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ABSTRACT 

An algorithm is described to estimate 
variance components for a univariate an- 
imal model using REML. Sparse matrix 
techniques are employed to calculate 
those elements of the inverse of the 
coefficient matrix required for the first 
derivatives of the likelihood. Residuals 
and fitted values for random effects can 
be used to derive additional right-hand 
sides for which the mixed model equa- 
tions can be repeatedly solved in turn to 
yield an average of the observed and 
expected second derivatives of the likeli- 
hood function. 

This Newton method, using average 
information, generally converges in 4 0  
iterations. Although the time required 
per iteration is two to three times greater 
than that required per likelihood evalua- 
tion for derivative-free methods, the total 
time to convergence is generally much 
less. An example of a complex model, 
involving correlated direct and maternal 
genetic effects, and an additional uncor- 
related random effect, indicates that 
REML, using average information, is 
about five times faster than a derivative- 
free algorithm, using the simplex 
method, which is about three times faster 
than an expectation-maximization al- 
gorithm. 
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(Key words: restricted maximum likeli- 
hood, animal model, average informa- 
tion, sparse matrix) 

Abbreviation key: AI = average information, 
DF = derivative-free, EM = expectation- 
maximization, MME = mixed model equa- 
tions. 

INTRODUCTION 

The REML method is preferred for estima- 
tion of variance components for animal breed- 
ing applications. For animal models, the 
derivative-free PF) method has become popu- 
lar because of its computational feasibility; DF 
only requires the calculation of the determinant 
of each iteration and uses search techniques to 
locate the maximum of the likelihood (5, 10). 
However, the DF method has poorer numerical 
properties; the solution has about one-half the 
accuracy, in significant digits, of the likelihood 
function being maximized [(14); p. 2771. This 
problem is likely to be greater when several 
variance components are estimated. 

The first derivative of the likelihood has 
terms involving the inverse of the coefficient 
matrix and therefore has been regarded as ex- 
pensive to calculate for large models. Misztal 
and Perez-Enciso (12) described the method of 
Takahashi et al. (16) for calculating the sparse 
inverse of the coefficient matrix, which calcu- 
lates only those elements of the inverse that 
belong to the sparse pattern of the original 
matrix. Cost of computer time for calculation 
of the sparse inverse is two to three times more 
expensive than for calculation of the deter- 
minant, which enhances the computational 
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450 JOHNSON AND THOMPSON 

feasibility of an expectation-maximization 
(EM) algorithm. 

Newton’s methods use first and second 
derivatives of the likelihood and are generally 
more rapid to converge. The second derivative, 
as used in the Newton-Raphson method, and 
its expected value, as used in Fisher’s method 
of scoring, include terms involving traces of 
products of the inverse matrix, which 
represents another order of computational com- 
plexity. However, when the observed and ex- 
pected second derivatives are averaged, the 
trace term is cancelled out, and the remaining 
expression is simple to compute. The objective 
of this paper is to discuss the use of average 
information (AI) FEML and to compare this 
method with DF and EM algorithms using an 
example. 

MATERIALS AND METHODS 

Model 

We consider the linear model 

y = Xb + Zu + e 

Without loss of generality, X is assumed to be 
of full-column rank r(X) = Nf. 

The Likelihood 

For y - N(Xb,V), the likelihood function, 1, 
based on linear functions of the observation 
vector with expectation zero, can be expressed 
as [e.g., (6)l 

L = -21nl = constant + lnlVl 
+ InlXY-lXI + y ’ p ~  133 

where 

Using results on matrix differentiation [e.g., 
(15), Appendix M.7.1, the first and second 
derivatives of the log likelihood function with 
respect to scalar variance components 6 and 6 
can be written [e.g., (6)] 

and where 

- a*L = -tf-P-P) v av + 2y’P-P-Fy. av av 
ae a4 ae a+ [51 

y = a vector of N observations, 
b = a vector of Nf fixed effects including 

x = fie N N~ design matrix for fixed 

U = a vector of Nu random effects, 
Z = the N x Nu design matrix for random 

covariables, 

effects, 
The transition from Equations [4] to [5] as- 
sumes that V is a linear function of variance 
components. The expected value of the second 
derivative is then 

effects, and 
e = the vector of N residuals. 

For the (co)variance structure of y the assump- 
tion is Addition of Equations [5] and [6] yields an 

expression for the average of observed and 
expected information with respect to 6 and 4: VX(U) = G, 

var(e) = R, 

and 
cov(u,e) = 0, 

which gives av and definition of the vector f(6) = zPy allows 

v d y )  = V = ZGZ‘ + R. [21 reexpression of Equation [7] as 
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AVERAGE INFORMATION VARIANCE COMPONENTS 45 1 

Because P is the matrix transforming observa- 
tions into residuals (Appendix l), the Pf(0) are 
the residuals from solving the mixed model 
equations (MME) (Appendix 1, Equation [MI) 
with y replaced by f(8), and AI(8,d) can be 
computed simply as a vector product. The 
form of the vector f(8) is described in the 
specific models. 

For a univariate model, an alternative 
parameterization in terms of variance ratios 
can be achieved by factoring the residual vari- 
ance out of the variance matrix V, effectively 
reducing the dimensions of the problem by 
unity (1). The form of the likelihood function 
and its derivatives is presented in Appendix 2. 

The AI REML algorithm avoids the evalua- 
tion of traces of large matrices in Equations [5] 
and [6] by using the AI, Equation [8], in place 
of second derivatives in a Newtonian-type 
procedure. 

Let 0 be the vector of variance components 
to be estimated for a particular model. Let 
AI(@) denote the matrix with elements AI(&+) 
for 8&0, and DL(O) the vector with elements 

$ for w. 

Specific Models 

Individual Animal Model. Consider a 
univariate model with identically and indepen- 
dently distributed errors, R = Iu2, one random 
effect U = a, design matrix Z = Z,, and 
variance matrix G = A d ,  where A is the 
relationship matrix. Let C denote the coeff- 
cient matrix of the MME (Appendix 1). Then, 
from Eauation 141, the first derivatives of the 
log likeiihood (using Equations [A41 and 
Appendix 1) are 

aL 
- ad = tr(AZ:PZ,) - y'PZ,AZ$'y 

where N, is the number of animals, and Caa is 
the partition of C-' corresponding to a. Simi- 
larly, 

aL - = trp) - y'p2y a2 

where d is the vector of residuals defined in 
Appendix 1. The vectors required for the AI 
matrix are 

f(2) = ZaAZaPy = -Za& 1 

4 [9c1 

a scalar multiple of the vector of fitted values 
for random effects, and 

1 f(2) = Py = 2, 
a scalar multiple of the vector of residuals. 

Repeated Records and Litter Esfects. The 
individual animal model was extended to in- 
clude an additional uncorrelated random effect 
c, such as with repeated records on each ani- 
mal, or a litter effect to consider the common 
environmental variance for full siblings. The 
random vector U now represents a linking of 
the animal effect a and the additional random 
effect c of length N,, U' = [a'lc'], with inci- 
dence matrix Z = [Z,lZc] and variance matrix 

G = [t4 ;4] . 
In addition to Equations [9] 

- aL = tr(Z,'PZ,) - y'PZcZ,'Py 

34 

where CCc is the partition of C-' correspond- 
ing to c, and 

1 f(4) = zcz,Py = -z e. 
cig 

Maternal Effects. The model was further 
generalized to include a second animal effect 
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m such that U' = [a'lm'lc'], Z = [ZalZ,lZc), 
and 

with inverseGi' 

Then, instead of [9a] and [Sc], the first deriva- 
tives are 

raL 1 a~ i 

[1 la1 

where Cas, Cam, and Cm are partitions of 
C-*,  and 

f(2) = za(u"n + P m )  

= Z,(UYi + m) 
+ Z,(U% + Umm) 

f(a2,, = Z,(aami + F m ) .  [ l l b l  

Computatlonal Procedure 

The sparse matrix package FSPAK (Perez- 
Enciso and Misztal, 1993, personal communi- 
cation) was used for the calculations. The 
package is an interface to code for sparse 
matrix methods by George and Liu (4) and 
provided solutions to the MME, the sparse 
matrix inverse and log determinant required in 
the following. 

Step 1. Pedigree and data files were read, 
and the inverse of the relationship matrix was 
calculated. 

Step 2. The MME were ordered using the 
minimum degree ordering subroutines of Ge- 

orge and Liu (4) to minimize the additional 
nonzero elements generated on factorization. 

Srep 3. Symbolic factorization was carried 
out to determine the data structure of the upper 
triangular factor. 

Step 4. Numerical values were input to the 
MME, given current estimates of the variance 
components, and numerical factorization of the 
coefficient matrix was carried out. The equa- 
tions were solved, and residuals were calcu- 
lated. 

Step 5. The elements of the average infor- 
mation matrix were calculated. Given a vari- 
ance component Be@, the vector f(0) was calcu- 
lated based on fitted values or residuals as 
shown in Equations [9c,d], [lob], and [Ilb]. 
This vector was used as a right-hand side, and, 
with the same coefficient matrix set up at step 
4, the MME were solved. The residuals Pf@) 
and the vector products f(+YPf(e) were calcu- 
lated for all qk@. Step 5 was repeated for all 

Step 6. The sparse inverse of the coefficient 
matrix was evaluated using the method of 
Takahashi et al. (16). The trace terms and 
vector products required for Equations [9a, 
9b], [loa], and [ l la ]  were calculated to yield 
the first derivatives of the likelihood. 

Step 7. The variance components were up- 
dated using Newton's method: 

e€@. 

@[P+'l = @[PI - [AI(O[P])]-l[DL(O[P])] 
[I21 

where [p] is iterate number. 
Steps 4 to 7 were repeated until conver- 

gence. The inverse of the information matrix 
was used to estimate the (co)variances of the 
variance components. Calculation of the sparse 
inverse in step 6 is the most computationally 
demanding; the repeated solving in step 5 is 
relatively inexpensive. 

Example 

The example involves 2307 records of 
weaning weight from a flock of 2500 Romney 
sheep over 15 yr. Direct and maternal genetic 
effects and a permanent environmental effect 
to take account of the additional nongenetic 
correlation between progeny from the same 
dam (695 dams) were fitted. Fixed effects in- 
cluded 30 contemporary groups for interaction 
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of year and sex, three classes for birth and 
rearing rank, four classes for age of dam, and a 
covariant for date of birth. The rank of the 
coefficient matrix of the MME was 5731 with 
53,509 nonzeros. 

The variance ratio parameterization was 
used (see Appendix 2). Two sets of starting 
values were considered for {<, 4. am, 4} 
the direct, maternal, direct and maternal, and 
permanent environmental (co)variances, 
respectively. Expressed as a proportion of the 
phenotypic variance, the two sets were { .3, . l ,  
-. 1, .2) and { . l ,  . l ,  .02, . I ) .  The convergence 
criterion for AI REML was IIAXl/llXll < le3 
where I I  I I  denotes vector length (Euclidean 
norm), and X is the vector of variance ratios. 

For a comparison with a DF algorithm, the 
simplex method (13) was used in place of steps 
5 to 7. For the EM algorithm, steps 5 and 7 
were not required, and the variance parameter 
estimates were updated using an algorithm 
similar to that used by Cantet et al. (2) for a 
similar model. For example, the variance pa- 
rameter 4 was updated using 

where @ was chosen as .5, with similar expres- 
sions for the other variance components. 

The DF and EM procedures were stopped 
when their likelihood values attained the maxi- 
mum value achieved by AI REML to a speci- 
fied degree of accuracy. As verification of the 
equivalence of convergence among the three 
algorithms, the final variance estimates from 
the DF and EM algorithms, when used as 
starting values for AI REML, were required to 
satisfy the convergence criterion for AI REML 
without further iteration. 

RESULTS AND DISCUSSION 

The log likelihood values agreed within five 
decimal places for the three algorithms. The 
final parameter estimates (ItSE) were I.197 f 
.039, .117 f .037, .004 f .027, and .119 f 
.027), and residual variance was 5.217. The 
standard errors were derived from the inverse 
of the AI matrix. 

TABLE 1. Number of iterations, number of likelihood 
evaluations, and computing time for the average informa- 
tion (AI), derivative-free (DV, and expectation- 
maximization (EM) REML algorithms for the weaning 
weight example. 

AI DF EM 

Starting values 
I.3, . l ,  -.1, .2) 
Iterations, no. 6 109 
Likelihoods, no. 169 
Computer time, s 234 1238 4106 

Starting values 
1.1, .l, .02, . I )  
Iterations, no. 5 64 
Likelihoods, no. I19 
Computer time, s 192 872 2403 

Table 1 summarizes the computer time and 
number of iterations for the three algorithms 
(Compaq Deskpro 4/33i; Compaq Computer 
Corporation, Houston, TX) using the Lahey 
F77L-EW32 Fortran compiler (Lahey Com- 
puter Systems Inc., Incline Village, NV). The 
DF algorithm shows the number of likelihood 
evaluations, because several evaluations are 
carried out at each iteration, and likelihood 
evaluation is the major cost for this method. 
The AI REML procedure was about five times 
faster than DF, which was about three times 
faster than EM. These results should be viewed 
as indicative of the relative performance of the 
three algorithms, because speed rankings can 
vary among computing platforms. Further- 
more, the rankings are likely to depend on 
starting values, the initial simplex chosen for 
the DF method, and the EM updating proce- 
dure used. Also, DF methods other than the 
simplex method have not been considered 
here. 

An acceleration procedure was used with 
the EM algorithm. The second method of Laird 
et al. (7), which effectively attempts to approx- 
imate the matrix of second derivatives, was 
unsuccessful, as also found by Misztal (1 1). An 
exponential (Aitken) extrapolation, the first 
method of Laird et al. (7) as derived from the 
average of the ratios of the differences of the 
individual parameter estimates obtained for the 
two most recent iterations, was effective ini- 
tially but led to slow convergence for the latter 
iterations. The method employed in this exam- 
ple considered the ratio of differences for each 
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component separately, which seemed to be 
more effective, although the cause is not clear, 
and no algebraic proof of this result is offered. 
This method is similar to independent applica- 
tion of a univariate acceleration to each param- 
eter. The acceleration was applied about every 
fifth iteration, provided that the likelihood 
function was increased and that parameters 
remained within boundary limits. 

Possible criticisms of Newton’s methods 
are that global convergence is not guaranteed, 
the Hessian matrix may not be positive defi- 
nite, or parameter estimates may exceed the 
boundary. The AI matrix, Equation [8], is 
composed of residual sums of squares and 
cross-products and is therefore positive semi- 
definite. Globally convergent modifications of 
Newton’s method can be employed if, at any 
iteration, a Newton step is inappropriate (3). 
For example, Equation [123 could be modified 
using Marquardt’s method (9): 

where a constant, p, is added to the diagonal 
elements of the Hessian. This method is a 
compromise between Newton’s method 0L = 0) 
and steepest ascent (cl large), and the smallest 
value of p is chosen so that the step taken 
increases the likelihood function while the new 
variance component estimates are confined 
within their domain of definition. 

The model trust region approach (3), to 
select a suitable value for p, has been used in 
the program code for AI REML to protect 
against starting values that are too distant from 
the maximum or for which variance compo- 
nents become negative or correlations exceed 
unity in absolute value. The approach is based 
on estimation of the region about the current 
estimates in which the local quadratic model 
underlying Newton’s method can be trusted to 
represent adequately the likelihood function 
and to take a step to approximately maximize 
the likelihood function in this region. 

When parameter estimates exceed the 
boundary, the AI REML procedure can be 
repeated using a simpler model if appropriate. 
Other parameterizations, including Cholesky 
transformations (8), may also be used to con- 
strain parameters within boundary limits. 

The example in this paper considered a 
model with several variance components. The 
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differences in performance among the al- 
gorithms are expected to be not as great for 
simpler models involving fewer variance com- 
ponents but greater for multivariate models. 

CONCLUSIONS 

The use of a sparse matrix inverse and the 
calculation of second differentials from the 
average of observed and expected values pro- 
vides an efficient computing algorithm for var- 
iance component estimation with an animal 
model and a very competitive alternative to DF 
and EM algorithms. 

The use of AI is only strictly correct when 
parents are not selected. The more intense the 
selection is, the greater the discrepancy be- 
tween AI and observed information; presuma- 
bly, the number of iterations will increase, but 
DF and EM are not expected to become com- 
petitive. 

Calculation of a sparse inverse increases 
memory requirements over that required for 
likelihood evaluation. Developments to reduce 
memory requirements (R. Thompson, N. R. 
Wray, and R. E. Crump, 1994, unpublished 
data) for finding the elements of the sparse 
matrix have been incorporated in FSPAK. 
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APPENDIX 1 

Matrix Identities 

The inverse of the variance matrix V de- 
fined in Equation [2] is given by 

and the MME corresponding to the model 
defined by Equations [ I ]  and [2] are 

lX X’R-lZ X’R-’ y 
[ ~ : ~ ~ l X  Z’R-lZ + G-11 [f] = [Z’R-ly] 

[A21 

From application of results for the inverse of a 
partitioned matrix [e.g., (15), Appendix M.5.1 
to the coefficient matrix in Equation [A2], it 

VAKlANCC CUMI’UNLN I S  

follows that the matrix 

455 

has the equivalent form 

P = S - SZ(Z’SZ + G-lr’Z’S [A31 

where S is the absorption matrix 

Then, using [A3], 

Z’PZ = G-I - G-’@’SZ + G-l)-lG-l, 
~441  

Note that (Z’SZ + G-lr1 is that partition of 
the inverse of the coefficient matrix cor- 
responding to the random vector U with solu- 
tion 

O = (Z’SZ + G-’r’Z’Sy. 

From [A3], 

and, using [A21 and because SX = 0, then 

Py = Sy - SZO = S@ - ~6 - ZO) = R-Q 

where i? = y - X6 - ZQ is the vector of 
residuals. Because SRS = S, it follows from 
~ 3 1  

tr(PR) = tr(SR) - tr[(Z’SZ + G-lr’Z’SZ] 
= N - r(X) - Nu + tr[(Z’SZ 

+ G - l r l G - l ] .  [A61 

APPENDIX 2 

Variance Ratio Parameterization 

The residual variance is factored out of the 
variance matrix V so that V = Vka2, where V h  
= ZAZ’ + I and A is the variance matrix G 
scaled by 1h2. The elements of A are variance 
ratios. Define the scaled matrix PA = Pa2. 
Then the log likelihood (Equation [3]), omit- 
ting the constant, may be reexpressed as 

Journal of Dairy Science Vol. 78, No. 2, 1995 



456 JOHNSON AND THOMPSON 

- -  axiaxj = axiaxj 
Setting ~ L / & J ~  = 0 directly yields an estimate 
of the residual variance, given the vector of 
variance ratios (A), from the residual sum of 
squares 

- 

$6) = y’Phy/(N - 0)). [B2] 

Substitution of that expression in [Bl] gives 
the concentrated likelihood function (1) 

The derivatives on the right-hand side of [B4] 
are evaluated at u2 = S2(A) and have expres- 
sions similar to Equation [ 5 ] .  The average of 
observed and expected values of these deriva- 
rives are 

Lc@) = 

(N - r(~>)ln#fi> + lnlV,I + 1nIX’V:XI. 

The concentrated likelihood ?ttains its maxi- 
mum at the REML estimates X of A, in which 
case S2(i) is the REML estimate of 9. For the 
derivatives, for variance ratios Xi and A,, ~ 5 1  

and these can be substituted into the right-hand 
side of [B4] in place of the corresponding !!2 = fGp,) - y’pA 2 p x y / $ ~ )  ax, 1 observed values to yield average information 

[B31 for the concentrated likelihood. 
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