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Experimental characterization of an anode-supported tubular SOFC generator fueled4
with hydrogen, including a principal component analysis and a multi-linear regression5
G. Santori, E. Brunetti, F. Polonara6

7
Abstract8
Solid oxide fuel cell (SOFC) power generators can now be commercialized as heat and power9
micro-cogenerator. Few well-documented field tests have been conducted to date on these10
units’ tubular cell architecture, however, and little has been done to derive general rules for a11
thorough understanding of these units’ operation. The present work focuses on characterizing12
the hydrogen-powered Acumentrics Gen521 (rated 2.5 kW) under various stable conditions.13
A test rig was installed at the Dipartimento di Energetica of the Università Politecnica delle14
Marche (Ancona, Italy) to ascertain the main characteristic curves of the Acumentrics15
Gen521. A multivariate data analysis was performed on the experimental data collected to16
establish the operating parameters most influential for the stack voltage (SV) and the DC17
stack output power generated in different working conditions. Some multi-linear response18
surfaces are suggested for predicting the SV and the DC power in different operating19
conditions.20

21
Key words: SOFC, experimental test, tubular fuel cells, power generation, performance22
analysis, linear regression.23

24
1. Introduction25
Solid oxide fuel cell (SOFC) power generation systems have been intensively developed and26
these machines are now nearly ready for commercialization. There are still few reports of27
field tests on these units [1-5], while in the last two decades researchers have been especially28
active in developing mathematical models [6-12] and the results of this research activity point29
to several issues open to further investigations:30
1. the heat, mass and charge transport in single cells and stacks still require in-depth study31
[13];32
2. only a few of published mathematical models have undergone experimental validation;33
3. the thermophysical properties and reaction kinetics of several materials at high34
temperatures are still not well known [14-17].35
The experimental activities conducted on SOFCs have been characterized mainly by: (i) the36
study of new materials [18]; (ii) developments in single cell design [19-21]; (iii) the37
development of cell manufacturing methods, with numerous studies on the parameters that38
influence the microstructure of the materials [20-23]. As a result, the open literature is still39
short of information on the validation of the generation system’s performance as a whole.40
The documented tests to date on SOFC generators focused on: a) durability under stressing; b)41
long-term life; c) performance. Such tests have been conducted on the following units:42
1) Sulzer Hexis HXS 1000 (1kWel) [1]: this unit is fueled with natural gas. It uses a planar43
geometry and can provide 1 kWel and 24.5kWth by means of an auxiliary boiler. The44
experimental campaign was started in March 2002, but so far no results have been circulated45
about the commercial unit;46
2) Siemens CHP-100 SOFC Field Unit, also named EDB/ELSAM 100 (100 kWel) [2]: this47
unit consists of Siemens-designed tubular cells fed with natural gas. It has been in operation48
for 36900 hours and submitted to tests on its durability and performance, reaching an49
electrical efficiency (AC) of 40.07% and a global (electrical and thermal) efficiency of50
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61.10%. An analysis of variance (ANOVA) was conducted on the voltage considering as1
parameters the mean temperature of the stack and the utilization factor.2
3) Siemens SFC 5 Alpha 6 (3.5 kWel) [3]: this unit is fueled with natural gas and has3
Siemens-designed tubular cells. Tests have been performed on its performance, obtaining an4
electrical efficiency (AC) of 35.50% and a global efficiency of 65.32%. Here again, an5
ANOVA was conducted on the voltage considering as parameters the mean temperature of6
the stack and the utilization factor.7
4) Siemens SCE 220kW (220kWel) [4]: this unit has the same features of the stack as the8
EDB/ELSAM 100. The unit was tested at 3 atm. The reported data indicate that the unit9
worked for 3000 hours and was then switched off. The unit had been designed to run coupled10
with a gas turbine.11
5) Acumentrics CP-SOFC 5000 (5 kWel) [5]: this unit consists of Acumentrics-designed12
tubular solid oxide cells. Durability tests have been performed and the unit has been operated13
for 1500 hours. Some aspects of its performance have been classified, as concerns the14
reduction in the average manifold voltage time. The machine was submitted to three stops and15
starts as a stressing test.16
The tests conducted therefore focused mainly on durability, while few systematic studies have17
attempted to derive fundamental rules on these units’ operation.18
Concentrating now exclusively on the performance testing activities, a thorough description19
of experiments conducted on a large SOFC generator is given in [19], where a detailed20
statistical analysis is provided, also based on the experimental design proposed. Using this21
method enables important conclusions to be drawn on the operation of the system with22
variations in the utilization factor and the air flow delivered to the SOFC generator. On the23
other hand, the proposed method makes it difficult to select a considerable number of24
parameters to vary because the machine takes effect on many of them on the strength of its25
internal control logic, thereby restricting the conclusions that can be drawn.26
The problem of deducing general rules derives from the way in which the data collected are27
presented, which is typically in arrays of time-dependent values. This means that, when the28
operating variables are graphed in relation to one another, instead of evident trends, simply29
clusters of points are obtained in certain areas representing different operating conditions.30
The unit may then be characterized by taking three interpretative approaches: (i) by solving31
the equations of energy and momentum conservation, coupled with a formula for estimating32
the chemical species involved in the electrochemical reaction [20]; (ii) by treating the SOFC33
generator as a gray box [21]; or (iii) as a black box.34
By treating the unit as a black box, this paper proposes a new approach to quantifying the35
performance of the 2.5kWel generator by Acumentrics (Gen521), fueled with hydrogen36
produced by water electrolysis, in terms of stack voltage (SV) and DC electrical power in37
various operating conditions.38
Adopting a multivariate method to analyze the data enables data to be derived in order to39
interpret the system as a black box. Various response surfaces can be used to predict the SV40
and the DC power in different working conditions and using exclusively input-output data.41
Multivariate methods of data analysis are now commonly used to characterize biological and42
environmental systems [22-24], but their application to the characterization of fuel cell43
systems is still relatively rare [25, 26]. In particular a recent application of a multivariate data44
analysis named principal component analysis (PCA) to PEM fuel cells is documented in [27].45
As shown in [28] the relations derived by this method could be implemented on control46
devices of a fuel cell generator instead of the presently-adopted proportional-integral systems.47
The PCA also reveals the most crucial operational aspects, identifying the parameters that48
most influence the unit’s performance. This data analysis is particularly useful when49
performance depends on a large number of parameters, as in [27] for instance, where 6250
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parameters were adopted and it was necessary to simplify the study considering exclusively1
the most important operating parameters.2
In the present case, the SOFC generator’s performance depends on the interactions between3
some of its sections. The constitutive elements of a SOFC generator are the balance of plant4
(BoP), the power conditioning system (PCS), the fuel cell stack, and the electronic control5
and monitoring system. In fact, the control of the electrochemical reaction in the stack gives6
rise to the optimal thermodynamic conditions for each electrical load required, but in this7
condition the PCS might operate at the point of minimum efficiency, reducing the electrical8
power generated. The control loops in the control and monitoring system may also not always9
be set correctly when the unit operates under variable electrical loads [29], giving rise to10
further inefficiencies.11
The results of operating SOFC generators therefore still fall far short of the performance12
achievable with other more efficient power generation systems. However, the advantage of a13
SOFC generator lies in its ability to maintain the same performance over a wide range of rated14
electrical power making it suitable for distributed generation. The performance15
characterization of the Gen521 is outlined below, based on data obtained from an16
experimental campaign processed using PCA. The data analysis also highlights how the17
machine’s various operating parameters influence the performance in different working18
conditions. Finally, the data were used to develop simple but sufficiently accurate equations19
(taking the black box approach) capable of defining the behavior of the Gen521.20

21
2. The test rig22
An outdoor test rig was set up to quantify the performance of the Gen521 (Figure 1) at the23
Dipartimento di Energetica of Università Politecnica delle Marche (Ancona, Italy). The test24
rig comprises:25
- a water demineralization unit with a storage container: the amount of demineralized water26
needed for hydrogen production is about 0.00083 l/s. The water must be demineralized to27
prevent the electrolyte’s deactivation. The maximum effective demineralized water28
production is 0.0012 l/s. The resulting purified water that is not used is stored in a 50-liter29
tank;30
- an electrolyzer, using NaOH as the electrolyte and separately producing hydrogen and31
oxygen. The maximum flow rate at ambient conditions is 1.22 l/s of hydrogen with a purity32
varying between 99.3% and 99.8%. The unit’s maximum pressure at the hydrogen outlet is 433
bar. Hydrogen and oxygen are produced and stored in two separate tanks inside the34
electrolyzer at 2.8 bar and 60°C. The electrolyzer’s maximum electrical power absorption is35
23 kW;36
- a drying column: the hydrogen is dried in a hydrophilic granular salt bed (CaCl2);37
- the Acumentrics Gen521 atmospheric SOFC generator;38
- a series of AC electrical loads consisting of 5 individual lights.39
A control, monitoring and data acquisition system was developed by Acumentrics Corp. to40
characterize the SOFC generator. The software was implemented in C language with a41
LabVIEW 6.1 interface. Figure 2 shows the position of the measuring devices in the SOFC42
machine under investigation. The voltage sensors installed provide the difference in potential43
between two tubes belonging to a manifold. In addition to the sensors connected to the44
generator, several electrolyzer parameters are also measured. Table 1 shows the main45
characteristics of the sensors involved in the installation.46
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1
Figure 1. Test rig. 1. Demineralization unit 2. Demineralized water tank 3. Electrolyzer 4.2

Drying bed 5. Acumentrics Gen521 6. Lights 7. Exhaust duct3
4

Table 1: List of measuring devices
Position Code Accuracy Description
Temperature measurements
Fuel cell generator
Left stack thermocouples
1 T3 Below left stack 2.2°C K type Inconel sheathed
2 T5 Left stack 2.2°C K type Ceramic sheathed
3 T7 Above left stack 2.2°C K type Inconel sheathed
4 T8 Above left center stack 2.2°C K type Inconel sheathed
Right stack thermocouples 
5 T1 Right stack air plenum (manifold end) 2.2°C K type Inconel sheathed
6 T2 Right stack air plenum (cell end) 2.2°C K type Inconel sheathed
7 T4 Below right center stack 2.2°C K type Inconel sheathed
8 T6 Right stack CM1 2.2°C K type Ceramic sheathed
9 T9 Above right center stack 2.2°C K type Inconel sheathed
10 T10 Above right stack 2.2°C K type Inconel sheathed
Other equipment thermocouples 
11 T15 Exhaust fan1 - inlet 2.2°C K type Ceramic sheathed
12 T12 Exhaust fan2 - inlet 2.2°C K type Ceramic sheathed
13 T13 Heat exchanger out (cell end) 2.2°C K type Inconel sheathed
14 T14 Between off gas and burner (cell end) 2.2°C K type Ceramic sheathed
15 T16 Exhaust duct 2.2°C K type Ceramic sheathed
16 T17 Water coil inlet 2.2°C K type Ceramic sheathed
17 T18 Water coil outlet 2.2°C K type Ceramic sheathed
18 T19 Batteries 2.2°C K type Heat shrink sheathed
19 T20 Power conditioning compartment 2.2°C K type Heat shrink sheathed
Electrolyzer
20 Oxygen gas in cell 0.5°C Pt 100 thermal resistance
21 Hydrogen gas in cell 0.5°C Pt 100 thermal resistance
22 Electrolyte 0.5°C Pt 100 thermal resistance
Pressure measurements
Fuel cell generator
23 Hydrogen fuel cells inlet pressure 0.8 mbar Piezoresistive sensor
24 Air pressure in one stack 0.05 mbar Pressure gauge
Electrolyzer
25 Hydrogen cell pressure 0.12 bar Extensometric pressure transducer
26 Oxygen cell pressure 0.12 bar Extensometric pressure transducer
Dryer
27 Dryer pressure 1 bar Pressure gauge
Voltages
Fuel cell generator
from 28 to 51 24 measurement points for 24 fuel cell manifolds (6 cells/manifold) 0.01Volt
Mass flow rate measurements
Fuel cell generator
54 MFC1 Hydrogen for anode 0.01 l/s Mass flow controller
55 MFC2 Hydrogen for burner 0.01 l/s Mass flow controller
56 BL1 Air blower relation from rpm
Electrolyzer
58 Hydrogen volume flow rate 0.7 normal l/s From unit calibration curve
59 Oxygen volume flow rate 0.7 normal l/s From unit calibration curve

5
3. The Acumentrics Gen521 SOFC generator6
The Acumentrics generator (Gen521) consists of two SOFC stacks, a set of components7
belonging to the BoP (blowers, control valves and heat exchangers) and a PCS for treating the8
DC electrical power. The unit can produce 2.5kW of rated electrical power, it is 86 x 145 x9



5

127 cm in size and weighs 794kg (batteries included). The generator has 144 tubular anode-1
supported solid oxide cells divided into two stacks. Each stack is assembled in 2 separate2
blocks. Each block is made of 6 overlapping rows, with 6 cells placed in series in each row3
(Figure 2). Each cell is 1.5cm in diameter and 33cm long, with an anode about 0.15cm thick,4
an active surface of 133cm2 and a horizontal position. Air flows around the outside of the5
cells (cathode side) and hydrogen through the inside (anode side) using an internal distributor6
tube. The anode is a cermet of nickel oxide and yttria-stabilized zirconia to support the weight7
of the cell, the electrolyte is pure yttrium-oxide-stabilized ZrO2 (YSZ) and the cathode is8
lanthanum-strontium manganite (Sr-dopped LaMnO3). The interconnections are in lanthanum9
chromite (LaCrO3). The cathode current collector is made of silver. The characteristics of the10
single cells are therefore similar, in terms of the materials and design, to those described in11
[30].12
Each stack works with a vertical thermal gradient during its operation and each single row of13
cells operates at a different temperature, with a negligible horizontal thermal gradient. Figure14
2 shows the process and instrumentation diagram, showing the BoP components. Hydrogen is15
fed into the unit and divided into two streams. One stream flows through a normally-closed16
solenoid valve SV1 and a mass flow controller MFC1 to feed the fuel cells. Along this path,17
the hydrogen is pre-heated in a heat exchanger with the fluid entering the cathode side stack.18
The second stream of hydrogen flows through a normally-closed solenoid valve SV2 and a19
mass flow controller MFC2, then it is sent to the burner, where the combustion of the20
hydrogen from the second stream, the excess hydrogen recirculating from the stack and the21
outside air takes place. The blowers BL1 and BL2 deliver outside air to the SOFC generator22
to reach the flow rate needed for the electrochemical reaction and combustion.23

24

25
Figure 2. Process & instrumentation diagram and map of measuring devices26

27
As for the PCS, in a fuel cell generator this is typically made as explained in [31]. In the28
particular case of the Gen521, the PCS consists of a first stage to set the stack output voltage29
to 48V DC. The power obtained from this DC/DC converter is stored in 4 batteries and then30
sent to the inverter. Priority is given to the batteries because they serve as a buffer useful for31
powering the BoP components during unit start-ups, or for restarting after a malfunction.32
Finally, the power converted by the inverter feeds a set of 5 lights (400W rated), each of33
which represents an electrical load; this configuration enables the electrical loads to be set at34
various levels (400W, 800W, 1200W, 1600W, 1800W). The load can also be varied35
continuously, allowing the system to work at intermediate electrical loads by means of a36
variac.37

38
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1
Figure 3. Block diagram of the SOFC generator PCS2

3
4. Gen521 generator operation4
On start-up, the generator stacks are brought from ambient temperature beyond a temperature5
set-point (typically 680°C) using the hydrogen/air mixture in the burner. When this threshold6
has been exceeded, the electric circuit between the stacks and the user is closed, placing the7
load and the batteries in contact with the generator. During this first phase the batteries are8
charged, taking priority over the electrical load. Within a few hours the temperature of the9
stack becomes stable generally within a range of 760°C to 850°C, depending on the operating10
conditions, with an internal vertical thermal gradient that in normal operating conditions is11
approximately 40°C. When the balance is reached, the burner is used exclusively to control12
the temperature of the stacks. The valve CV1 simultaneously delivers outside air for the13
cooling of the stacks. All controls implemented inside the system are handled by means of14
proportional-integral loops that take effect with default parameters established by15
Acumentrics Corp. The generator is monitored and controlled by an internal programmable16
logic controller connected to a software implemented on a remote PC.17

18
5. SOFC generator testing strategy19
The experiments were designed to establish the unit’s performance in terms of SV and DC20
electrical power in different operating conditions. In particular, only the steady state working21
conditions were considered, so the tests consisted in changing some adjustable parameters and22
the electrical loads to 400W, 800W, 1200W, 1000W and 1400W. The experimental data were23
obtained by combining the results recorded in these different operating conditions. The results24
were typically arrays of time-dependent values. This very large set of collected data was25
filtered using four criteria:26
1. stack temperatures: each temperature value acquired had to be no more than 2.5°C higher27
or lower than the mean temperature measured for the previous 600 s;28
2. the voltages measured for the 24 stacks: each voltage value acquired had to be no more29
than 0.01V higher or lower than the mean voltage measured for the previous 600 s;30
3. battery voltage: each battery voltage value acquired had to be no more than 0.075V higher31
or lower than the mean voltage measured for the previous 600 s;32
4. residence time of the value measured: all measured values had to satisfy the above33
conditions for at least 30 s.34
The data acquired were thus reduced in number and were representative of genuinely stable35
operating conditions. The experimental data gave rise to numerous clusters, as shown in36
Figure 4, so they were difficult to interpret and group into common working conditions37
illustrating the unit’s operation. In fact observing the dependence of DC electrical power and38
SV on the current, in Figure 4 might seem that there are three operating conditions. Actually39
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the operating stable conditions are more than three. The scatter plots in Table 3 show1
numerous clusters and so several functioning points. Therefore one has to take into account2
not only the current but also other equally important parameters studying the dependence3
between such parameters, the DC electrical power and SV. A multivariate analysis allows the4
study of the unit operation in this way. By adopting this method for data analysis it is possible5
define relations on the dependence between the parameters selected as significant and the6
performance (DC electrical power and SV). So after identifying the system’s input parameters7
and output variables, any stable system operating conditions are presented as a vector of the8
data, each available vector differing from the others. Regression of the experimental vectors9
can be done using the response surfaces method. This method can be applied to different10
types of analysis, the most straightforward (and consequently best documented) being11
multivariate polynomial interpolation. This method leads to the formulation of polynomials,12
however, and consequently often gives rise to surfaces that are not monotonous in the domain13
of interest.14
Therefore it was chosen to regress the experimental data using the multilinear (or linearizable)15
regression method, also based on the results of a PCA [32]. The identification of a multilinear16
(or linearizable) response surface based on considerations from the PCA led to a simplified17
relationship between several independent parameters (inputs) and the dependent variable18
(output) of interest. In fact, PCA enables a subset of parameters to be selected to formulate19
more than one regression equation. These relations can be determined by means of a20
subsequent multivariate regression on some selected input parameters.21

22

23
Figure 4. Experimental data collected for DC electrical power and SV in a steady state for24

different currents generated by the stacks25
26

6. Pattern recognition27
As emerges from the experimental data collected in Figure 4, there was a higher density of28
acquisitions in certain current ranges because the tests were conducted at different electrical29
loads. Figure 4 also shows a discontinuity in the DC electrical stack power (before the DC/DC30
converter) at around 85 A.31
This discontinuity highlights the different operating conditions imposed on the machine at the32
higher currents. Given this discontinuous trend of the DC stack power (DC power) and SV, it33
became necessary to divide the operating domain between the higher currents (from 88.00 A34
to 112.8 A) and the lower currents (from 33.02 A to 82.57 A). These two zones into which the35
study was divided had the characteristics outlined in Table 2. Looking at the data in Table 2,36
the largest differences between the two datasets for the operating zones 1 and 2 clearly37
coincide with the global thermal gradient of the stacks (DT), the mean working temperature38
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of the stacks (TM) and the utilization factor (FU). So our proposed characterization will1
therefore be divided into two parts depending on the stack current (SA) range.2

3
Table 2: Description of the parameters and variables under investigation in zones 1 and 2
Parameters Units I/O Meaning Zone 1 Zone 2

Minimum Maximum Minimum Maximum
AirF m3/s Input Cathode air flow rate 0.00945 0.03183 0.01297 0.01550
HyF m3/s Input Anode hydrogen flow rate 0.00043 0.00059 0.00043 0.00047
HyP Pa Input Anode hydrogen pressure 101328 101807 101328 101807
RAirHy -- Input Ratio between cathode and anode flow rates 21.11 55.57 28.96 33.86
SA A Input Current form the two stacks of the generator 33.02 82.57 88.00 112.80
TM °C Input Mean temperature in the stacks 767.20 811.15 739.30 758.70
DT °C Input Difference between maximum and minimum temperatures in the stacks 37.20 42.3 88.00 119.30
FU % Input Utilization factor 19.45 37.49 46.90 72.77
SV V Output Stacks voltage 19.69 22.54 15.85 17.94

4
7. Analysis of the experimental data5
The table 3 shows the scatter plot and correlation matrix for the whole data set (zones 1 and6
2). Significant correlation coefficients are in bold and were obtained considering the values7
outside the range ±0.500. Table 3 shows the plots of the coupled variables. Several clusters8
can be seen, which make it difficult to generalize the machine’s operation. Table 3 shows9
some of the correlations in the machine’s operation; some of them depend on the control10
system, which correlates certain variables that are themselves not correlated.11

12
Table 3: Scatter plot and correlation matrix on the experimental data collected

AirF HyF HyP RAirHy SA TM DT FU DC Power SV

AirF

HyF 0.969

HyP -0.165 -0.147

RAirHy 0.989 0.923 -0.164

SA 0.082 -0.093 0.048 0.213

TM 0.559 0.700 -0.138 0.437 -0.749

DT -0.146 -0.324 0.083 -0.009 0.941 -0.899

FU -0.062 -0.241 0.068 0.073 0.982 -0.834 0.967

DC Power 0.180 0.008 0.032 0.306 0.992 -0.676 0.967 0.958

SV 0.020 0.194 -0.061 -0.111 -0.983 0.807 -0.957 -0.986 -0.954

13
In other cases, the parameters are correlated as a consequence of physical phenomena that14
influence each other. In other cases again, certain parameters are estimated starting from other15
parameters. Note that the flow of hydrogen to the anode (HyF) correlates with the air flow to16
the cathode (AirF), and HyF and AirF correlate with TM. In particular TM correlates more17
closely with HyF than with AirF. In addition TM is related to the current produced. FU18
naturally correlates with SA and with the parameters connected to the machine’s temperature19
conditions TM and DT (DT is calculated as the difference between the maximum and20
minimum temperatures acquired, while TM is the arithmetical mean between the same two21
values). Finally, there are some less evident correlations: for instance, DT correlates with SA22
(and obviously with TM). DC Power and SV are considered machine output parameters. They23
are practically correlated with all the variables. In particular they are indirectly correlated with24
HyF and AirF and consequently also RAirHy through TM. The hydrogen pressure at the25
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anode inlet (HyP) does not correlate with any variable and this may be justified by the fact1
that, as shown in Table 2, HyP has a very limited range of variation around atmospheric2
pressure. Now it is possible to apply to the data the procedure shown in Figure5. As a first3
step the PCA on the study zones is performed, then a multi-linear regression and eventually a4
full factorial design on the developed equation to identify the most important operational5
parameters.6

7

8
Figure 5. Procedure for the data analysis9

10
The data had to be scaled first, however, because the units of measure of each parameter and11
variable differed. Conducting the analysis without completing this important preliminary step12
would produce erroneous results because they would be influenced by the very different order13
of magnitude of the numerical values. For instance, it would be wrong to treat HyP and DT in14
the same analysis because their numerical values have different orders of magnitude and15
different variances. Data scaling is therefore a step that enables the effects of different units of16
measure and variances on the PCA to be minimized. This scaling can be done in various17
ways. For the present problem, it was opted for a natural-logarithmic scaling of the data due18
to the large differences in the orders of magnitude between the numerical values and between19
their variances [33]. Then the PCA was conducted on the scaled data. PCA is mathematically20
defined as an orthogonal linear combination that transforms the data to a new coordinate21
system having the PCs as axes. PCA is a multivariate analysis of data method performed on a22
dataset for the purpose of identifying a limited number of parameters that account for most of23
the variance of the data. The method is therefore used to establish which parameters24
determine similarities between the data. In PCA the original set of (correlated or uncorrelated)25
parameters is converted into a new set comprising an equal number of independent26
uncorrelated principal components (PCs), which are linear combinations of the original27
parameters. Along the first coordinate (PC1) the greatest variance of data is present, then the28
second coordinate (PC2) adds another part of variance of data and so on for all PCs."Along29
the first coordinate (PC1) is present the greatest variance of data, adding the second30
coordinate (PC2) it is explained another part of variance of data and so on for all PCs. At the31
end of the analysis, it is also obtained a sequential list of linear combinations that best explain32
the variance of the data and from these combinations it is possible to identify the parameters33
that affect the variance the most. From the viewpoint of the similarity of data instead of the34
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variance, projecting the data onto a space that depends on the linear combination of the1
parameters enables us to identify any clusters, which represent similar operating conditions.2
By applying PCA to the data, the loadings of the parameters on the various PCs were3
obtained.4
Clearly, other methods of clustering or classification could be adopted, such as the Gastofan-5
Kessel clustering [34] or self organization mapping [35] to obtain more precise divisions.6
Table 4 shows the loadings of the PCs for the data in zones 1 and 2.7

8
Table 4: Loadings of the parameters measured on the rotated factors

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Zone 1
AirF 0.021 0.001 0.012 0.004 0.116 0.007 0.993 0.007
HyF 0.000 0.000 0.000 0.000 0.003 0.001 0.006 -1.000
HyP -0.001 0.000 -0.002 0.000 0.056 -0.998 0.001 0.000
RAirHy 0.821 0.103 0.503 0.243 -0.046 -0.004 -0.019 0.000
SA 0.529 -0.100 -0.527 -0.657 -0.018 0.000 0.000 0.000
TM 0.046 -0.036 0.018 0.001 0.990 0.055 -0.117 0.002
DT -0.013 0.986 -0.160 -0.034 0.039 0.003 -0.003 0.000
FU 0.207 -0.081 -0.665 0.713 -0.001 0.001 0.001 0.000
% of variance explained 79.8% 15.8% 3.2% 1.2% 0.0% 0.0% 0.0% 0.0%
Eigenvalue 0.145 0.029 0.006 0.002 0.000 0.000 0.000 0.000
Zone 2
AirF -0.006 0.004 -0.013 -0.003 0.001 0.068 0.997 -0.032
HyF 0.000 0.000 0.000 0.000 0.000 0.002 0.031 1.000
HyP -0.001 -0.001 0.000 0.001 0.023 0.997 -0.068 0.000
RAirHy -0.235 0.329 -0.910 -0.096 0.005 0.000 -0.015 0.000
SA -0.037 0.014 0.119 -0.992 0.001 0.001 -0.001 0.000
TM -0.074 0.010 0.028 0.007 0.997 -0.023 0.000 0.000
DT 0.942 -0.138 -0.285 -0.071 0.080 -0.001 0.002 0.000
FU 0.223 0.934 0.276 0.038 -0.001 0.002 0.001 0.000
% of variance explained 47.4% 25.2% 15.9% 11.4% 0.0% 0.0% 0.0% 0.0%
Eigenvalue 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000

9
In common practice only the loadings with an absolute value higher than 50% are considered.10
For both the zones, the analysis suggested that the first 4 PCs explain 100% of the variance of11
the data, but the most important PCs for zone 1 were PC1 and PC2 (95.6% of the variance),12
while PC1, PC2, PC3, PC4 were all important for zone 2.13
Figure 6 shows the experimental data for zone 1 as a function of PC1 and PC2, where it can14
be seen the previously described effects. Intuitively, there are three clusters identifiable on the15
strength of PC1 e PC2.16

17
Figure 6. Experimental data on the PC1-PC2 hyperspace18

19
From the data for zone 1, it were obtained the three clusters shown in Figure 6 on the plane20
PC1-PC2. From the data for zone 2, it were obtained the two clusters shown in Figure 7. In21
this latter case, it was need to check the distribution of the data in all the first four PCs due to22
the variance is more evenly divided between them.23
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1
Figure 7. Experimental data on the hyperspaces PC1-PC2, PC1-PC3, PC1-PC42

3
The identification of different clusters leads to the determination of different operating4
conditions. Thus by separately analyzing the data belonging to each cluster and the principal5
differences between the clusters, it can be identified which parameters influence the6
machine’s performance.7
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To identify these parameters the most often-used method consists in performing a stepwise1
regression using the PCs [36, 37]. Table 5 shows the steps involved in the stepwise regression2
and the corresponding results.3

4
Table 5: Stepwise regression using the principal components
SV Parameters driving the variance
Zone 1 PC1 RAirHy; SA
Adjusted R2 0.605
Estimated regression coefficient 0.0258271
Constant 22.4054
Zone 2 PC1 PC1+PC4 PC1+PC4+PC3 DT; RAirHy; SA
Adjusted R2 0.007 0.009 0.018
Estimated regression coefficient -0.00641972 -0.00637817 -0.0104894
Constant 16.1282 16.2882 16.5763
DC Power
Zone 1 PC1 PC1+PC7 RAirHy; SA; AirF
Adjusted R2 0.935 0.936
Estimated regression coefficient 11.9015 13.5255
Constant 513.6 337.029
Zone 2 PC4 PC4+PC8 SA; HyF
Adjusted R2 0.543 0.543
Estimated regression coefficient 69.9233 74.0108
Constant 0 0

Adjusted R2=1-{[(n-1)(1-R2)]/(n-p)} where n is the number of data and p is the number of parameters in the model. Adjusted R2 gives a
modified version of the coefficient of determination R2 which adjusts for the number of parameters in the model.

5
The parameters that determine the similarity of the data are for SV, RAirHy and SA in zone 1,6
and DT as well in zone 2. Such results show that the main difference in the data collected for7
the operation between zones 1 and 2 consists in the thermal gradient inside the stacks.8
For DC Power in zone 1 the similarity of the data is given by similar values for RAirHy, SA9
and AirF. SA remains for zone 2, while RAirF and AirF no longer contribute to the variance10
of the data. It can be concluded that DC Power depends primarily on SA in zone 2 and11
secondarily on HyF, since the introduction of the parameter HyF does not appear to be12
particularly important for the regression. The low value of the adjusted R-square in zone 2 of13
SV demonstrates that the correlation between SV and its parameters is not linear. DC Power14
in zone 2 is also non-linear in relation to its parameters, but less than SV. In zone 1, on the15
other hand, the adjusted R-square values suggest that both SV and DC Power have a linear16
trend.17
Finally, it should be noted that Table 5 shows the parameters that influence the variance of the18
data. So the PCA was used to measure the significance of the selected parameters on the19
differences between clusters of data. To formulate a correlation based exclusively on these20
parameters would be an oversimplification because using the parameters deduced by PCA21
alone would not enable a sufficiently accurate description of the variation in SV and DC22
Power within a given cluster. To describe the passage between several steady states, other23
parameters in addition to those selected, were need to introduce. On the other hand, if a rough24
estimate of the machine’s operation were sufficient, the selection of the identified parameters25
could be sufficient.26

27
8. Results28
The above-described analysis enabled us to select a subset of parameters for modeling the29
unit’s operating conditions. Figure 4 shows a close correlation between SA and DC Power30
from which the correlation between SA and SV (the unit’s polarization curve) could also be31
derived. As shown in Figure 4, this correlation cannot be derived by direct regression of the32
data on SV because these data form several clusters. Based on the previous PCA it could be33
developed a simplified equation in order to correlate SV and DC Power, involving a few34
significant parameters, or more complex models could be developed, considering all the35
parameters, by means of a multivariate regression. Finally, two models needed to be36
developed, one for each zone investigated. Thus, the correlations adopted for the regressions37
were:38

39
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SV= aSV,0+βSV,1 AirF+ βSV,2 HyF+ βSV,3 HyP+ βSV,4 RAirHy+ βSV,5 (SA or Log(SA))+ βSV,61
TM+ βSV,7 DT+ βSV,8 FU2

DC Power= aPow,0+βPow,1 AirF+ βPow,2 HyF+ βPow,3 HyP+ βPow,4 RAirHy+ βPow,5 (SA or3
Log(SA))+ βPow,6 TM+ βPow,7 DT+ βPow,8 FU4

5
where Log is the natural logarithm. Table 6 shows the coefficients derived from the various6
regressions by means of increasingly simple models for each operating zone, for both SV and7
DC Power. In addition to the adjusted R-square, table 6 also shows other equally important8
parameters to confirm the validity of the regression.9

10
Table 6: Coefficients of the models

aSV,0 βSV,1 βSV,2 βSV,3 βSV,4 βSV,5 for SA
βSV,5 for
Log(SA)

βSV,6 βSV,7 βSV,8 R2
adj Max Res. Min Res. Std Dev res. Mean res. Curv.95% Conf. Reg.

SV
zone 1

1 11.81300 -336.752 -190.904 9.602E-05 0.220732 -- -0.71307 0.00246678 -2.73473E-03 -0.0293085 1.000 1.25 -0.70 0.291 5.8E-14 0.73
2 8.13357 -325.501 498.645 1.047E-04 0.210996 -0.0200075 -- 0.00324554 -2.06736E-03 -0.0232869 0.694 1.25 -0.69 0.289 7.2E-14 --
3 18.32110 -305.997 -283.428 -- 0.199811 -0.0199294 -- 0.00425978 -1.17993E-03 -0.0228407 0.694 1.25 -0.69 0.289 1.7E-13 --
4 21.14940 -318.793 -900.047 -- 0.210414 -- -0.712603 0.00340237 -1.91832E-03 -0.0288458 1.000 1.24 -0.68 0.291 1.4E-13 0.72
5 57.97540 -- -- -- 0.037737 -- -1.08404 -0.04037630 -2.39862E-02 -0.0309108 1.000 1.27 -0.74 0.298 7.5E-14 0.69
6 61.01390 -- -- -- 0.042950 -- -1.49599 -0.04338920 -2.56236E-02 -- 1.000 1.23 -0.74 0.302 1.5E-13 0.67
7 29.62660 -- -- -- 0.004590 -- -2.20535 -- -2.25639E-04 -- 1.000 1.39 -0.70 0.311 5.1E-15 0.65
8 23.74580 -- -- -- 0.002195 -0.0388318 -- -- -1.206E-04 -0.0246614 0.669 1.38 -0.63 0.300 8.3E-15 --
9 23.39010 -- -- -- 0.004089 -0.0465218 -- -- -- -- 0.663 1.36 -0.62 0.303 1.2E-14 --
10 29.59930 -- -- -- 0.004510 -- -2.200100 -- -- -- 1.000 1.39 -0.70 0.311 3.0E-15 0.62

zone 2
1 -36.1716 -1259.1 48582.8 -8.602E-05 0.652632 -- 0.266212 0.0428924 2.82523E-02 0.00348682 0.999 1.59 -0.58 0.393 -1.8E-14 0.73
2 -35.0962 -1252.99 48373.4 -8.604E-05 0.649883 0.00270312 -- 0.0428627 2.82373E-02 0.0034719 0.084 1.59 -0.58 0.393 -1.4E-14 --
3 -42.2718 -1165.23 45127.3 -- 0.610807 0.00294537 -- 0.0427279 2.80039E-02 0.00339615 0.084 1.58 -0.58 0.393 -5.4E-14 --
4 -43.4563 -1172.18 45363.9 -- 0.613938 -- 0.292343 0.042761 2.80207E-02 0.00341076 0.999 1.58 -0.58 0.393 -3.5E-14 0.72
5 -23.5991 200.413 789.577 -- -- -- 0.284133 0.0428826 2.81078E-02 0.0036659 0.999 1.58 -0.56 0.394 2.1E-14 0.70
6 -23.4468 202.219 352.929 -- -- -- 0.304934 0.0430795 2.83368E-02 -- 0.999 1.59 -0.56 0.394 1.4E-14 0.69
7 11.6866 184.838 497.253 -- -- -- 0.291907 -- 3.13688E-03 -- 0.999 1.59 -0.63 0.396 2.8E-14 0.67
8 12.7324 184.808 484.647 -- -- 0.00302454 -- -- 3.13880E-03 -- 0.073 1.59 -0.63 0.396 1.1E-14 --
9 13.2315 -- -- -- 0.081056 0.00548060 -- -- -1.10149E-03 -- 0.059 1.59 -0.68 0.399 -1.5E-16 --
10 11.2887 -- -- -- 0.0810833 -- 0.541629 -- -1.11683E-03 -- 0.999 1.59 -0.68 0.399 1.6E-15 0.65
DC

Power
aPow,0 βPow,1 βPow,2 βPow,03 βPow,4 βPow,5 for SA

βPow,5 for
Log(SA)

βPow,6 βPow,7 βPow,8 R2
adj Max Res. Min Res. Std Dev res. Mean res. Curv.95% Conf. Reg.

zone 1
1 -4074.78 -5038.52 -17626.0 9.491E-03 2.36355 -- 924.802 0.691061 0.510723 0.960723 1.000 88.13 -37.71 16.511 -4.6E-12 0.73
2 -173.773 13761.3 -84450.9 1.188E-03 9.85715 19.8712 -- 0.149788 -0.17297 -1.72452 0.994 68.13 -43.37 14.581 -2.6E-12 --
3 -58.1905 -13540.0 -93323.8 -- 9.73026 19.8721 -- 0.161295 -0.162902 -1.71945 0.994 68.05 -43.39 14.582 -2.1E-12 --
4 -3151.99 -3263.5 -87715.8 -- 1.34378 -- 924.848 0.783533 0.591415 1.00645 1.000 86.88 -38.25 16.537 -6.0E-12 0.72
5 -2559.11 -- -- -- -0.443755 -- 918.421 0.0363714 0.193264 0.972946 1.000 88.05 -39.04 16.571 -3.1E-12 0.69
6 -2654.75 -- -- -- -0.607853 -- 931.388 0.131203 0.244803 -- 1.000 91.60 -40.42 16.639 -7.7E-12 0.67
7 -2559.84 -- -- -- -0.491857 -- 933.533 -- 0.168003 -- 1.000 91.75 -39.89 16.641 -3.3E-12 0.65
8 138.571 -- -- -- 0.663816 18.8688 -- -- -0.09583 -1.8154 0.994 75.30 -42.71 15.208 1.9E-12 --
9 3.0009 -13410.30 -- -- 9.510860 19.2923 -- -- -- -- 0.994 68.87 -47.52 14.949 2.6E-12 --
10 -2587.06 -2685.93 -- -- 1.309 -- 938.993 -- -- -- 1.000 92.68 -39.13 16.676 1.5E-12 0.65

zone 2
1 -12912.3 -188745.0 6968170 -7.919E-03 74.2735 -- 1710.24 4.89874 3.18359 0.410075 0.999 175.57 -64.04 42.733 -4.5E-12 0.73
2 5700.26 -144142.0 5503630 -9.681E-03 16.6415 -- 4.6973 3.08297 0.371373 0.596 174.71 -63.52 42.637 -4.2E-12 --
3 -6507.71 -134267.0 5138360 -- 94.3801 16.6687 -- 4.68214 3.0567 0.362848 0.595 174.27 -64.09 42.648 -6.8E-12 --
4 -13583.0 -180744.0 6671820 -- 69.8763 -- 1712.65 4.88663 3.16227 0.403072 0.999 175.21 -64.50 42.740 5.4E-13 0.72
5 -10645.6 22300.1 78084.9 -- 90.8177 -- 1711.43 4.90463 3.17516 0.440814 0.999 175.24 -61.58 42.759 6.4E-13 0.70
6 -10627.3 22517.3 25579.2 -- -- -- 1713.93 4.92831 3.2027 -- 0.999 176.14 -60.95 42.774 7.6E-13 0.69
7 -6608.0 20528.9 42089.9 -- -- -- 1712.44 -- 0.319817 -- 0.999 176.65 -68.87 43.031 8.9E-13 0.67
8 -385.644 20248.6 33612.4 -- -- 16.6767 -- -- 0.331806 -- 0.590 175.56 -68.88 42.907 2.0E-13 --
9 -348.372 -- 703575 -- -- 16.6155 -- -- -- -- 0.565 176.84 -49.62 44.160 5.7E-14 --
10 -6545.72 -- 727045 -- -- -- 1704.84 -- -- 0.999 177.95 -47.62 44.317 3.9E-12 0.62

11
Completely linear and linearizable models were derived, but curvature tests can be performed12
in the latter, not in the former. The difference between the two classes of equations consists in13
the introduction of the natural logarithm of SA in the case of the non-linear models.14
Introducing this non-linear parameter enables us to obtain the coefficient of determination15
much higher and to concentrate the study on the curvature tests. The curvature was assessed16
on a confidence interval (95%) centered on the least-squares parameter estimates. The17
curvature in Table 6 is a scaled measure of the radius of curvature of the parameter space.18
Generally speaking, the non-linear expressions with a higher curvature were those most19
closely following the experimental data in zone 2 of SV and DC Power. The models on which20
the subsequent considerations were based are those identified with the numeral 1 in Table 621
and are listed below.22
For SV in zone 1:23
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1
SV= 11.8130 -336.752AirF -190.904HyF +9.602E-05HyP +0.220732RAirHy -0.71307Log(SA)2
+0.00246678TM -2.73473E-03DT -0.0293085FU (1)3

4
For SV in zone 2:5

6
SV= -36.1716 -1259.1AirF +48582.8HyF -8.602E-05HyP +0.652632RAirHy +0.266212Log(SA)7
+0.0428924TM +2.82523E-02DT +0.00348682FU (2)8

9
For DC Power in zone 1:10

11
DC Power= -4074.78 -5038.52AirF -17626.0HyF +9.491E-03HyP +2.36355RAirHy +924.802Log(SA)12
+0.691061TM +0.510723DT +0.960723FU (3)13

14
For DC Power in zone 2:15

16
DC Power= -12912.3 -188745.0AirF +6968170HyF -7.919E-03HyP +74.2735RAirHy +1710.24Log(SA)17
+4.89874TM +3.18359DT +0.410075FU (4)18

19
Figure 8 shows the regression of the experimental data with eqns. (1-4) for SV and DC Power20
in zones 1 and 2. These models were selected because:21
1) they have a greater curvature. For SV it is important to take the parameters other than SA22
into account as well because the operating domain of SV is very limited. This obliges the23
accuracy of the correlations to be lower than the first decimal digit. In fact, a model based24
entirely on SA could be developed, but it would not be useful for mapping the experimental25
points. The parameterization of the data entails the need to distinguish differences at least in26
the first decimal digit. For DC Power the curvature test shows that, if it wishes to remain with27
curvatures higher than 0.7, there is no advantage in selecting a relationship characterized by a28
number of parameters slightly lower than those involved in (3) and (4). In fact, in zone 2, DC29
Power acquires a curvature for high currents. To follow this behavior it is needed to introduce30
non-linear model in the same way as for SV;31
2) being composed of all the parameters investigated, the proposed models are suitable for32
estimating the influence of every single factor on the output of interest (SV or DC Power) by33
means of a two-level full factorial design (FFD) [38].34
Figure 8 shows the correctness of the fit for the experimental data with the eqns. (1-4). The35
analysis of the residuals is shown in Figure 9. In zone 1, the equations (1) and (3) regress the36
experimental data with a satisfactory accuracy. In zone 2, it can be seen that the equation (4)37
produces accurate results, while equation (3) reveals a strong non-linearity of the data. This38
suggests that, in order to improve the model (3), it would be necessary to formulate an39
alternative non-linear correlation. Although the model (3) is the only one proving critical40
among those developed, the coefficient of determination and the curvature are still sufficiently41
high, so even equation (3) was considered valid, albeit with a lower accuracy than those42
obtained in the regressions of the corresponding experimental data using equations (1), (2)43
and (4).44

45
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1
Figure 8. Regression of the experimental data with the models selected2

3

4
Figure 9. Residuals analysis on SV and DC Power using eqns (1-4)5

6
A two-level FFD was performed within the ranges defined in Table 2 to identify the weight of7
the single parameters within eqns. (1-4). The purpose of this analysis was to highlight the8
parameters with the greatest influence on the order of magnitude of SV and DC Power,9
considering the models derived. The result is contained in the Pareto charts in Figure 10.10
After screening by means of normal probability plots, It can be seen that the most significant11
parameters for SV, in absolute terms, for zone 1 are RAirHy>AirF and for zone 2 they are12
RAirHy>AirF>HyF>DT>TM. So, when the machine operates in the conditions of zone 2,13
other parameters become important to the machine’s performance in terms of SV. Similar14
conclusion can be drawn observing the Pareto chart relating to DC Power. In zone 1, the order15
of significance of the parameters, considering their weight in absolute terms, is16
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SA>AirF>RAirHy>TM>FU, while in zone 2 it is AirF>RAirHy>SA>HyF>DT>TM. In this1
case, the importance of certain parameters is reversed, and other parameters make their2
appearance.3

4
Figure 10. Pareto charts obtained for eqs (1-4)5

6
Obviously the analysis of variance on eqns. (1-4) contain the error from the regression7
procedure. This means that it is best to focus on the mutual relationships between the weights8
of the parameters rather than on their absolute values, and also to concentrate just on the9
parameters that show a higher significance. It would also be possible to avoid the analysis on10
SV because it could be deducible from the analysis on DC Power. The latter analysis also11
leads to more reliable results because the correlations derived on DC Power contain a smaller12
error (Table 6). The analysis on SV nonetheless provides further information on the13
performance and are more accurate control of the accuracy of the relationships obtained.14
Finally, the analysis on the equations confirms the results of Table 5, and adds other15
parameters to those identified in the PCA, which are important for determining the magnitude16
of SV and DC Power. Considering SA as a variable and consequently excluding SA by the17
analysis, Figure 10 confirms the importance of the parameters identified in the PCA. In18
particular, for SV it is obtained:19
1) in zone 1, the PCA identifies RAirHy, whereas the FFD identifies AirF and RAirHy as of20
the parameters with the strongest influence on SV;21
2) in zone 2, the PCA identifies just SA as an influential parameter, but SA is an independent22
variable and so it is implicitly included in the analysis. In other words, SV is per se always23
considered a variable dependent on SA. The FFD thus indicates AirF, HyF and RAirHy as24
parameters influencing the value of SV. Although they have a high magnitude, TM and DT25
can be disregarded because their magnitude can be assumed to derive from the regression26
error.27
For DC Power:28
1) in zone 1, the PCA points to AirF and RAirHy; the FFD to AirF and RAirHy;29
2) in zone 2, the PCA identifies SA, which is excluded from the parameters for the previously30
mentioned reasons; the FFD suggests AirF, HyF, RAirHy, TM and DT with a smaller31
influence of TM and DT on the value of DC Power than that of the first three parameters.32
It seems clear from the results that the air flow is the main factor used to adjust the unit so as33
to modulate its performance to suit the required load. As confirmed in [39] the air flow rate34
can be adjusted to extend the linear correlation between SA and SV even at high currents. The35
present study demonstrates, however, that when the apparent limiting current is reached, there36
is a zone in which the correlation between SA and SV is no longer linear. Other operating37
parameters have to be included in the description of the machine’s performance for this zone.38
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Figure 11 shows the eqns (1-4) applied to a long operating period, also in unsteady states.1
Although large differences are evident during the start-up, these differences decrease in the2
transition period between two different steady states of the system. For DC Power the3
equations (3) and (4) produce very similar values: this is because the parameters with the4
strongest influence on DC Power in zone 1 also influence zone 2.5

6
Figure 11. Stack voltage (left) and DC Power (right) during the transition between different7

steady states8
9

6. Conclusions10
This work reports on experimental results obtained in a hydrogen-fueled SOFC electrical11
generator. Exclusively steady state conditions were investigated. It is difficult to deduce12
general rules from the data obtained because they consist of a considerable number of13
quantities that vary simultaneously, also on the basis of control logic installed in the machine.14
This means that the conclusions that can be drawn are limited. The data collected were15
typically in the form of arrays of time-dependent values, so graphically representing the16
relationships between the working variables produced no evident trends, but clusters of points17
in certain operating regions, which represent different operating conditions. Performing a18
multivariate analysis on the data produced useful information for interpreting the system as a19
black box. The analysis conducted enabled us to:20
1) cluster the machine’s operating data within a limited number of operating conditions;21
2) identify the parameters with the strongest influence on SV and DC Power in each operating22
zone (Table 5 and Figure 10);23
3) generate several fairly accurate, progressively simplified multilinear models (contained in24
Table 6) for predicting the value of SV and DC Power on the basis of the operating25
parameters estimated directly from input-output data.26
In conclusion, the proposed data analysis enabled us to derive general rules that describe the27
system’s operation, and to use said rules to study the system’s response to variations in its28
operating parameters.29
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