

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Distinct Molecular Signature of Human Skin Langerhans Cells Denotes Critical Differences in Cutaneous Dendritic Cell Immune Regulation

Citation for published version:

Polak, ME, Thirdborough, SM, Ung, CY, Elliott, T, Healy, E, Freeman, TC & Ardern-Jones, MR 2014, Distinct Molecular Signature of Human Skin Langerhans Cells Denotes Critical Differences in Cutaneous Dendritic Cell Immune Regulation' Journal of Investigative Dermatology, vol. 134, no. 3, pp. 695-703. DOI: 10.1038/jid.2013.375

Digital Object Identifier (DOI):

10.1038/jid.2013.375

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Journal of Investigative Dermatology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Supplementary Material

Detailed experimental procedures

1. Skin dendritic cell isolation and culture

Following dispase (2U/ml, Gibco, UK) digestion of epidermal sheets, migratory DCs were harvested after 48 hours culture of epidermal and dermal fragments, and immediately cryopreserved in 90% FBS (Invitrogen, UK), 10% DMSO (Sigma, UK). Low density cells were enriched using density gradient centrifugation (Optiprep 1:4.2, Axis Shield, Norway (Polak, 2011)) and purified with magnetic beads according to manufacturer's protocol (epidermal cells: CD1a+, dermal cells: CD11c+, Milenyi Biotec, UK). For pulsing with a nominal CD8+ T cell epitope, DCs were incubated with 100 μ M of a HLA-A2 restricted EBV-derived peptide (GLC: GLCTLVAML; Cambridge Peptides, UK) for 18 hours, with TNF- α added at 2 hours, and washed thoroughly before co-culture with T cells. For cross-presentation experiments, DCs were pulsed with 10 μ M proGLC (FNNFTVSFWLRVPKVSASHLEGLCTLVAML; Peptide Protein Research, Fareham, UK) for 24 hours and supplemented with TNF- α after 6 hours (Polak *et al.*, 2012).

2. EBV-peptide specific T cell expansion

PBMC from HLA-A2 individuals were isolated by Ficoll-Hypaque density gradient centrifugation and co-cultured with 40 μ M EBV peptide for 12 days in complete medium supplemented with 1% sodium pyruvate (Gibco, UK) plus 10% human serum (Sigma,UK). IL-2 (100 IU/ml, Peprotech, UK) was added every 3 days. IL-2 was removed from the culture for 24 hours prior to testing in ELISpot. For proliferation assays CFSE (Invitrogen, UK) labelled EBV-specific T cells were re-stimulated with GLC pulsed or un-pulsed CD1a+LC or CD11c+ DDC for 7 days. Prior to flow cytometric analysis, cells were labelled with CD3-PerCP, CD8-APC antibodies (BD Biosciences UK). IFN- γ release from GLCspecific T cells was assessed with ELISpot assay (Mabtech, Sweden). For ELISpot assays, TNF- α matured and washed EBV peptide pulsed DCs (1x10³ cells) were co-cultured with GLC peptide-specific T cells (5x10⁴ cells/ per well) for 20 hours as per manufacturer's protocol (Mabtech, Sweden). Spot forming units (sfu) were enumerated with ELISpot 3.5 reader. For caveolin-1 blocking assay, cell cultures were supplemented with Filipin III (Sigma, UK) at pre-titrated concentrations (1 µg/ml and 0.1 µg/ml).

3. Alignment of T0 migratory cells transcriptome to transcriptomes of cells isolated from the human skin by trypsinisation.

To test whether the skin migratory LCs and DDCs recapitulate the transcriptome of cells rapidly isolated from skin using trypsinisation protocol followed by bead purification, we conducted a whole transcriptome analysis of existing expression datasets. To date, four such studies were performed, by Santegoets at al [1], Allen at al [2] Hutter at al [3] and Harman et al [4] (Supplementary Table 2). Data sets for analysis were selected based on the following criteria: (i) cell type studied, (ii) microarray genechip platform (Affymetrix human genome expression arrays).

As outlined in Supplementary Table 3 only datasets from study [1] and [2] were suitable for direct comparison with our data, and only study [1] comprised both LCs and DDCs. Raw data (.cel) files from GSE23618 and LC files from GSE16395 and GSE35340 were downloaded and normalized using RMA algorithm within the Affymetrix package, annotated, and taken forward for further analysis. Due to the pronounced study-related batch effect only LCs and DDCs from GSE23618 were compared directly with our migratory cell dataset, while LCs from the study by Allen and colleagues (GSE16395) and Hutter and coleagues (GSE35340) were assayed for the presence of identified gene signatures.

4. Validation of gene expression differences by qPCR

RNA was extracted from bead-purified CD1a+ LCs and CD11c+DDCs from three independent skin samples stimulated with TNF-α (Miltenyi Biotec, UK, 25 ng/ml) for 0, 2, 8 and 24 hours, using Qiagen pico. The quantity and purity of extracted RNA was assessed using a NanoDrop-2000 spectrophotometer and the RNA sample concentration was adjusted to 50 ng/µl. RNA samples, including RT-negative control, were transcribed to cDNA using NanoScript TM reverse transcription kit (Primer Design, UK). The RT reaction was carried out in a pre-programmed GeneAmp 9700 Applied Biosystems Thermal Cycler (ABI, USA), in a two-step reaction consisting of 5 min at 60°C followed by 60 min at 42°C. PCR was carried out using the TaqMan gene expression assays for target genes: YWHAZ (HS03044281_g1), CAV1 (Hs00971716_m1), PSMD14 (Hs01113429_m1), CCL18 (Hs00268113_m1). qPCR was performed in a small volume 384 well plate assay, using Applied Biosystems 7900HT Fast Real-Time PCR System. Gene expression levels were normalised to housekeeping gene expression (YWHAZ), and expressed as 2^{-dCT} where dCT = target gene expression level – YWHAZ expression level.

Supplementary Figure Legends

Supplementary Figure 1.

(a-c) Mean RMA normalised expression (\pm SEM) expression of HLA class II and transactivator (CIITA) (a), HLA class I and β -2 microglobulin (B2M) (b) and key co-stimulatory molecules (c) in 48h migratory human skin derived LCs (black bars) and DDCs (grey bars), n=3 independent skin donors in duplicate. No statistically significant differences detected (paired T test, Bonferroni correction).

Supplementary Figure 2.

The comparative heat maps of expression levels of the genes of interest (GOI), identified as gene signature in migratory cells at T0 (> 1.5 fold difference in log2(x) RMA normalised gene expression levels between the cell types) in migratory (a,c) and trypsinised (b,d) LCs vs DDCs. 100 top GOI up-regulated in LC (a,b) and 100 top GOI up-regulated in DDCs (c,d) are shown. Biological processes identified with gene ontology analysis are indicated for the genes enriched in LCs and DDCs.

Supplementary Figure 3.

(a-c) Mean RMA normalised expression of (a) cytokines (b) chemokines (c) co-stimulatory molecules in in LC (black bars) or DDCs (grey bars) during the time course of stimulation with TNF- α as assessed by microarrays, n=3 independent skin donors.

Supplementary Figure 4.

(a-e) RMA normalised expression of (a) genes involved in metabolism (b) cytoskeleton reorganisation and signalling (c) proteasome subunits (de) mitochondria associated genes in in LC (black bars) or DDCs (grey bars) during the time course of stimulation with TNF- α as assessed by microarrays, n=3 independent skin donors. Table S1.

	LC Total (higher in LC)	DDC Total (higher in DDC)
Migratory cells (time 0)	969	1,648
Probesets up- regulated by TNFa	311 (178)	1,007 (874)
Probesets down- regulation by TNFa	201 (128)	1,058 (985)

Table S1. Number of probesets differentially expressed in LCs and DDCs at time 0 and over the time course of stimulation with TNF- α , (inclusion criteria: 1.5 fold difference in log₂(x) RMA normalised gene expression levels between the cell types (time 0) or between the maximum RMA normalised gene expression level over the log₂(x) RMA normalised gene expression level at time 0, (for TNF- α regulated genes exceeding 0.05 of Bayesian Estimation of Temporal Regulation).

Supplementary Table S2. Gene ontology analysis for genes overexpressed in migratory LCs and DDCs before stimulation with TNF-α.

	LC					
	hsa01040: Biosynthesis of unsaturated fatty acids (6.1801)					
	hsa00280: Valine, leucine and isoleucine degradation (3.7081)					
	hsa04520: Adherens junction (2.8252)					
	hsa00640: Propanoate metabolism (4.2488)					
	hsa00072: Synthesis and degradation of ketone bodies (9.0642)					
	hsa00330: Arginine and proline metabolism (3.0784)					
	hsa00071: Fatty acid metabolism (3.3991)					
	hsa00512: O-Glycan biosynthesis (3.6257)					
Surface receptors	ACVR1, ACVR1C, C21orf63, CALCRL, CD207, CX3CR1, CXADR, CXCR6, GABBR1 / UBD, GPR125, GPR153,					
	GPR55, GPR64, HTR2B, LDLR, LSR, P2RX5, S1PR1, TGFBR3, TNFRSF11A, TNFRSF11B, TNFRSF8, TREML1					
Regulators of signal	CHN1, CASP6, AGK, ALPK2, ANXA2, ANXA, APBB11P, ARHGEF12, ARL2, ASB1, AXIN2, BAIAP2, BMP2K,					
transduction	BMPR2, C2orf72, C6orf170, CABYR, CASP3, CDKN2A, CDKN2B, DBI, DEF8, DEPDC6, ECE1, ENSA, FARP1,					
	FARP2, FER, FKBP1A, FMOD, GATSL3 /TBC1D10A, GNA11, GNG11, IGFBPL1, INADL, LANCL1, LANCL2,					

	MAP3K6, MNAT1, NXN, PHACTR1, PIK3CG, PPAP2A, PPP1R16B, PPP1R1C, PPP2R3A, PRKAR2B, PRKCZ,
	PTPRK, PTPRM, RAB23, RABGAP1L, RABL3, RABL5, RAD1, RAP1GDS1, RAPGEF4, RARRES3, RHOF,
	RHPN2, RINL, RRAD, RSU1, SCUBE2, SOX4, STAT1, TBC1D4, TBCK, THEMIS, THOP1, TIFAB, WEE1,
	WNT5B, TNFAIP8L3, TRAF5
Regulators of	ASL, POLR1B, SF3A3, SFPQ, SYNCRIP, TSEN54, PRMT7, ARNT2, BATF, BCL11B, C17orf79, CELF4, ELP3,
transcription/translation	FHL1, FHL2, GTF2H5, HINT2, HMGN3, HOMEZ, IFT57, IKZF2, KDM5B, LMCD1, LZTFL1, MCM2, MEX3D,
	MKL2, MTA3, MTERFD3, MXD4, MYEF2, NUFIP1, OCIAD2, PASK, PBXIP1, PELP1, PHB, PHTF1, REXO2,
	RQCD1, SMARCA1, SMARCE1, SP110, SP140, TAF5L, TAF9B, TCF3, TIGD2, TRIM16, TRIM44, TTF2, ZBED3,
	ZBTB8A, ZC3HC1, ZDHHC16, ZDHHC16, ZG16B, ZMAT3, ZNF195, ZNF260, ZNF268, ZNF287, ZNF362,
	ZNF428, ZNF480, ZNF544, ZNF593, ZNF608, ZNF642, ZNF643, ZNF75A, ZNF789, ZNF880, ZNF93, ZNHIT6,
	ZNRF1, ZSCAN2, CPEB1, CPEB2, DTD1, EBNA1BP2, EIF2AK1, ELAC1, GFM2, HNRNPA3 / HNRNPA3P1,
	IARS, MARS2, NHP2, NOC3L, NPM1, NUP35, PTRH1, FARS2, CDX2, SMARCAD1
Effectors	ABCA10, ABCA3, ABCB10, ABCC4, ABP1, ACACA, ACADVL, ACAT1, ACAT2, ACBD6, ACOT1 / ACOT2,
	ACOT7, ACOX3, ACTB, ACTR3B, ACTR3C, ADAM12, AGA, AGL, AHI1, ALDH18A1, ALDH1B1, ALG2,
	AMIGO2, ANK3, ANKRD36 / ANKRD36B, ANKRD55, AP1S1, AP2B1, APITD1, APOA1BP, APOC1, APOC2,
	APOE, ARL2 /SNX15, ASNS, ATIC, ATOX1, ATP1A4, ATP6V0A2, ATXN10, AVEN, BAG2, BARD1, BCKDHB,

BDH2 / NHEDC2, BET1, BID, BLMH, BPHL, C10orf35, C11orf2, C11orf41, C14orf1, C14orf126, C14orf145, C18orf10, C19orf12, C1orf115, C3, C4orf23, C4orf34, C6orf105, C6orf108, CAPN3, CASQ1, CBS, CCL22, CD70, CDC14B, CDCA5, CDH1, CETN2, CFL1, CHI3L1, CHL1, CHST2, CLIC3, CLU, CLUAP1, CNN2, COG5, COTL1, CPSF6, CSRP2, CSTA, CTPS, CTTN, CYB561, CYB5R2, CYBASC3, CYFIP2, CYP2U1, DCTPP1, DDA1, DDHD2, DENND1A, DENND5B, DFFA, DHCR24, DMD, DNAJC10, DNAJC21, DNAJC30, DPP3, DSP, EDEM1. EFNB3. ENO3. EPB41L4A. EPCAM. FAM118A. FAM129A. FAM136A. FAM164A. FAM165B. FAM171B. FAM189A1. FAM69A. FANCF. FBXO2, FBXO25. FCGBP. FDPS. FECH. FGGY. FKBP1B. FLOT2. FN1, FNBP1L, FSCN1, FUT8, GALK2, GALNT1, GALNT11, GALNTL4, GCNT1, GCNT2, GCSH, GJA1, GLS, GNPNAT1, GOT1, GSPT1, HEATR1, HEATR2, HLA-DOA2, HMOX2, HSD17B10, HSD17B8, HSPB11, ICAM4, IGSF3, IMPA2, INPP5J, ITGB1BP1, ITIH1, ITM2C, ITPA, KCNMB1, KDELR3, KIF21A, KIF3A, KIF3C, KIF5C, KIFAP3, LAMB1, LIMA1, LIMCH1, LLGL2, LMNB1, LOR, LSP1, MAP4, MARVELD2, MCC, MCOLN2, MCOLN3, MGMT, MGP, MICAL2, MIPEP, MMAB, MMP13, MOCOS, MOSC2, MRPL1, MRPL11, MRPL24, MRPL48. MRPS28. MRPS33. MRPS35. MSH2. MTHFS. MTMR2. MXRA7. MYH9. MYL6B. MYL9. MYO6. NAA10, NACAD, NAV1, NDUFB7, NEK1, NFU1, NID2, NOP16, NOS1, NOO1, NRCAM, NRXN2, OTUD7B, PALLD, PCCA, PDLIM3, PECR, PEX11B, PFAS, PFDN6, PFKM, PFN1, PGM2L1, PIGN, PLA2G16, PLEK2, PLEKHG1, PLP1, PLS3, PNKD, PNPT1, PON2, PPCDC, PRRT3, PSAT1, PSMC3, PXMP4, ODPR, RAD50,

RARRES2, RIMS3, S100A13, S100B, SAMM50, SCN4B, SEC11C, SEC22C, SEMA4F, SEPT11, SERF1A / SERF1B, SERPINE2, SETMAR, SH3D19, SH3KBP1, SHMT2, SILV, SLAMF7, SLC24A3, SLC25A4, SLC25A43, SLC25A46, SLC38A9, SLC39A13, SLC7A6, SLC9A2, SNRNP25, SNX4, SNX7, SPAG16, SPOCK2, SPTBN1, SQLE, SRR, SSX2IP, ST8SIA1, STARD9, STOML2, STRBP, SWAP70, SYNPO, SYNPO2, SYT11, TAPBPL, TBCB, TBCEL, THBS2, THEM4, TIAM2, TIMM10, TIMM13, TIMM8B, TJP1, TMED4, TMEM110, TMEM136, TMEM14A, TMEM14B, TMEM150C, TMEM160, TMEM163, TMEM169, TMEM200A, TMEM97, TMSB15B, TOMM34, TP53I3, TPM1, TPM3, TPST1, TRAPPC6A, TRIM32, TRO, TRPC1, SPAN13, TSPAN15, TTPAL, TYR, TYRP1, UBE2QL1, UBFD1, UCHL3, UROS, USP46, VCAM1, VPS41, WDR1

DDC

hsa04060: Cytokine-cytokine receptor interaction (3.0069) hsa04062: Chemokine signaling pathway (2.2980) hsa04621: NOD-like receptor signaling pathway (5.0827) hsa04650: Natural killer cell mediated cytotoxicity (2.2617) hsa04142: Lysosome (2.3261) hsa04620: Toll-like receptor signaling pathway (2.4110) hsa04640: Hematopoietic cell lineage (2.6650) hsa04610: Complement and coagulation cascades (3.1139) hsa04670: Leukocyte transendothelial migration (1.6995) hsa04666: Fc gamma R-mediated phagocytosis (1.9601) hsa04664: Fc epsilon RI signaling pathway (2.2037) hsa05322: Systemic lupus erythematosus (1.7362) hsa03320: PPAR signaling pathway (2.2835) hsa04520: Adherens junction (1.8603) hsa05219: Bladder cancer (2.7284)

hsa05014: Amyotrophic lateral sclerosis (ALS) (2.1621)						
hsa00590: Arachidonic acid metabolism (2.0463)						
	hsa05020: Prion diseases (2.8648)					
	hsa00920: Sulfur metabolism (4.7746)					
Surface receptors	ACVR1B, ADORA2B, ADORA3, ADRB2, AGTRAP, ASGR1, ASGR2, C3AR1, C5AR1, CD14, CD163, CD163L1,					
	CD180, CD209, CD274, CD300A, CD300C, CD300E, CD300LF, CD302, CD33, CD36, CD44, CD48, CD53,					
	CD68, CD72, CD82, CD93, CLEC10A, CLEC12A, CLEC1A, CLEC2B, CLEC4A, CLEC4D, CLEC4E, CLEC4G,					
	CLEC5A, CLEC7A, CMKLR1, CNRIP1, CRISPLD2, CSF1R, EVI2A, EVI2B, F13A1, FABP4, FCAR, FCER1G,					
	FCGR1A, FCGR2A, FCGR3A, FCGRT, FFAR2, FGFR1, FOLR2, FPR1, FPR2, FPR3, GFRA2, GPNMB,					
	GPR109A / GPR109B, GPR155, GPR34, GPR68, GPR84, HAVCR2, HBEGF, HEBP1, INSR, ITGAL, ITGAM,					
	ITGAX, IVNS1ABP, KIR2DL4 /KIR2DL5A, KLRC1, KLRK, LDLRAD3, LEPR, LGALS8, LILRA2, LILRA3,					
	LILRA6, LILRA6 / LILRB3, LILRB1, LILRB2, LILRB4, LILRB5, LPAR2, LPAR6, LYVE1, MARCO, MRC1					
	/MRC1L1, MRC1L1, MSR1, NKGC2, OLR1, OSBPL1A, P2RX4, P2RX7, P2RY6, PILRA, PLAUR, PTAFR,					
	PTGER2, PTPRE, PTPRJ, RXRA, S1PR2, SCARA5, SCARB2, SCARF1, SIGLEC1, SIGLEC12, SIGLEC14,					
	SIGLEC7, SIGLEC9, SORL1, STAB1, SUCNR1, THRB, TLR1, TLR2, TLR4, TLR5, TLR8, TREM1, TNFRSF10A,					
	TNFRSF10B, TNFRSF10D, TNFRSF14, TNFRSF21, TNFSF12, TNFSF12-TNFSF13 / TNFSF13, TNFSF15,					
	CD68, CD72, CD82, CD93, CLEC10A, CLEC12A, CLEC1A, CLEC2B, CLEC4A, CLEC4D, CLEC4E, CLEC4G, CLEC5A, CLEC7A, CMKLR1, CNRIP1, CRISPLD2, CSF1R, EV12A, EV12B, F13A1, FABP4, FCAR, FCER1G, FCGR1A, FCGR2A, FCGR3A, FCGRT, FFAR2, FGFR1, FOLR2, FPR1, FPR2, FPR3, GFRA2, GPNMB, GPR109A / GPR109B, GPR155, GPR34, GPR68, GPR84, HAVCR2, HBEGF, HEBP1, INSR, ITGAL, ITGAM, ITGAX, IVNS1ABP, KIR2DL4 /KIR2DL5A, KLRC1, KLRK, LDLRAD3, LEPR, LGALS8, LILRA2, LILRA3, LILRA6, LILRA6 / LILRB3, LILRB1, LILRB2, LILRB4, LILRB5, LPAR2, LPAR6, LYVE1, MARCO, MRC1 /MRC1L1, MRC1L1, MSR1, NKGC2, OLR1, OSBPL1A, P2RX4, P2RX7, P2RY6, PILRA, PLAUR, PTAFR, PTGER2, PTPRE, PTPRJ, RXRA, S1PR2, SCARA5, SCARB2, SCARF1, SIGLEC1, SIGLEC12, SIGLEC14, SIGLEC7, SIGLEC9, SORL1, STAB1, SUCNR1, THRB, TLR1, TLR2, TLR4, TLR5, TLR8, TREM1, TNFRSF10A, TNFRSF10B, TNFRSF10D, TNFRSF14, TNFRSF21, TNFSF12, TNFSF12-TNFSF13 / TNFSF13, TNFSF15,					

	TREM2, VLDLR
Regulators of	ABCA1, ADA, ADM, AK4, ANG, AREG, ARHGAP18, ARHGAP19, ARHGAP22, ARHGAP24, ARHGAP26,
signal	ARHGAP6, ARHGAP9, ARHGEF10L, ATP6AP2, AZI2, C13orf15, C13orf18, C19orf61, CALML4, CAMK2D,
transduction	CARD16, CASP4, CASP5, CDC42EP3, CISH, CLK1, CRIM1, CYTH4, DAPK1, DDIT4, DNMBP, DOK3, DUSP6,
	ECM1, EMR2, EPS8, EREG, F3, FES, FGD3, FGD4, FLT1, GDF15, GEM, GIMAP4, GIMAP5, GIMAP8,
	GNA15, GNG4, GRK5, HCST, HIPK2, HPCAL1, INHBA, INPP4A, INPP5D, IQGAP2, IQSEC1, IRAK3, ITGB2,
	KITLG, KL, LCP2, LPIN1, MAP2K3, MAP3K5, MAPK13, MAPK14, MCTP1, MERTK, MET, MLKL, MOBKL2B,
	MOBKL2C, MRAS, NOTCH2, NDRG1, NRP1, OSM, PAG1, PDE2A, PID1, PIK3AP1, PLAT, PLAU, PNP,
	PPAP2B, PPBP, PPP1R3B, PRKCH, PTP4A3, PTPN6, PYCARD, RAB20, RAB24, RAC2, RALGDS, RASA3,
	RASA4, RBPJ, RCAN1, RGL1, RHOB, RHOH, RHOQ, RHOU, RIN2, RIPK2, RRAGD, SAMHD1, SASH1, SASH3,
	SDC2, SDCBP2, SGK1, SH3BP2, SH3BP5, SH3PXD2B, SIK3, SLA, SLAMF1, SOCS3, SPRED1, STAC, SYK,
	TBC1D2, TESK2, TGM2, THBS1, TIMP2, TK1, TNIK, TNS3, TRAF3IP2, TSPAN4, VSIG4, WSB1

Transcription regulators	AHRR, BACH1, BCL11A, BCLAF1, BHLHE41, BMP6, C11orf30, CBFA2T3, CCNL1, CEBPA, CEBPB, CEBPD,
	CITED2, CREB5, DEDD2, DOT1L, E2F3, EAF1, EGR1, EGR2, EHF, EPAS1, FLI1, FOS, FOSB, FOSL2,
	H3F3B, HIF1A, HIST1H2BN, HOPX, HOXB2, ING2, IRF2BP2, IRF8, JARID2, KLF2, KLF3, KLF9, LRRFIP1,
	MAF, MAFB, MAFF, MAMLD1, MDM4, MITF, MXD1, MYC, NR4A1, NR4A2, NR4A3, NUPR1, PER1, PRDM8,
	RFX8, RUNX1, RUNX2, SAP30, SATB1, SCML1, SMAD3, SNRPG, SSBP2, SSBP3, SSR1, TCF7L2, TFEC,
	TRERF1, TRIM22, TSC22D1, TSC22D3, TSPYL2, TWIST1, TXNIP, VENTX, ZBTB16, ZC3H11A, ZCCHC14,
	ZCCHC2, ZCCHC6, ZEB2, ZFP36L2, ZMYND8, ZNF331, ZNF395, ZNF467, ZNF503, ZNF697, ZNRF2, ZXDC,
	ETS2, ID3, ANKHD1, DMXL2, EIF4G3, RPL37, RPL39L
Effectors	ABCC3, ABCG1, ABHD5, ACSL1, ACSL5, ACTN1, ADAMDEC1, ADARB1, ADSSL1, AIF1, AKR1C1, AKR1C2,
	AKR1C3, ALDH1A1, ALDH3B1, ALOX15B, ALOX5, AMPD3, AMY1A / AMY1B / AMY1C, AMY2B, ANGPTL4,
	ANKH, ANO6, ANPEP, AOAH, APP, AQP9, ARAP1, ARG2, ARID5B, ARSG, ASAH1, ASRGL1, ATG16L2, ATG5,
	ATP13A3, ATP1B1, ATP6V0D2, ATP8B4, AVP11, B3GALNT1, BCAT1, BCL2L14, BCL6, BEST1, BIN1, BNIP3,
	BNIP3L, BTG1, C1QA, C1QB, C1QC, C6orf192, CA12, CACNA2D3, CACNA2D4, CALCOCO2, CAPN5, CAPN7,
	CARD6, CASP1, CCL13, CCL17, CCL18, CCL19, CCL2, CCL20, CCL3, CCL3L1 / CCL3L3, CCL4 / CCL4L1 /
	CCL4L2, CCL4L1 / CCL4L2, CCL7, CCNE2, CCR1, CCR5, CCRL2, CDH26, CDKN2D, CECR1, CES1, CFD,
	CFLAR, CH25H, CHST15, CIDEB, CLDN23, CLN8, CLPB, CMAH, COLEC12, CPM, CPVL, CRYL1,

CSGALNACT2, CST3, CTSB, CTSD, CTSK, CTSL1, CXCL1, CXCL12, CXCL13, CXCL2, CXCL3, CXCL5, CXCL5/GLYR1. CXCL6. CXCR7. CYBB. CYP27B1. CYP2R1. DAB2. DHRS9. DLL1. DNER. DOCK2. DPEP2. DPYD, DRAM1, DST, EEPD1, EGLN3, EHD1, ELOVL7, EMP1, EPB41L3, ERO1LB, FAH, FAIM3, FBP1, FCN1, FKBP15, FMN1, FMNL2, FTH1, FUCA1, FUT11, FXYD5, FZD2, G0S2, GAA, GAS7, GATM, GBGT1, GBP2, GBP5, GFOD1, GK, GLRX, GLT25D1, GLT25D2, GLUL, GNLY, GNS, GPCPD1, GPX3, GYPC, HERPUD1. HFE. HIP1. HK2. HK3. HNMT. HOMER3. HPSE. HS3ST3B1. HSD11B1. HSPA6. HTRA1. HVCN1. IFITM3. IGSF21. IGSF6. IL10. IL15RA. IL17RA. IL18BP. IL18R1. IL18RAP. IL1A. IL1B. IL1R2. IL1RAP. ILIRLI. ILIRN. IL24. IL2RA. IL3RA. IL6. IL8. IRS2. ITGB8. JAG1. KCNE1. KCNE3. KCNJ15. KCNK13. KCNMA1, KCNN4, KCTD12, LAIR1, LAMB3, LAPTM5, LAT2, LATS2, LGMN, LIPA, NAIP, LPCAT2, LPL, LRP1, LTBP2, LY86, LYZ, MAD1L1, MAOA, MARCH1, MFSD1, MGAT4A, MGST1, MICALL2, MKKS, MMP1, MMP10, MMP12, MMP19, MMP7, MMP8, MMP9, MPEG1, MPHOSPH6, MT1F, MT2A, MYO7A, MYOF, NAMPT, NCEH1, NCF2, NCF4, NDRG1, NDST1, NDUFS2, NEFH, NINJ1, NISCH, NLRC4, NLRP1, NLRP3, NOD2, NPC1, NPL, NRIP3, NT5E, NUP214, P4HA1, PAPSS2, PCTP, PDCD1LG2, PDK1, PDK4, PDPN, PDXK, PFKFB3, PFKFB4, PFN2, PGCP, PGS1, PLA2G4A, PLIN2, PLSCR1, PLTP, PMP22, POR, PSTPIP1, PTGES, PTGS2, PYGL, OKI, OPCT, RNASE4, RNASE6, RNASET2, RNF130, RNF144B, RNF149, RRM2B, S100A12, S100A8, S100A9, SBF2, SCCPDH, SEC24A, SECTM1, SEMA4B, SEMA4D, SERINC2, SERPINA1, SERPINB2,

SERPINB3 / SERPINB4, SERPINE1, SLC11A1, SLC11A2, SLC12A6, SLC16A10, SLC16A6, SLC1A2, SLC1A3, SLC22A15, SLC22A4, SLC25A37, SLC26A11, SLC2A14 / SLC2A3, SLC30A1, SLC35B4, SLC36A4, SLC37A2, SLC38A6, SLC39A8, SLC7A7, SLC7A8, SLC8A1, SLC02B1, SLC04A1, SLITRK4, SMOX, SMPDL3A, SNTB1, SNX10, SNX30, SOD2, SPARC, SPOCK1, SPP1, ST3GAL1, ST8SIA4, STARD13, STC1, STEAP3, STEAP4, STT3B, SULF2, SYPL1, SYTL3, TAGLN, TBXAS1, TCIRG1, TET2, TFPI, TGFBI, THBD, TKTL1, TMPRSS11E, TNF, TNFAIP6, TNNT1, TPCN1, TPST2, TRPM2, TTLL3, TUBA4A, UBAC2, UNC119, UPP1, UTRN, VAMP4, VAV3, VCAN, VEGFA, VNN1, VNN2, VNN3, WIPF1, XCL1 /XCL2, YOD1

Supplementary Table S2. Gene ontology analysis for genes overexpressed in migratory LCs and DDCs before stimulation with TNF-a.

Lists of genes overexpressed in migratory LCs and DDCs (above 1.5 fold difference between the cell types in log₂(x) RMA normalised gene expression levels) were submitted to gene set enrichment (GSE) analysis was done using "functional annotation clustering" tool, (similarity threshold 0.5, multiple linkage threshold 0.5, EASE:1.0 and Benjamini correction) within DAVID web-based tool and mapped over the KEGG pathway database. Basing on the functional annotation results genes were classified as "receptors" "regulators of signal transduction" "regulators of gene transcription and translation" or "effector". Gene annotations were confirmed by detailed direct analysis using Gene Expression Atlas (http://www.ebi.ac.uk/gxa/).

Supplementary Table S3.

	Study	Dataset no	LC (no	CD1a+DDC	Platform
			datasets)	(no datasets)	
[1]	Santegoets et al	GSE23618	3	3	Affymetrix HG U133 plus 2
[2]	Allen et al	GSE16395	12	0	Affymetrix HG U133 plus 2
[3]	Hutter et al	GSE35340	3	0	Affymetrix HG U133 plus 2
[4]	Harman et al	GSE32648	2	3	Illumina
		GSE32400	4	4	AGRF Human 8K cDNA
					Microarray

Supplementary Table S3. Datasets of human skin derived Langerhans cells isolated by trypsinisation available in public domain.

Supplementary Table S4

Pathways overrepresented in trypsinised DDC	Pathways overrepresented in trypsinised LC
hsa04060:Cytokine-cytokine receptor interaction	hsa00240:Pyrimidine metabolism
hsa04512:ECM-receptor interaction	hsa00590:Arachidonic acid metabolism
hsa04610:Complement and coagulation cascades	hsa02010:ABC transporters
hsa04640:Hematopoietic cell lineage	hsa04010:MAPK signaling pathway
hsa04630:Jak-STAT signaling pathway	hsa04110:Cell cycle
hsa04062:Chemokine signaling pathway	hsa04514:Cell adhesion molecules (CAMs)
hsa04510:Focal adhesion	hsa04520:Adherens junction
hsa04620:Toll-like receptor signaling pathway	hsa04540:Gap junction
hsa04621:NOD-like receptor signaling pathway	hsa04810:Regulation of actin cytoskeleton
hsa05020:Prion diseases	hsa04310:Wnt signaling pathway
hsa04672:Intestinal immune network for IgA production	
hsa03320:PPAR signaling pathway	GO-Term biological process analysis:
hsa04514:Cell adhesion molecules (CAMs)	fatty acid metabolic process, prostaglandin metabolic process,
hsa04650:Natural killer cell mediated cytotoxicity	carbohydrate metabolism, ubiquitine-mediated proteolysis

Supplementary Table S4. DAVID functional gene classification and functional annotation of genes overexpressed in trypsinised LCs and trypsinised DDCs

Gene lists of 742 transcripts (516 genes) preferentially expressed in trypsinised LC, and 1268 transcripts (804 genes) preferentially expressed in

DDCs (> 1.5 fold difference in log2(x) RMA normalised gene expression levels between the cell types, GSE23618) were submitted to DAVID

functional classification and annotation to identify biological processes overrepresented in each cell type.

Supplementary Table S5.

Genes				
preferentially	Peak of	Number	Over-represented	
regulated in	expression	of	processes and cell	Examples of genes in the cluster
DDCs	[hours]	probesets	compartments	
(ANOVA)*				
Cluster 01	Oh	760	Immune response	ADAM28, CD163, CD180, CD209,CD36, CD274, CLEC1A, CLEC4G,
(p<0.0001)			Surface receptors	CLEC5A, CLEC7A, CXCL2, CXCR7, FCGR2A, FCGR2B, FCGR3A,
			Phagocytosis	IL1R2, IFR2BP, IRF3, IRF4, ITGAM, ITGB2, MSR1, THBS1 (CD141),
				TLR2, TLR4, TLR5, TNFSF12, TNFSF13
Cluster 02	2h	293	Transcription	E2F6, EIF2C2,EIF4A3, EIF4E, EIF5, GPR109A, GPR18, GPRC5A,
(p=0.0001)			Immune response	CREM, RPL28, TNFRSF10D, TNFRSF 12A, TNFSF14, TNFSF15, TNF,
			Signal transduction	IL7, IL1RN, CXCR4, CCL3, CCL4, DYRK-3, RIPK1, MAPK2K3,
			regulation	PPP1R10, PPM1D, ZNF36, ZNF295, ZNF 331, ZNF697, ZNF703

Cluster 04	8h	172	Oxidative stress	AKR1C3, PTGER2, CYP1B1, CYP7B1, SOD2, ITGB8, SNX10, IL1A,
(p<0.0001)			response	IL23A, MT1H
			Sphingiolipid	
			metabolism,	
			Lysosome activity,	
			Immune response	
Cluster 06	24h	105	Immune signalling	CYBB, CYP27A1A, CCL1, CCL2, CCL17, CCL18, CCL24,CD44, CD82,
(p<0.0001)			Cytokine secretion	CLEC4D, CLEC4E, CXCL1, CXCL6, GPR68, IFNAR1, IL10,IL1B,
			Chemokine activity	ITGB3, ITGB8, MMP1, MMP7,MMP9, MMP14, PDPN
			Rearrangement of	
			extracellular matrix	
			Regulation of cell	
			migration	
Cluster 07	8h	61	Immune response	CD109,IF144, IFIT1, IFIT3, LRP12,MT1G, MT1X, MX1, MX2, PTGER3,
(p<0.0001)			Macromolecule	TNFSF13B
			metabolism	AKR1C1, ADA, OAS1

Cluster 08	Oh	56	Immune response	CD14, CD33, DPYD, GIMAP4, IL15RA, LAIR1, TLR8, KCTD12
(p<0.0001)			Surface receptors	
			Ion channel function	
Cluster 09	8h	32	Cell homeostasis	ANXA5, GCLC, GCLM, TXNRD1, PTGER3, DDX39, TNPO1
(p<0.005)			Cellular transport	
Genes				
preferentially				
regulated in				
LCs				
(ANOVA)*				
Cluster 03	24h	208	Mitochondrial activity	MRLP11, MRLP15, MRLP23,MRLP24,MRLP27, MRLP3, MRLP48,
(p=0.0001)			Ribosomal activity	MRPS28, MRPS35,MRPS7, NDUFA9, NDUFAF4, GLRX3, ACAT1,
			Response to	CYB561, DBI, ENSA, PSMA3, PSMB7, PSMD14, PSME3, SNN, IL15,
			hormones/nutrients,	CCL22, WNT5B
			Proteasome assembly	
			and function, Cell	

			cycle	
Cluster 05	Т0	105	Organisation of	ACOT7, VCAM-1, DSP, GSN, EPCAM, IDH2, GALC, PC, SCD, OXNAD,
(p<0.0001)			cytoskeleton,	TRAF5, SCN4B, SQLE, UBA5, CIITA, PI3CG,
			Macromolecule	
			metabolism	
			Carbohydrate	
			metabolism	
			Mitochondrial	
			processes	
Cluster 10	2h	27	Regulation of	DENND4A, RFX2, RAB11FIP1
(p<0.0001)			transcription	
			Intracellular transport	
Cluster 12	24h	24	Metal Ion binding,	PTGER4, SESN3, SNN,SNX11,SOCS1, SYNPO2,TRAF1,
(p<0.0001)			Intracellular transport,	
			ROS scavenging	

Cluster 13	2h	23	Regulation of	KLF7,PDLIM1, RHOV, TBCEL
(p<0.0001)			transcription	
			Metal ion binding	
Cluster 14	24h	21	Endocytosis,	CAV-1, SSPN, SYNPO, PTPRK,
(p<0.0001)			Cytoskeleton	
			reorganisation, Signal	
			transduction	

Supplementary Table S5. Cluster analysis of gene expression changes in CD1a+ LCs and CD11c+ DDCs activated with TNF-α over 24h.

Biological processes over-represented in 14 biggest clusters of genes identified with BioLayout *Express*^{3D} network analysis (r=0.85, MCL=1.7, 2,334 probesets differentially regulated by TNF- α , Bayesian Estimation of Temporal Regulation) were categorised using "functional annotation clustering" tool, (similarity threshold 0.5, multiple linkage threshold 0.5, EASE:1.0 and Benjamini correction) from DAVID web-based tool. * p values indicate the statistical difference for LCs and DDCs average gene expression profiles across the time course of stimulation with TNF- α were compared with two-way repeated ANOVA for each cluster separately (Bonferroni correction, GraphPad Prism, USA).

Supplementary Figure 1.

(a-c) Mean RMA normalised expression (± SEM) expression of HLA class II and transactivator (CIITA) (a), HLA class I and β-2 microglobulin (B2M) (b) and key costimulatory molecules (c) in migratory human skin derived LCs (black bars) and DDCs (grey bars), n=3 independent skin donors in duplicate. No statistically significant differences detected (paired T test, Bonferroni correction).

Supplementary Figure 2.

The comparative heat maps of expression levels of the genes of interest (GOI), identified as gene signature in migratory cells at T0 (> 1.5 fold difference in log2(x) RMA normalised gene expression levels between the cell types) in migratory (a,c) and trypsinised (b,d) LCs vs DDCs. 100 top GOI up-regulated in LC (a,b) and 100 top GOI upregulated in DDCs (c,d) are shown. Biological processes identified with gene ontology analysis are indicated for the genes enriched in LCs and DDCs.

Supplementary Figure 3.

(a-c) Mean RMA normalised expression of (a) cytokines (b) chemokines (c) co-stimulatory molecules in in LCs (black bars) or DDCs (grey bars) during the time course of stimulation with TNF- α as assessed by microarrays, n=3 independent skin donors.

Supplementary Figure 4.

(a-e) RMA normalised expression of (a) genes involved in metabolism (b) cytoskeleton reorganisation and signalling (c) proteasome subunits (d-e) mitochondria associated genes in in LCs (black bars) or DDCs (grey bars) during the time course of stimulation with TNF-α as assessed by microarrays, n=3 independent skin donors.