 

within the declared precision of the used instrument (the pressure values were acquired by an 

absolute pressure transducer HBM, Mod. P8A, and the global uncertainty of the pressure 

measurements was estimated to be less than ±3 kPa [1]), the vapor-pressure data are not reported in 

the present paper.  

The T-x measurements for the two mixtures considered (CO2 + R23 and N2O + R23, respectively) 

are given in the Figs. 3 and 4. The results are also summarized in Table 1. From the T-x data it is 

evident that N2O + R23 forms a eutectic (x1 = 0.08 at T = 115 K). Per analogy to other studied CO2 

+ HFC systems [1-3], it is expected that the CO2 + R23 forms a eutectic as well in the very dilute 

region. However, due to the very dilute composition range, this assumption could not be validated 

experimentally.  



4.4 Rossini Method Corrections. Temperature data acquisitions were corrected with the Rossini 

method [5] because a constant cooling rate was not guaranteed by our experimental method. This 

graphic method, illustrated in Fig. 2, considers the area contained by the tangent to the curve in the 

descending stretch after the temperature drop, and curve itself; then a vertical segment (a) is taken, 

which divides the area into two equal parts; then a second, horizontal segment (b) is obtained, from 

the point of intersection between the segment (a) and the tangent to the curve, up until it identifies 

the temperature corresponding to this new point on the axis of the ordinate (Tm). The entity of the 

corrections takes into account the fact that the fluid is still in a liquid state during the metastable 

state (supercooling) that precedes proper solidification. In this phase, the temperature is distinctly 

lower than the one characterizing the instant when crystallization begins, its amplitude depending 

mainly on the rate at which the temperature is lowered. The resulting corrections were nonetheless 

always very limited, of the order of a few tenths of a kelvin in the majority of cases, and always 

much less than 1 K.  

 

5 Interpretation of the Results 

The SLE depend both on the crystals formed in solution and on the properties of the liquid phase. 

The course of the liquidus is well described by the Schröder equation, known since the end of the 

19th century [6]. The exact course of the liquidus for ideal mixtures (i.e., showing a small deviation 

from Raoult’s law) depends mainly on the property of the solute and, in the case of non-ideal 

systems, on the property of the liquid phase.   

The solubility of the solid solute in the solvent (here, R23) can be described by the Schröder 

equation; which disregarding any difference between the heat capacity of the subcooled liquid 

solute and solid solute takes the following form: 
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where the subscript 2 denotes the solute and the subscript m denotes the property at the melting 

point. Assuming as a first approximation that the solute’s activity coefficient, γ2 = 1,we can write 
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This simplification leads to the cons ideration that the solubility of the solid solute is independent 

of the solvent as far as the assumptions hold. The enthalpies at the melting point (Δhm) were 

assumed to be 9020 J⋅mol-1 [7], 6540 J⋅mol-1 [7], and 4120 J⋅mol-1 [4], for CO2, N2O, and R23, 

respectively. 

The curve of the liquidus calculated with the Schröder equation is included in Figs. 3 and 4. Both 

systems followed well the Schröder equation. For the CO2 + R23 system good agreement with the 

equation prediction was evident. For the N2O + R23, a general agreement with the Schröder 

equation was evident even if, excluding a couple of points, a systematic deviation (1 to 2) K was 

evident at higher N2O concentrations.  

 

6 Conclusion 

The SLE behavior of CO2 + R23 and N2O + R23 was measured at temperatures down to 117 K by 

an apparatus that enabled us to record temperature and composition data. The triple points of the 

pure fluids contained in the mixture were measured, resulting in good consistency with the 

literature. The CO2 + R23 system showed presumably a eutectic in the very dilute CO2 region. The 

N2O + R23 system showed a eutectic (x1 = 0.08 at T = 115 K). The measured systems showed good 

agreement in terms of Schröder equation predictions. 
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Figure captions 

Figure 1. Schematic illustration of the apparatus. 

1. Measurement cell  
2. Platinum resistance thermometer  
3. Stirrer  
4. Magnet  
5. Electric engine  
6. Dewar with liquid nitrogen 
7. Dewar containing the measurement cell 
8. Double-pipe heat exchanger  
9. Ice trap  
10. Dry air supplier 
11. Mass flow controller  
12. Rotameter  
13. Pressure trasducer 
14. Charging bottle 
15. Vacuum pump system 

Figure 2. Acquisition of CO2 triple-point temperature measurements and Rossini method 

illustration. 

Figure 3. SLE for the CO2 + R23 system. Black symbols denote the experimental points while the 

lines represent the Schröder eq.  

Figure 4. SLE for the N2O + R23 system. Black symbols denote the experimental points while the 

lines represent the Schröder eq.  

 



Table 1 T-x Measurements for the CO2 + R23 and N2O + R23 Binary Systems. 
 

CO2 (1) + R23 (2) N2O(1) + R23 (2) 
x1 T (K) x1 T (K) 

0.000 118.02 0.000 118.02 
0.026 126.89 0.035 117.73 
0.044 133.85 0.058 115.88 
0.093 147.26 0.114 120.39 
0.126 152.05 0.136 123.97 
0.175 159.83 0.215 133.00 
0.268 172.06 0.290 142.68 
0.306 175.92 0.340 144.65 
0.321 174.98 0.459 152.99 
0.359 179.69 0.473 152.71 
0.401 182.78 0.499 155.15 
0.480 189.32 0.621 162.21 
0.619 199.30 0.688 168.41 
0.623 199.23 0.733 168.32 
0.745 203.86 0.787 171.00 
0.761 205.34 0.839 175.18 
0.853 209.59 0.883 176.21 
0.904 211.19 1.000 181.99 
1.000 216.52   
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Figure 3. 
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Figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


