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Summary

Brain networks memorize previous performance to adjust
their output in light of past experience. These activity-depen-

dentmodifications generally result fromchanges in synaptic
strengths or ionic conductances, and ion pumps have only

rarely been demonstrated to play a dynamic role [1–4]. Loco-
motor behavior is produced by central pattern generator

(CPG) networks and modified by sensory and descending
signals to allow for changes in movement frequency, inten-

sity, and duration [5–7], but whether or how the CPG
networks recall recent activity is largely unknown. In

Xenopus frog tadpoles, swim bout duration correlates line-
arly with interswim interval, suggesting that the locomotor

network retains a short-term memory of previous output.
We discovered an ultraslow, minute-long afterhyperpolari-

zation (usAHP) in network neurons following locomotor
episodes. The usAHP is mediated by an activity- and sodium

spike-dependent enhancement of electrogenic Na+/K+ pump
function. By integrating spike frequency over time and link-

ing the membrane potential of spinal neurons to network
performance, the usAHP plays a dynamic role in short-term

motor memory. Because Na+/K+ pumps are ubiquitously

expressed in neurons of all animals and because sodium
spikes inevitably accompany network activity, the usAHP

may represent a phylogenetically conserved but largely
overlooked mechanism for short-term memory of neural

network function.

Results

Swim Duration Correlates with Interswim Interval
The central pattern generator (CPG) controlling swimming
in young Xenopus laevis frog tadpoles around the time of
hatching [8] is relatively simple, and one of the most com-
pletely described vertebrate CPG networks [9]. During fictive
swimming in immobilized tadpoles (stages 37/38–42),
rhythmic motor neuron (MN) bursts recorded from ventral
roots (Figure 1A1) alternate across the body and propagate
from head to tail at 10–20 Hz (Figure 1A2) [9, 10]. Swimming
is generated by excitatory glutamatergic interneurons (dINs:
descending interneurons) in the hindbrain and rostral spinal
cord that are electrically coupled and form a reverberating
positive feedback network that maintains activity once initi-
ated [9]. These neurons drive commissural glycinergic inter-
neurons (cINs) thought to couple the two sides in antiphase
during swimming, ascending inhibitory interneurons (aINs)
that contribute to gating of incoming sensory signals, and
myotomal MNs that innervate the segmentally organized axial
swimming muscles. Spinal CPG neurons display a range of
*Correspondence: kts1@st-andrews.ac.uk
firing patterns during swimming; some, such as dINs, fire a
single action potential per cycle reliably throughout swimming
episodes, whereas some are only active during fast, intense
activity [10]. Once initiated, swimming episodes last from
a few seconds to several minutes, and the duration of each
episode is regulated by several factors including inhibition
from brainstem interneurons [11] and intrinsic spinal signaling
mechanisms [12]. We find that there is a strong linear correla-
tion between interswim interval (w1–30 s) and episode dura-
tion (Figure 1B1; n = 6; R2 = 0.996): when swimming is evoked
at decreasing intervals (Figure 1B2, upper trace), the duration
of subsequent episodes declines, and vice versa (Figure 1B2,
lower trace). This suggests that the locomotor system can
retain a short-termmemory of previous network activity, which
dictates the duration of future network output.

An Ultraslow Postswim Hyperpolarization

Spinal CPG neurons presumably contribute to this memory,
so they were studied using whole-cell recordings in current-
clampmode. Spinal CPG neurons depolarized and fired action
potentials during episodes of fictive swimming (Figure 1C1).
Episodes often terminated coincident with amembrane hyper-
polarization (Figure 1C1, dotted line) that gradually returned to
the preswim resting potential (Figure 1C1, dashed line). In 26
neurons displaying this postswim phenomenon, the amplitude
was 4.46 0.3 mV, but some reached 10 mV (indicated by two-
way arrow in Figure 1C1). The event was slow; the membrane
potential returned to preswim levels only after 49.4 6 8.4 s.
Accordingly, we have termed this event the ultraslow afterhy-
perpolarization (usAHP) to distinguish it from previously re-
ported fast, medium, or slow AHPs with much more rapid
timescales.
Most low-threshold neurons that fired reliably during swim-

ming displayed a postswim usAHP (e.g., Figure 1C1), whereas
high-threshold neurons that rarely fired during swimming
never showed a postswim usAHP (Figure 1E1). These observa-
tions suggest that the usAHPmay be linked to action potential
firing during swimming. However, some spinal neurons (e.g.,
Figure 1D1) showed no usAHP despite continuous firing with
multiple action potentials per swim cycle during fictive swim-
ming (Figure 1D1, inset). An alternative possibility is that the
usAHP could result from local synaptic activity or a modulator
released during swimming. To test these two alternatives—
neuronal property versus network phenomenon—we applied
suprathreshold depolarizing current pulses. Neurons with
a postswim usAHP (e.g., Figure 1C1) displayed a similar
usAHP following continuous firing induced by suprathreshold
depolarizing pulses (Figure 1C2). Neurons that fired reliably
during swimming but did not display a postswim usAHP (Fig-
ure 1D1) never displayed one in response to current injection
either (Figure 1D2). However, neurons with a low firing proba-
bility during swimming (e.g., Figure 1E1) could also display
a usAHP when made to fire with injected current (Figure 1E2).
These data suggest that the usAHP is indeed an intrinsic and
neuron-specific property linked to action potential firing.
Additional analyses of the neuronal electrical properties and
the presence or absence of a usAHP are described below
and summarized in Figure S1 available online.
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Figure 1. Dependence of Swimming Episode

Duration on Interswim Interval and a usAHP

following Swimming Episodes or Depolarizing

Pulses

(A1) Schematic of stage 42 Xenopus laevis

tadpole with stimulating electrode on tail skin,

patch-clamp electrode on exposed spinal cord,

and three ventral root (VR) suction electrodes

(L-5th, L-12th, and R-8th VR-E: VR electrodes at

left 5th, left 12th, and right 8th muscle clefts,

respectively).

(A2) Example of simultaneous VR recordings

made at 5th, 8th (contralateral), and 12th muscle

clefts.

(B1) Plot of episode duration against interswim

interval showing linear relationship. Data are

represented as mean 6 SEM.

(B2) Intervals between the stimulus and the end

of the previous swimming episodewere gradually

reduced (upper trace), causing a decrease in

swimming episode duration and vice versa (lower

trace). Upper and lower traces are continuous

recording from one VR electrode.

(C1) Simultaneous current-clamp recording of

rhythmically active spinal neuron (upper trace)

and ipsilateral VR recording during swimming

episode (lower trace). This CPG neuron fired

throughout swimming and on most cycles.

Inset is an expanded excerpt showing neuron

activity during four swim cycles. A long-lasting

afterhyperpolarization followed swimming (ultra-

slow afterhyperpolarization [usAHP] amplitude

arrowed).

(C2) A depolarizing pulse (1 s), applied to the

neuron in (C1), induced continuous firing fol-

lowed by a usAHP.

(D1 and E1) Some CPG neurons lacked a usAHP

following swimming episodes.

(D1) This CPG neuron fired multiple spikes on

many cycles of a swimming episode but did not

display usAHP. Inset is an expanded excerpt

showing neuron activity during four swim cycles.

Note multiple spikes on some cycles.

(D2) A depolarizing pulse (1 s), applied to the

neuron in (D1), induced continuous firing but no

usAHP.

(E1) This CPG neuron fired only in the beginning

of the episode and did not show a usAHP. Inset

is an expanded excerpt showing neuron activity

during four swim cycles. Note the lack of spikes.

(E2) A depolarizing pulse (1 s), applied to the

neuron in (E1), induced continuous firing followed

by a usAHP.

Note that the action potential peaks have been

chopped in (C)–(E). Note the expanded time

base in (C2), (D2), and (E2). The cellular properties

of these neurons are analyzed in more detail in

Figure S1.
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Distribution of usAHP in CPG Neurons

We next investigated whether the usAHP was associated
with particular CPG neuron classes. Only 42% (87 out of
202) of all recorded neurons displayed a prominent usAHP
following swimming episodes and/or suprathreshold depola-
rizing pulses. Neurobiotin fills of 125 spinal neurons revealed
that at least 50% of neurons displayed a usAHP in most
spinal neuron classes, including MNs
(n = 39/67), aINs (n = 8/16), and cINs
(n = 18/28), but interestingly not in the
rhythm-generating dINs (n = 0/14). The
usAHP was present in a similar proportion of neurons at
the two developmental stages studied (stage 37/38, 45.3%;
stage 42, 42.3%). The largest number of recorded neurons
were MNs (n = 67), allowing us to explore which physiological
features correlated with the usAHP. No difference in input
resistance or threshold current for spike generation was
found between MNs with (n = 39) or without (n = 28) a usAHP



Figure 2. Dependence of usAHP on Action Potentials and Ionic Basis of

usAHP

(A) Stimulus train induced firing similar to swimming (20 Hz; three spikes per

cycle, 5 s) andwas followed by a usAHP, reminiscent of the usAHP following

swimming. Action potentials are truncated. Arrow indicates usAHP ampli-

tude. Inset: expansion of stimulus protocol and induced action potentials.

(B1) Incremental steps (10 pA) of depolarizing pulses (200 ms) gradually
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(Figure S1A). Stage 37/38 MNs reliably fire once per swim
cycle, but stage 42 MNs have further differentiated and can
fire bursts of action potentials for variable proportions of
swim episodes [10]. Stage 42 MNs displaying a usAHP after
swimming had medium to high firing probabilities, whereas
no postswim usAHP was recorded in MNs with a low firing
probability. MNs with a usAHP following swimming had
higher firing probabilities (Figure S1B; p < 0.001), higher input
resistances (Figure S1B; p < 0.05), and lower threshold
currents for spiking (Figure S1C; p < 0.05) than those display-
ing a usAHP only in response to depolarizing current. These
data suggest that, where present following swimming, the
usAHP relies on action potential discharge, whereas cellular
properties determine the firing profile of different neurons
during swimming.

Dependence of usAHP on Action Potentials
As described above (Figures 1C2 and 1E2) the usAHP can be
induced by continuous high-frequency firing generated by
a long depolarizing current pulse. To determine whether the
usAHP results from action potential firing at physiological
frequencies, we applied a train of suprathreshold pulses
(30 ms every 50 ms for 5 s) to mimic locomotor activity (Fig-
ure 2A). The usAHP was still observed. We next explored the
relationship between action potential generation and usAHP
amplitude. A train of depolarizing steps of increasing ampli-
tude (Figure 2B1) revealed that (1) no usAHP was detectable
below action potential threshold and (2) usAHP amplitude
increased with incremental suprathreshold pulses, summing
with the preceding usAHP. Thus, the usAHP amplitude is
a function of action potential number over time (Figure 2B2;
R2 = 0.76; n = 21).
If the trigger for the usAHP is indeed action potential firing,

then it should be abolished by tetrodotoxin (TTX), which
blocks fast Na+ channels. TTX (1 mM) eliminated all action
potentials and simultaneously blocked the usAHP in CPG
neurons (Figures 2C2 and 2C3; n = 5; p < 0.05), providing
further evidence that the usAHP relies upon action potentials
rather than simply membrane depolarization. The usAHP is
presumably dependent on the Na+ influx that results from
a train of action potentials, rather than K+ efflux. Na+-depen-
dent K+ channels are present on spinal neurons [13–15] and
could be activated by Na+ influx to produce the usAHP.
However, small hyperpolarizing current pulses injected before
and during the usAHP showed no change in voltage response
amplitude (Figure 2D1), suggesting that no ion channels open
induce a usAHP. Asterisks indicate responses to subthreshold depolarizing

pulses, when no usAHP was observed.

(B2) Correlation of summed action potential number and usAHP amplitude

obtained using protocol in (B1).

(C1) Neurons in control conditions displayed a usAHP in response to a train

of depolarizing pulses. Spike responses to four pulses are expanded below.

Note the reduced voltage scale in the lower traces.

(C2) The usAHP disappeared in response to 1 mM tetrodotoxin (TTX).

Passive responses to four pulses are expanded below.

(C3) Histogram shows usAHP amplitudes before and after TTX. Data are

represented as mean 6 SEM.

(D1) Single suprathreshold pulse (1 s) induced continuous firing followed by

a usAHP. Input resistance before pulse and during usAHP was checked

using hyperpolarizing pulses (220 pA, 500 ms). Voltage responses were

similar throughout.

(D2) Input resistance (IR) during usAHP plotted at several time points after

end of pulses. Prepulse IR was normalized to 1 and is indicated by the

dashed line. Data are represented as mean 6 SEM.



Figure 3. The usAHP Is Mediated by Na+/K+ Pumps

(A1 and B1) Ouabain (0.5 mM) or zero-K+ saline blocked the usAHP following swimming. Left panels, control; middle panels, ouabain or zero-K+ saline; right

panels, wash.

(A2 and B2) Ouabain (p < 0.05) or zero-K+ saline (p < 0.01) increased swimming episode duration: control/wash, average of three episodes from each exper-

iment; treatment, one episode during short application. Data are represented as mean 6 SEM.

(A3 and B3) Ouabain or zero-K+ saline abolished the usAHP following a train of depolarizing pulses. Black traces, control; gray traces, treatment; dashed

gray trace in (B3), wash. Note that the action potential peaks have been chopped. Zero-K+ saline rapidly abolished the usAHP without changing the

membrane potential, but a hyperpolarization often followed (not shown) that was readily reversible in the wash.
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or close during the usAHP. The input resistance measured
before the depolarizing pulse was compared to that during
usAHPs 1, 5, 10, 15, and 20 s after the end of the depolarizing
pulse, and no significant difference was found (Figure 2D2; n =
8). This result, together with the long duration of the usAHP, is
consistent with the involvement of ion pumps rather than ion
channels.

Na+/K+ Pumps Mediate the usAHP
Na+/K+ exchange pumps seemed the most likely contenders
to mediate the usAHP because they (1) set the resting
membrane potential, and (2) are affected by transmembrane
Na+ and K+ gradients that determine the driving force for
pump activity. Indeed the pump blocker ouabain (0.5–10 mM;
n = 10) caused a rapid and complete (but irreversible) block
of the usAHP both after swimming (Figure 3A1) and after
depolarizing pulses (Figure 3A3). In a complementary
approach, the driving force for pump activity was reduced by
removing extracellular K+ ions. Zero-K+ saline led to a rapid,
total, and reversible block (Figures 3B1 and 3B3; n = 6), con-
firming that the usAHP is not a K+ conductance and supporting
the conclusion that it involves a Na+ spike-dependent increase
in Na+/K+ pump activity. Both ouabain and zero-K+ manipula-
tions also increased swimming episode durations (Figures
3A1, 3A2, 3B1, and 3B2), suggesting that altering pump activity
influences locomotor behavior.
Na+/K+ Pumps Regulate Swim Bout Duration

Fictive swim episode duration correlates linearly with inter-
swim interval (Figure 1B), but is this relationship causally
related to an activity-dependent increase in Na+/K+ pump
function? The fact that blocking the usAHP has the opposite
effect on episode duration (an increase) to that of reducing
the swim interval (a decrease) is consistent with the proposal
that the usAHP dictates future network performance. To inves-
tigate this possibility further, we first obtained relatively
constant episode durations by using constant stimulus inter-
vals (Figure 4A, upper trace). Shortly after applying ouabain
(0.5–1 mM), much longer swimming episodes, up to several
minutes, initially appeared (Figure 4A, middle trace; Figure 4B;
n = 9), disrupting the relationship between interswim interval
and episode duration. After prolonged exposure to ouabain,
an inhibitory effect on swimming occurred and episodes even-
tually shortened to below control levels (data not shown), pre-
sumably due to a gradual loss of ionic homeostasis following
longer term inactivation of Na+/K+ pumps. Ouabain effects
were sometimes partially reversible (Figure 4A, lower trace),
but more usually they were irreversible even after 1 hr of
wash. To explore the role of the usAHP at the behavioral level,
we applied ouabain to freely swimming Xenopus tadpoles
while their movements were videoed. The results paralleled
the electrophysiological data: ouabain initially significantly
increased the duration of swimming bouts (Figures 4C–4E;



Figure 4. Role of usAHP

(A) Interswim interval was set to 15 s to generate relatively constant, short

episodes in control (top trace). Ouabain resulted in longer swimming

episodes (middle trace), and its effect was partially reversible (bottom

trace).

(B) Histogram of ouabain effect on episode duration. Data are represented

as mean 6 SEM.

(C) Real swimming in a stage 37/38 Xenopus tadpole with multiple consec-

utive video frames overlapped to show swim path in response to touch.

(D) Longer swimming episode in same animal after ouabain.

(E) Histogram showing pooled data from 12 experiments in which ouabain

increased swim episode duration. Data are represented as mean 6 SEM.
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n = 12; p < 0.05), but with prolonged exposure swimming even-
tually reduced to only a few cycles or nonlocomotory twitches.
Thus, enhanced Na+/K+ pump activity and the resulting usAHP
have a direct effect on locomotor bout duration.

Discussion

Locomotor CPG networks must adapt their output in light of
changing environmental conditions, developmental states, or
organismal demands. Locomotor activity is influenced by
sensory information and descending signals from the brain,
but CPGs also display intrinsic flexibility that modifies their
output in an activity-dependent, self-regulatory manner. In
this report, we provide the first direct demonstration that
a potentiation of Na+/K+ pump activity plays an important
role in determining the duration of vertebrate locomotor
behavior. The increase in pump activity, presumably triggered
by Na+ influx, hyperpolarizes the membrane potential of spinal
neurons in amanner that integrates spike frequency over time.
We propose that the hyperpolarization of CPG neurons that
accumulates during an episode will affect their firing pro-
perties [1] and impair their recruitment during locomotion
[10], hence reducing network excitability. In effect, this mech-
anism endows the spinal network with a short-termmemory of
previous network performance: intense activity will lead to
shorter subsequent bouts, whereas weaker activity affords
more prolonged locomotion, analogous to sprinting versus
long-distance running.
The pump mechanism overlays other more conventional

processes that unite to control locomotor bout duration
including GABAergic [11], purinergic [12], peptidergic [16],
and nitrergic [17, 18] signaling. Modulation of Na+-dependent
channels by network activity also alters cell properties and
CPG function [13–15], but evidence that membrane pumps
play a role is limited. In zebrafish larvae, 5-hydroxytryptamine
decreases the intervals between episodes, without affecting
other episode parameters, by modulating the bumetanide-
sensitive inward chloride cotransporter [2]. In a disinhibited
spinal network of neonatal rats, blocking Na+/K+ pump activity
disrupts rhythmic bursting of lumbar MNs [3, 4]. In Drosophila
larvae, MNs controlling crawling show a slow hyperpolariza-
tion following depolarizing current injection due to upregula-
tion of Na+/K+ exchange pumps [1], similar to the usAHP.
Genetic inhibition of the Na+/K+ ATPase reduces crawling
suggesting the pumps directly control locomotion, as we
demonstrate more directly here in tadpoles at the network
and behavioral levels. Activity-dependent upregulation of
pump function has also been demonstrated in sensory
neurons, where it alters neuronal excitability [19, 20].
What advantage does the network accrue from a pump-

based control mechanism? The usAHP does not involve
a conductance change, so although the membrane potential
hyperpolarizes, there is no shunting of the membrane, and
neuronal excitability is relatively unimpaired. The usAHP was
only detectable in a proportion of neurons (42%), suggesting
that some circuit elements are only indirectly affected by
the usAHP mechanism. For example, dINs, the electrically
coupled glutamatergic interneurons that are thought to
generate and maintain swimming once initiated [9, 21, 22],
appear to lack a usAHP. This might ensure that the network
always retains some rhythm generating capability to enable
escape and enhance survival. However, it also raises the
question of why episode durations are affected at all if the
dINs have no usAHP. A likely explanation is that the dINs are
conditional oscillators that receive feedback from CPG
neurons, including midcycle inhibition from cINs. Any reduc-
tion in this feedback due to the usAHP will impair dIN rebound
firing properties and dampen dIN oscillations. Why don’t all
neurons display a usAHP? One possibility is that the change
in intracellular Na+ concentration during activity could be
limited in large neurons and amplified in small ones. However,
the presence of a usAHPdid not correlatewith input resistance
(Figure S1A) and therefore cell size. A second possibility is
neuron-specific differences in Na+/K+ pump subunit expres-
sion, which determines pump sensitivity to both intracellular
Na+ and ouabain [23]. Interestingly, a point mutation of the
a3 subunit in humans leads to rapid-onset dystonia-parkin-
sonism [24]. Thirdly, an endogenous ouabain-like molecule
could block the usAHP in some neurons but not others [25].
Fourthly, Na+/K+ pump function is known to be regulated
by a range of intracellular second-messenger pathways,
including protein kinases and phosphatases [26]. Because
these pathways can be accessed by familiar modulators of
spinal CPGs, such as serotonin, noradrenaline, and nitric
oxide, there could be differential intracellular regulation of
pump function in different spinal neurons and neuron classes.
The trigger for the usAHP, action potential firing in network

neurons, is ubiquitous, making it likely that the same phenom-
enon occurs elsewhere. It may serve different functions in
different networks; increasing Na+/K+ pump activity protects
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hippocampal neurons from ischemic damage [27], whereas
excitotoxic calcium influx through glutamate receptors follow-
ing intense activity, such as occurs during brain injury or
ischemia, can inhibit pump function [28]. Activity-dependent
potentiation of pump function could therefore serve as a useful
homeostatic mechanism to maintain network activity within
predamaging levels. In tadpole spinal neurons, the usAHP
enables the locomotor network to set the excitability of the
system in relation to previous activity and thereby provides
a novel form of short-term memory that controls future loco-
motor behavior.

Experimental Procedures

All experiments complied with UK Home Office regulations and were

approved by theUniversity of St Andrews AnimalWelfare Ethics Committee.

Experiments were performed on newly hatched Xenopus laevis tadpoles

(stage 37/38–42) [8] obtained by hormone-assisted mating of adults

(chorionic gonadotropin injection; 1,000 U/ml, Sigma). All experimental

procedures were described previously [10, 29]. For further details, see

Supplemental Experimental Procedures.
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Supplemental Information includes one figure and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.
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