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Abstract

Room reverberation introduces multipath components into an audio signal

and causes problems for acoustic source localization and tracking. Existing

tracking methods based on the extended Kalman filter (EKF) and sequential

importance resampling based particle filter (SIR-PF) usually assume that

a single source is constantly active in the tracking scene. Assuming that

multiple talkers may appear alternatively during a conversation, this paper

develops an extended Kalman particle filtering (EKPF) approach for non-

concurrent multiple acoustic tracking (NMAT). Essentially, an EKF is intro-

duced to obtain an optimum importance sampling, by which the particles are

drawn according to the current time-delay of arrival (TDOA) measurements

as well as the previous position estimates. Hence, the proposed approach

can quickly adapt to the sharp position change when the source switches and

the tracking lag in SIR-PF can be avoided. Moreover, the amplitude of the
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TDOA measurement is investigated to formulate a measurement hypothesis

prior. Such a prior is fused into the tracking algorithm to enhance the track-

ing accuracy. Both simulations and real audio lab experiments are organized

to study the tracking performance. The results demonstrate that the pro-

posed EKPF approaches outperforms the SIR-PF and EKF in a broad range

of tracking scenarios.

Keywords: Acoustic source tracking, room reverberation, time-delay of

arrival, particle filtering, extended Kalman filter.

1. Introduction

Acoustic source (talker) localization and tracking in a room environment

plays an important role in many speech and audio applications such as diari-

sation, hearing aids, hands-free distant speech recognition and communica-

tion, and teleconferencing systems. Once the talker is localized and tracked,

the position information can be fed into a higher processing stage for: high-

quality speech acquisition; enhancement of a specific speech signal in the

presence of other competing talkers; or keeping a camera focused on the

talker in a video-conferencing scenario [1–6]. Usually, a distributed system

equipped with a number of microphone pairs/arrays is employed to localize

or track the source [7–11]. However, it is a challenge to provide an accu-

rate position estimation since the received audio signal can be significantly

distorted and its statistical properties drastically changed due to room re-

verberation. The difficulties also arise from the uncertainty in the source

motion and the non-stationary characteristics of the speech signal.

2
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1.1. Background Overview of Existing Techniques

Existing acoustic source localisation (ASL) approaches can be divided

into two main categories depending on the measurement type: location

measurement based approaches [12–20] and time-delay of arrival (TDOA)

measurement based approaches [7–10, 21, 22]. The former ones are usually

referred to as direct approaches since the location measurement, which is

typically extracted using beamforming methods [12, 13], directly links to the

source position. The latter ones can be regarded as indirect methods since the

measurement contains the position information in a nonlinear time-delay of

arrival (TDOA) function. TDOA measurement can be extracted, for exam-

ple, by employing the generalized cross-correlation (GCC) function [23] or an

adaptive eigenvalue decomposition (AED) algorithm [24]. Since each TDOA

yields half a hyperholoid of two sheets (see equation (3)) which, in the far

field, can be approximated by an angular segment [7], multiple TDOA mea-

surements from distributed microphone pairs/arrays are usually employed

to triangulate a target position. The direct approaches have the advan-

tage that the relationship between the measurement and state is linear [10].

However, extracting the position measurement requires a multi-dimensional

search over the state space and is usually computationally expensive. In

contrast, the TDOA measurements are simple and easily available in many

applications, and are extensively studied and used for either localization or

tracking [8–10, 22, 25–30]. Other measurement types such as range difference

measurements [31, 32], interaural level difference [33, 34] and joint TDOA

and vision [35–38] have also been employed for room acoustic source position

estimation.

3
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If there is a time delay between the received signals, and the background

noise has a Gaussian distribution, then the TDOAs can be accurnately ex-

tracted from the GCC function, as the largest peak of the GCC function

corresponds to the TDOA measurement. The measurements taken from all

microphone pairs are then used to triangulate the position based on a max-

imum likelihood (ML) criterion [5]. Since the TDOA measurement function

is nonlinear, this triangulation can be approximated either by using a lin-

ear intersection algorithm [7] or by using an extended Kalman filter (EKF)

[9, 22]. However, the performance of these algorithms can be seriously de-

graded due to the presence of reverberation and different kinds of noise in

real-life. The sequential importance resampling based particle filter (SIR-

PF) [10, 21, 39] was introduced into the room acoustic source localisation

and tracking (ASLT) problem to reduce TDOA errors caused by multipath

reverberant components. The likelihood is formulated by using a bi-model:

a Gaussian distribution for real TDOA measurements and a uniform distri-

bution for false alarms. Generally, the SIR-PF is able to exploit both the

temporal information from the source dynamic model and the spatial infor-

mation from the TDOA measurements. It is therefore more accurate than

the linear intersection based localization, which only takes the spatial infor-

mation into account. Moreover, due to the incorporation of the bi-modal

likelihood, the SIR-PF is less affected by the false TDOA measurements and

is more robust than the EKF on its own in noisy and reverberant environ-

ments [9, 22]. In [14], more advanced particle filter (PF) algorithms that

incorporates a voice activity detector (VAD) have been developed for room

ASLT. The VAD is employed to reduce the effect of heavy false alarms due

4
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to the weak source signals in silence gaps.

1.2. Proposed Approach and Contributions

In this paper, the nonconcurrent multiple acoustic tracking (NMAT)

problem is addressed in which multiple talkers have distinct spatial locations

and only speak one-at-a-time, as might occur in many parts of a polite con-

versation, or other scenarios such as a scripted scene in a production. While

this is more specific than the problem of jointly detecting and tracking mul-

tiple concurrent talkers, as addressed in [20, 40–42], it is both important

where computational constraints are important, but also for investigating

the tracking transition time among different individual talkers where mul-

tiple concurrent acoustic tracking (MCAT) approaches cannot offer any ad-

vantages. Therefore, in the NMAT case, considering the estimation problem

as tracking the position of the current talker (the target), the source position

may change drastically as different talkers speak due to their distinct spatial

locations. This particular case requires the algorithm to capture the sharp

change in position and lock onto the position of the new talker rapidly. Un-

fortunately, the SIR-PF suffers from tracking lags and losses when following

a sharp change of target position, such as in the NMAT scenario; this is

because the particles are only drawn according to the source dynamic model

which does not explicitly model rapid changes in target position.

The central idea of the approach proposed in this paper is an extension

of the work proposed in [43], and is that by employing an EKF in the parti-

cle filter, the optimal importance function is approximated and the particles

sampled in a more relevant area compared with using the prior density func-

tion as in the SIR-PF. Since optimal importance sampling is achieved, the

5
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proposed approach can lock on to the rapid target position changes, thus

avoiding the tracking lag in the SIR-PF which occurs in the NMAT sce-

nario. Since multiple TDOA measurements with weighting information are

collected across each microphone pair, the EKF cannot be applied directly

and therefore two novel methods are developed in this paper to incorporate

the EKF to the multiple-measurement case. The first approach uses only the

TDOA from the highest peak in the phase transform GCC (PHAT-GCC)

function as the measurement at each microphone pair. This is reasonable

since the TDOAs from the highest peaks are, in most cases, more reliable

than those from the remaining peaks. The second novel method takes all the

TDOA measurements into account and incorporates amplitude information

of the TDOA peaks in the tracking algorithm to provide a prior probability

of the measurement hypothesis. Finally, a parameter is introduced in the

innovation updating process to reduce the effect of false alarms. The advan-

tage of the proposed approach in NMAT are assessed via simulated room

environment experiments as well as real audio lab experiments.

The core contribution of this paper is that the nonconcurrent multiple

acoustic tracking problem in a noisy and reverberant environment is ad-

dressed and accordingly, an extended Kalman particle filtering (EKPF) ap-

proach is developed to track the source positions. The novelties of the pro-

posed approach lie at: i) an EKPF is formulated to keep the algorithm locking

on to the rapid target position changes and avoiding the tracking lag; and ii)

additional TDOA amplitude information inherent in the feature extraction

stage of the tracking algorithm is utilised. Compared to the EKF in [22], our

approach employs multiple TDOA measurement model and is more robust

6
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in noisy and reverberant environments. Compared to the PF approaches in

[10, 21, 39], our approach uses an optimal importance function that is more

appropriate for sharp changes on source positions. Although a precursive

version of this work is presented in [43] by the present authors, hypothe-

ses of TDOA measurements to source are treated equally without taking

the amplitude information of TDOA measurements into account. In [44], a

multiple-hypothesis based PF for acoustic localization is proposed, which also

combines the EKF with the multi-hypothesis model to adapt its importance

density to the source dynamics. However, similar to [10, 21, 39, 43], no a pri-

ori information for different hypotheses is exploited and equal probabilities

are assigned. Our work differs from all these PF based tracking approaches

in that the TDOA amplitude information are incorporated in formulating

the prior probability of different hypotheses and the tracking performance is

comprehensively studied.

The rest of this paper is organized as follows: Section 2 gives the TDOA

measurement model and the TDOA measurement based tracking approach;

the proposed EKPF is presented in Section 3; and the performance of the

proposed approach is extensively studied and compared with the EKF and

SIR-PF methods for both simulated and real room environments in Section 4.

Finally, a number of conclusions are drawn and directions for future work

are addressed in Section 5.

2. Problem Formulation

In this section, the signal model and TDOA based Bayesian tracking

framework are presented. The TDOA measurement and its amplitude under

7
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different noise and reverberant environments are also studied.

2.1. Signal Model

Let pℓ,i ∈ R
3 denote the position of the ith microphone of the ℓth micro-

phone pair, and let xt ∈ R
3 denote the position of source signal at time t.

The discrete time signal received from a single source can be modeled as

yℓ,i (t) = s(t) ⋆ h(pℓ,i,xt) + nℓ,i(t) (1)

where s(t) is the source signal, h(pℓ,i,xt) is the overall impulse response

cascading the room and the microphone channel response, nℓ,i(t) is additive

noise which is assumed to be uncorrelated with the source, and ⋆ denotes

convolution. To formulate TDOA estimates, the impulse response can be

rewritten in terms of direct path and multipath components as

zℓ,i(t) =
1

rℓ,i(t)
s(t− τℓ,i(t)) + s(t) ⋆ g(pℓ,i,xt) + nℓ,i(t)

︸ ︷︷ ︸

=
1

rℓ,i(t)
s(t− τℓ,i(t)) + vℓ,i(t) (2)

where rℓ,i(t) = ‖xt − pℓ,i‖ is the Euclidean distance between source and

microphone, τℓ,i(t) = rℓ,i(t)/c is the direct path time delay, c is the speed

of sound, and g(pℓ,i,xt) is a modified impulse response which is defined as

the original response minus the direct path component. The new noise term

vℓ,i(t) contains the additive noise nℓ,i(t) and the reverberant signal s(t) ⋆

g(pℓ,i,xt). This model is the free-field model in that it regards reverberation

as part of the noise term. The actual TDOA of a microphone pair is expressed

in terms of the source and sensor geometry by

τ ℓk(xk) = τℓ,1(k)− τℓ,2(k) =
‖xk − pℓ,1‖ − ‖xk − pℓ,2‖

c
. (3)

8
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Due to its popularity in ASLT, the phase transform (PHAT) based GCC

method is used in this paper to extract the TDOA measurements.

The signal received at each microphone are assumed to be quasi-stationary

and processed in frames. Let T0 and k denote the length and the time index of

the frame, respectively. The source signal and the observed signal collected at

the ith microphone of ℓth pair are written as s(k) = [s(kT0), . . . , s((k + 1)T0 − 1)]

and zℓ,i(k) = [zℓ,i(kT0), . . . , zℓ,i((k + 1)T0 − 1)], respectively. Further, it is as-

sumed that in each frame the position of the source is spatially stationary.

The parameters characterising the source are thus fixed in the kth frame, e.g.,

the source position, xk, and the corresponding room impulse response (RIR),

h(pℓ,i,xt). Given the speech frames zℓ,1(k) and zℓ,2(k), the GCC function can

be approximated as [23]:

Rℓ(k, τ) =

∫

Ω

Φℓ(k, ω)Zℓ,1(k, ω)Z
∗
ℓ,2(k, ω)e

jωτdω, (4)

where zℓ,i(k) ⇋ Zℓ,i(k, ω) are discrete Fourier transform (DFT) pairs, Φℓ(k, ω) =

|Zℓ,1(k, ω)Z
∗
ℓ,2(k, ω)|−1 is the PHAT weighting term, and Ω is the frequency

range over which the integration is carried out. The TDOA measurement at

the ℓth microphone pair at time step k can thus be estimated by exploring

the potential TDOA τ that maximizes the GCC function

τ̂ ℓk = arg max
τ∈[−τmax,τmax]

Rℓ(k, τ), (5)

where τmax = ‖pℓ,1 − pℓ,2‖/c is the maximum delay possible. In an anechoic

environment, a sharp peak will exist in the PHAT-GCC function to indicate

the source generated TDOA. However, real room acoustic environments

always exhibit unexpected noise and multipath components and, therefore,

ghost peaks may appear [10, 21, 42]. Consequently, the largest peak may

9
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no longer represent the source generated TDOA. A number of peaks could

therefore be collected in order to increase the probability of including the

source generated TDOA within the set of peaks.

Preliminary study of the PHAT-GCC amplitude. Assume that nℓ
k TDOA

estimates, zℓk = {τ̂ ℓp,k}
nℓ

k

p=1, can be obtained from the ℓth microphone pair

at time step k. Suppose that the corresponding amplitudes of these TDOA

estimates from PHAT-GCC function are âℓp,k for p = 1, . . . , nℓ
k. It is proposed

that the amplitude the pth PHAT-GCC peak âℓp,k gives an indication of

whether the corresponding TDOA, τ̂ ℓp,k, is a reliable estimate of the true

source position. This section will investigate this claim by looking at the

properties of the amplitudes of the PHAT-GCC peaks. Suppose that peaks

from the source and clutter are defined such that âℓp,k is generated by a

source if |τ̂ ℓp,k − τ ℓk(xk)| < ǫ and by clutter otherwise. Here ǫ = Tc/2 with

Tc denoting the signal correlation time which is computed as the bandwidth

of 3dB degradation of the main lobe in the autocorrelation function [45, 46].

This definition is also used in [28, 47] to evaluate the performance of the

TDOA estimation. To characterise the nature of the GCC peaks due to

source and clutter, define the root-mean square (RMS) amplitude of a set of

GCC peaks as:

āℓk =

√
1

nℓ
k

∑

p∈P

(
âℓp,k

)2
. (6)

where the set P denotes the set of peaks corresponding to either clutter, the

source, or both.

Figure 1 shows the RMS amplitudes of the PHAT-GCC peaks under

different noise and reverberant environments. For different signal-to-noise

ratios (SNRs), the source is located at (2.5, 3.0)m, and the reflection co-

10
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efficients are set to zero. The parameters, namely source position and wall

reflection coefficients, used to generate different signal-to-reverberation ratios

(SRRs) are illustrated in Table 1. For those peaks generated by a source, the

corresponding RMS amplitude is higher than those generated by clutter in

moderate adverse environments. However, when the SRR or SNR is very low,

for example under 0dB, the RMS amplitudes generated by the source and

clutter are similar, which means peaks generated by the clutter may be as

high as, or even higher than the peaks generated by the real source. In such

cases, detecting the source generated TDOAs will be very difficult. Since the

RMS amplitudes change in different SNRs and SRRs, an appropriate prior

should be carefully defined to balance the probability of detection and false

detections.

2.2. Bayesian Framework for Source Tracking

To formulate a Bayesian framework for acoustic source tracking, the state-

space model is first defined. The source movement in the room environment

can always be assumed to be slow-paced, and the Langevin motion model

[10, 21] is found sufficient to model the source dynamics. Since the height

of a talker is often fixed during conversation for a reasonable length of time,

it is reasonable to consider a 2-dimensional (x − y plane) tracking problem.

The original source position vector xk is extended by appending a velocity

component, given by x̃k =
[

xk yk ẋk ẏk

]T

, where [ẋk, ẏk] represents the

source speed along the corresponding coordinate, and superscript T denotes

the matrix transpose. The Langevin motion model is written as

x̃k = Ax̃k−1 +Qvk, (7)

11
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where vk is a zero-mean real Gaussian process, i.e., vk ∼ N (0,Σk) with

Σk = diag(σ2
x, σ

2
y) used to model the turbulence on the source speed, and

diag(C) represents a diagonal matrix with main diagonal entry C and 0

elsewhere. The coefficient matrices A and Q are given by

A =




1 a∆T

0 a



⊗ I2 and Q =




b∆T 0

0 b



⊗ I2, (8)

where ∆T = T0/fs is the time interval (in seconds) between time step k and

k−1, fs denoting the sampling frequency, ⊗ denotes the Kronecker product,

and IM is an M-order identity matrix. The parameters a and b are the

position and velocity variance constants calculated as a = exp(−β∆T ) and

b = v
√
1− a2, in which v and β are the velocity parameter and the rate

constant respectively. Equation (7) is used to model the source dynamics

in this paper. The model parameters v = 1ms−1 and β = 10s−1 used in

[10, 21, 40] are found to be adequate for room acoustic source tracking and

are employed here.

For the tracking system consisting of L microphone pairs, the complete

measurement set can be addressed as

Zk = {z1k, . . . , zLk }. (9)

Let Z1:k = {Z1, . . . ,Zk} denote all the TDOA measurements obtained up to

time step k. The task here is to estimate the posterior p(xk|Z1:k) recursively.

The solution based on Bayesian recursive estimation can be given as:

• Predict:

p(xk|Z1:k−1) =

∫

p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1; (10)

12
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• Update:

p(xk|Z1:k) ∝ p(Zk|xk)p(xk|Z1:k−1). (11)

This formulation states that, given the posterior distribution of the state

estimated at the previous time step k−1 and the system models, the current

probability distribution of the state can be obtained recursively. However,

obtaining the closed form solution toward to the recursion (10) and (11) is

not easy since the TDOA measurement function is nonlinear. A promising

approach to approximate this recursion is using the PF approach [10, 21, 48].

2.3. Particle Filtering

The PF approximates integrals using a Monte Carlo simulation, and

is already proved to be an effective method for target tracking problems

[10, 21, 43, 44, 48]. The core step of applying a PF is to formulate the im-

portance weight of each particle. Assume that a set of particles {x(i)
k−1}Ni=1,

with corresponding importance weights {w(i)
k−1} are available to approximate

the posterior distribution of p(xk−1|Z1:k−1) at time step k− 1. The particles

are sampled at the current time step, k, according to the source dynamic

model (7), stated as

x
(i)
k ∼ p(x

(i)
k |x

(i)
k−1). (12)

The transition density p(x
(i)
k |x

(i)
k−1) is given by the EKF as

p(x
(i)
k |x

(i)
k−1) = N (x

(i)
k |Ax

(i)
k−1,QΣkQ

T ) (13)

where A and Q are given by (8). The importance weights of the particles at

the current time step are then given by

w
(i)
k = w

(i)
k−1

p(Zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1,Z1:k−1)

(14)
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where q(·) stands for the importance function. In the SIR-PF, particles are

drawn according to the source dynamic model:

q(x
(i)
k |x

(i)
k−1,Z1:k−1) = p(x

(i)
k |x

(i)
k−1). (15)

The particles are thus weighted according to

w
(i)
k = w̃

(i)
k−1p(Zk|x(i)

k ). (16)

where w̃
(i)
k−1 is the normalized weight. After resampling, the posterior distri-

bution of the source position is approximated as

p(xk|Z1:k) ≈
N∑

i=1

w̃
(i)
k δ

x
(i)
k

(xk) (17)

where δ(·) is a Dirac-delta function with unity value if xk = x
(i)
k and 0

otherwise, and N is the number of the particles.

3. Proposed EKPF Tracking Approach

This paper addresses the case of multiple nonconcurrent talkers, in which

the position of the current talker typically moves slowly, but can switch

to a distinct spatial location as the actual talker changes. This yields a

sharp change in the source position and differs significantly from its previous

estimate. The EKPF employs an EKF to estimate the state first, and the

samples are then drawn according to the posterior state estimation. The

EKF proposal distribution thus leads to more efficient sampling, in contrast

to the SIR-PF which draws the samples around the previous state estimates.

14
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3.1. Proposal Distribution Using EKF

The EKF approximation follows the work in [22] and forms the basis for

the derivation of the proposed EKPF tracking approach in this paper. The

first-order Taylor expansion on τ ℓk(x
(i)
k ) from (3) is [22]:

τ ℓk(x
(i)
k ) = τ ℓk(x

(i)
k−1) + c

ℓ,(i)
k

[

x
(i)
k − x

(i)
k−1

]T

+ n̄k, (18)

where n̄k = O
x
(x

(i)
k ) is the higher order error of the time delay expansion,

and c
ℓ,(i)
k is the coefficient vector of Taylor expansion:

c
ℓ,(i)
k =

1

c

[

x
(i)
k − pℓ,1

‖x(i)
k − pℓ,1‖

− x
(i)
k − pℓ,2

‖x(i)
k − pℓ,2‖

]∣
∣
∣
∣
∣
x
(i)
k

=x̂
(i)
k−1

. (19)

where x̂
(i)
k−1 is the EKF filtered state estimation given by (23e). Define

z̄k = zk − τ k(x̂
(i)
k−1) +C

(i)
k x̂

(i)
k−1. (20)

where

z̄k =











τ̄ 1k

τ̄ 2k
...

τ̄Lk











, zk =











τ̂ 1k

τ̂ 2k
...

τ̂Lk











, τk(·) =











τ 1k (·)
τ 2k (·)
...

τLk (·)











,C
(i)
k =











c
1,(i)
k

c
2,(i)
k

...

c
L,(i)
k











, (21)

with τ̂ ℓk and τ ℓk(·) obtained from (5) and (3) respectively. The matrix-vector

form of linearized measurement function becomes:

z̄k = C
(i)
k x

(i)
k +wk, (22)

Here wk is assumed to be a zero-mean Gaussian process with variance Rk

which includes the higher order expansion error and the TDOA measurement

15
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noise. Regarding (7) and (22) as the state space process, the implementation

of an EKF can be written as [49]:

x
(i)
k|k−1 = Ax̂

(i)
k−1; (23a)

P
(i)
k|k−1 = P̂

(i)
k−1 +Σk; (23b)

S
(i)
k = Rk +C

(i)
k P

(i)
k|k−1(C

(i)
k )T ; (23c)

K
(i)
k = P

(i)
k|k−1(C

(i)
k )T (S

(i)
k )−1; (23d)

x̂
(i)
k = x

(i)
k|k−1 +K

(i)
k (zk − τ k(x

(i)
k|k−1)); (23e)

P̂
(i)
k = P

(i)
k|k−1 −K

(i)
k C

(i)
k P

(i)
k|k−1. (23f)

The filtered distribution of the source state is Gaussian given by p(x
(i)
k |x

(i)
k−1, z1:k)

= N (x
(i)
k ; x̂

(i)
k , P̂

(i)
k ). The EKF works well when the SNR is high and room

reverberation is slight [9, 22]. However, it only utilises a single TDOA from

each microphone pair, corresponding to the largest peak in the PHAT-GCC

function, as its measurement. As the background noise and reverberation

increase, inaccurate TDOA measurements may be present. The position es-

timation can be seriously degraded and even diverges from the ground truth.

To enhance the probability of detection in an adverse environment, the

EKPF is able to take the information from multiple TDOAs measurements

from each microphone pair into account. Two novel approaches to formu-

late the EKF step are: 1) standard EKF which only employs the TDOAs

from the highest peaks of the PHAT-GCC functions; and 2) all the TDOA

measurements are used to update the states, and a new innovation process is

formulated by incorporating the amplitude information to reduce the effect

of the false alarms.

16
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Single TDOA EKF approach. This EKF formulation uses only a single TDOA

from each microphone pair as the measurements. It is plausible to do this

since, in most cases, the highest peaks are very likely generated by the real

source. Difference from the traditional EKF in [9, 22, 43, 44], our implemen-

tation introduces a parameter to model the effect from the false alarms in

the innovation process (23e), given as

y
(i)
k = (1− q1)

(

zk − τ k(x
(i)
k|k−1)

)

, (24)

where zk are the measurements collected from each microphone pair with

highest GCC peaks, and q1 is a constant controlling the rate of innovation

from the measurements. The false alarms are modeled by carefully choos-

ing the constant q1, which is usually determined by the experimental study.

Normally a smaller value of q1 denotes that a reliable proposal distribution

can be obtained by the EKF, and vice versa.

Multiple TDOA EKF approach. Here, all the TDOA measurements are used.

The innovation process of the EKF is

y
ℓ,(i)
k = (1− q1)

nℓ

k∑

p=1

πℓ
p,k

(

τ̂ ℓp,k − τ ℓk(x
(i)
k|k−1)

)

, (25)

where

πℓ
p,k =

âℓp,k
∑

p â
ℓ
p,k

(26)

is the normalised amplitudes of the PHAT-GCC peaks. The complete inno-

vation vector becomes

y
(i)
k =

[

y
1,(i)
k . . . y

L,(i)
k

]T

. (27)
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This innovation process is different from that in the traditional EKF approach

in [9, 22, 43, 44] since all TDOAs collected from the microphone pair are

employed, and those TDOAs with higher peak amplitudes are regarded as

more important measurements to the final state estimation.

In both formulations of the EKF, the state estimates are updated accord-

ing to equation (23e), and can be written as

x̂
(i)
k = x

(i)
k|k−1 +K

(i)
k y

(i)
k . (28)

Since each particle in the particle filter is redrawn according to this EKF

step, the proposal distribution becomes

x
(i)
k ∼ p(x

(i)
k |x

(i)
0:k−1,Z1:k) = N (x

(i)
k | x̂

(i)
k , P̂

(i)
k ), (29)

where x̂
(i)
k and P̂

(i)
k are the mean and covariance of the Gaussian distribution

for each particle respectively, with P̂
(i)
k given by (23f). After the EKF step,

the particles in the PFs are approximately relocated around the posterior

distribution.

3.2. Likelihood of Hypothesis

A remaining issue is formulating the likelihood p(Zk|x(i)
k ). For each

TDOA measurement vector zℓk collected from a microphone pair, at most

one TDOA is directly generated by the source, while the other peaks are

generated by clutter. The variables {λp,k}n
ℓ

k

p=1 are defined to indicate the as-

sociation between each TDOA measurement and its source, i.e., λp,k = 1

denotes that the measurement is a target detection and λp,k = 0 if the mea-

surement is a false alarm. Based on this association for each independent

18
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TDOA measurement, two categories of hypotheses can be summarized for all

the measurements obtained from a microphone pair [21]:

Hℓ
0,k , {λp,k = 0; p = 1, . . . , nℓ

k},

Hℓ
q,k , {λq,k = 1, λp,k = 0; q 6= p = 1, . . . , nℓ

k},
(30)

where Hℓ
0,k denotes that none of the measurements are generated by the

source, andHℓ
q,k represents that the qth TDOAmeasurement τ ℓq,k is generated

by the source, and all other TDOAs are generated by clutter.

If the measurement is due to clutter, such that λp,k = 0, the likelihood is

assumed to be uniform over the admissible TDOA range, given as

p(τ̂ ℓp,k|x(i)
k , λp,k = 0) = Uτ (τ̂

ℓ
p,k) =

1

2τmax

, (31)

where τ = [−τmax, τmax] denotes the possible TDOA range. The likelihood

for the hypotheses Hℓ
0,k can be expressed as

p(zℓk|x(i)
k ,Hℓ

0,k) =

nℓ

k∏

p=1

p(τ̂ ℓp,k|x(i)
k , λp,k = 0) =

1

(2τmax)
nℓ

k

. (32)

If the measurement is generated by a real source, the likelihood is modelled

as the true TDOA corrupted by additive white Gaussian noise with variance

σ2
τ [10, 21, 50], or:

p(τ̂ ℓi,k|x(i)
k , λq,k = 1) = N (τ̂ ℓq,k | τ ℓk(x(i)

k ), σ2
τ ), (33)

A general expression for the hypotheses Hℓ
q,k is thus

p(zℓk|x(i)
k ,Hℓ

q,k) = p(τ̂ ℓq,k|x(i)
k , λq,k = 1)

nℓ

k∏

p=1
p 6=q

p(τ̂ ℓp,k|x(i)
k , λp,k = 0) (34)

=
1

(2τmax)n
ℓ

k
−1
N (τ̂ ℓq,k; τ

ℓ
k(x

(i)
k ), σ2

τ ). (35)
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3.3. Hypothesis prior Incorporating PHAT-GCC Amplitude

Since the correct hypothesis Hℓ
q,k is unknown a priori, all the collected

TDOA estimates can be deemed with equal importance [10, 21]. As such

all TDOA measurements are equally important for state estimation, and

the prior for all hypotheses {Hℓ
p,k}

nℓ

k

p=1 are the same. Other than the TDOA

measurement itself, the corresponding PHAT-GCC peak amplitudes also car-

ries information for identifying detections and false alarms. Generally, the

higher a peak’s amplitude, the more likely it is generated by a target. This

phenomenon is seen in Figure 1, where the RMS amplitude generated by

detections is significantly larger than that generated by clutter. This means

that in moderate or low reverberant environments, most of the TDOA detec-

tions come from the higher peaks. It is thus desired to incorporate TDOA

amplitude information into the hypothesis prior to make the final likelihood

appropriate in the different environments.

Assume the availability of the TDOA measurement vector zℓk and the

corresponding amplitude vector {âℓp,k}
nℓ

k

p=1 collected at the ℓth microphone

pair. Let the prior of the hypothesis Hℓ
0,k be q0. The prior qp of the hypothesis

Hℓ
p,k can be calculated as:

p(Hℓ
p,k|x(i)

k ) = (1− q0)π
ℓ
p,k; ∀ p = 1, . . . , nℓ

k. (36)

This prior choice is to make the summation of all the priors equal to one:

nℓ

k∑

p=0

p(Hℓ
p,k|x(i)

k ) = 1. (37)

Given the hypothesis prior (36) that incorporates the PHAT-GCC amplitude

20
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information, the likelihood for the ℓth microphone pair can be written as:

p(zℓk|x(i)
k ) =

nℓ

k∑

i=0

p(Hℓ
i,k|x(i)

k )p(zℓk|x(i)
k ,Hℓ

i,k)

=

q0
2τmax

+ (1− q0)
∑nℓ

k

p=1 π
ℓ
p,kN (τ̂ ℓp,k | τ ℓk(x(i)

k ), σ2
τ )

(2τmax)n
ℓ

k
−1

.

(38)

Since the measurements collected from all the microphone pairs are assumed

to be independent, the extension to all Lmicrophone pairs is straightforward:

p(Zk|x(i)
k ) =

L∏

ℓ=1

p(zℓk|x(i)
k ), (39)

where p(zℓk|x(i)
k ) is given by (38). Unlike the SIR-PF in [10, 21], in which

multiple TDOAs are treated equally, this proposed hypothesis likelihood in-

corporates the PHAT-GCC amplitude information and emphasizes TDOAs

from the higher PHAT-GCC peaks. In noisy and reverberant environments,

taking the amplitude information into account is able to enhance the TDOA

detection and suppress the violation from the false alarms, as shown in Sec-

tion 4.

3.4. EKPF tracking algorithm

Given the EKF sampling scheme and the likelihood, implementation of

the EKPF is straightforward. First, the particles are filtered according to

the EKF steps, unlike in the SIR-PF. After the EKF, the state transition

density is:

p(x
(i)
k |x

(i)
k−1) = N (x

(i)
k |Ax

(i)
k−1,QΣkQ

T +AP̂
(i)
k AT ), (40)

where A and Q are from (8). The weights are updated as

w
(i)
k ∝ w

(i)
k−1

p(Zk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

p(x
(i)
k |x

(i)
0:k−1,Z1:k)

. (41)
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The EKPF tracking algorithm is summarized in Algorithm 1. There are two

significant differences compared to the SIR-PF: first, the EKPF employs

an EKF step to draw the samples and coarsely filter the predicted particles;

second, the calculation of the importance weight is different. The particles are

thus redrawn at a high likelihood area rather than drifting from the motion

dynamical equation. The traditional SIR-PF fails to do so since the particles

are drawn only using the information from the source dynamic model, and

a tracking lag will be presented in catching up with the position of a new

source. Of course, a sophisticated motion dynamical model may help to

relieve the tracking lag brought by the model mismatch in SIR-PF approach;

however, such investigation is another perspective of acoustic source tracking

and is future work.

4. Experiments

A select number of simulations and real audio lab experiments are or-

ganised and presented specifically to examine the performance of following

tracking approaches: 1) EKF; 2) SIR-PF; 3) the vanilla EKPF (V-EKPF),

or EKPF incorporating GCC amplitude information in the likelihood; and 4)

the multiple-measurement EKPF (MM-EKPF) which employs the multiple

TDOA EKPF and also incorporates GCC amplitudes in the likelihood. The

RMS error (RMSE) is employed to evaluate tracking performance.

Figure 2 shows an office room with dimensions 8.1×5.3×3m3 for real audio

experiments. For simulations, the shoe-box model with the same size is em-

ployed (there is no indent on the north west corner). Four microphone arrays

each with five microphones are employed yielding 16 equally spaced micro-
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phone pairs. The separation of each two adjacent microphones is 0.45m. The

height of the microphones and sources are assumed known as 1.33m. Two

talkers appear at different times to form nonconcurrent multiple talkers: one

is active from (2.5, 1.5)m to (6.0, 3.5)m, the other follows from (2.5, 3.5)m

to (6.0, 1.5)m. Since it is assumed that there is no prior information about

the initial source position, this is initialised at the center of the room with a

velocity of 0.4m/s in both directions, i.e., x0 = (2.5, 2.0, 0.4, 0.4)T . The cor-

responding initial variance is set as P0 = diag([1, 1, 0.1, 0.1]). The variance

in the Langevin model is Σk = diag([1, 1]). Changing the parameters for

the source dynamics, ν and β from Section 2.2, and initialization will lead

to different convergence speeds of the algorithm. Other parameters for the

tracking algorithms can be found in Table 2. The variance of the measure-

ment noise Rk for the EKF is set the same as that for the EKPF, which

is 1.25e−4, one sample diverging from the measured TDOA. After the EKF

step, the samples are relocated around the posterior distribution, and there-

fore the variance σ2
τ in the EKPF is set smaller than it is in the SIR-PF. The

parameters q0 and q1 depict the effect of reverberation in the PF and EKF

step respectively and are chosen heuristically. It is worth pointing out that

all parameters in Table 2 are based on extensive experimental studies. For

further information, the reader is referred to [42].

4.1. Simulated Room Environment

In simulations, the speed of the source is set at 0.5m/s (1.8km/h), which

is one third of a regular pedestrian walking speed, ranging from 5.32km/h to

5.43km/h [51]. Considering that a moving talker within a room is likely to

be smooth and slow-paced, this experimental speed is reasonable and com-
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parable with the source velocities in [10, 40]. Moreover, 50 frames of speech

signal with a length of 128ms are used, at a sampling frequency of 8kHz.

Different wall reflection coefficients are set to generate different reverberant

environments and different noise conditions are simulated by adding different

levels of additive white Gaussian noise (AWGN). The RIR is simulated using

the image method [52].

4.1.1. Single Experiment

The tracking results from a single trial under the reverberation time

T60 = 0.35s with wall reflection coefficients of 0.8 are presented. The peaks

of the GCC function larger than 0.7 are selected to obtain TDOA measure-

ments. Since the EKF method does not incorporate a reverberant measure-

ment model, it only takes the TDOAs corresponding to the largest peak as

its measurements. The TDOA measurements from microphone pair 4 are

displayed in Figure 3. It can be observed that the source generated TDOA

can be better collected when multiple TDOAs are selected. However, false

alarms can arise in TDOA measurements.

The tracking result from a single trial is presented in Figure 4. It shows

that the EKF based PF approaches lock on the new source faster than SIR-

PF does. Although the EKF is able to find the new source quickly, it is

not as robust as the V-EKPF and SIR-PF in dealing with inaccurate TDOA

measurements as shown by the track deviations across all time-steps. The

MM-EKPF which employs all the multiple TDOAmeasurements presents the

best tracking result. To fully analyze the tracking performance, the RMSE

for 100 Monte Carlo (MC) runs is presented in Figure 5. It shows that both

the EKF based PF approaches are capable of finding the position of the new
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source quickly. However, at some time steps, missing TDOAs can report false

alarms, e.g., microphone pair four at time step 71 and thereafter. This leads

to a heavy false alarm and miss detection problem. The EKF usually fails to

filter the state based on these false measurements and will present unstable

results. Subsequently, the following PF cannot draw the samples correctly.

This phenomenon can be seen from those peaks in the RMSE made by the

EKF and V-EKPF. Since the SIR-PF draws the samples around the previous

state estimates, it is not sensitive to the sharp change of source positions

and presents the best performance to smooth the inaccurate measurements.

However, the drawback is that it cannot lock on the new source quickly. The

MM-EKPF is able to cope with false alarms due to reverberation and noise,

and also identify the position of the new source quickly.

4.1.2. Different Reverberant and Noisy Environments

The algorithm performance is evaluated in different noisy and reverber-

ant environments. The wall reflection coefficient is set to different values to

simulate different environments, and AWGN with different energy levels is

added to the received signal to generate different SNRs. For varying reflec-

tion coefficients, the SNR is fixed to 30dB, while for varying SNR, the wall

reflection coefficient is set to 0.4.

The average RMSE under different reverberant environments over 100

MC runs are presented in Figure 6(a). It shows that the proposed V-EKPF

and MM-EKPF approaches are able to track the nonconcurrent multiple

sources with good accuracy in the moderate reverberant environment, and

perform better than the SIR-PF and EKF. In particular, the MM-EKPF

presents the best tracking results since it employs multiple TDOA measure-
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ment set as well as the optimum importance function. Figure 6(b) shows

the average RMSE in different noisy environments. The performance of the

proposed approaches are also better than that of SIR-PF in all experiments.

The MM-EKPF consistently presents the best performance in different rever-

berant and noisy environments. In addition, all the methods are significantly

deteriorated in the heavy reverberant and noisy environments.

4.2. Real Room Environment

The performance of the approaches is examined in a real laboratory lo-

cated at the University of Edinburgh, Scotland. The room has carpet floor,

concrete block walls and ceiling, and glass windows covered by hard card-

board with a thickness ≈ 0.4cm, as shown in Figure 7. The measured re-

verberation time is 0.836s and the ambient noise level is −40dB [42]. The

microphones are mounted on a set of T-bar stands, and the sources are set at

a height of 1.33m. The microphone response is omni-directional within the

frequency range 0 to 4kHz. The acoustic source used for all recordings is an

omnidirectional speaker amounted on a small trolley, as shown in Figure 7.

The source is moved via a pulley mechanism and its position is measured

using a laser measuring device, by which the sampled locations show that it

is moving at a fairly constant velocity. The source signal is taken from the

TIMIT database [53]. All measured signals are sampled at fs = 44.1kHz and

then downsampled to 8kHz, which is sufficient for ASLT. The frame length

is set to 1024 samples, or 128msec, and the source velocity is around 0.5m/s.

The TDOA measurements from microphone pair 4 are shown in Figure 8.

Figure 9 presents the tracking results of the various approaches for a single

trial, and shows that the MM-EKPF is able to track the sources accurately

26



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

and lock on the position of the new source quickly. The EKF fails to do so

since large false alarms are presented as the TDOA measurements. Although

the SIR-PF is able to track the sources, it cannot catch up with the position

of the new source more rapidly than the alternate approaches. Compared to

the results from the single experiment of the simulated room environment

in Section 4.1.1, the position estimation is degraded since the real room

environment is more challenging. Also, uncertainties in the ground truth of

the experimental system such as microphone positions and source positions

can increase the tracking errors.

Figure 10 gives the tracking results over 100 MC implementations. This

statistical result further illustrate that the proposed EKPF algorithms are

more accurate than the SIR-PF and EKF in tracking nonconcurrent multiple

sources. The RMSE also presents a transition behavior: at the time steps

where the source switches, the RMSE increases sharply. The algorithms

then converges to the position of the new source. However, the proposed

approaches are able to find the position of the new source quickly, while the

SIR-PF generally needs much more time steps to lock on the position of the

new source. Again, the errors from the experiment system, particular from

the estimation of the ground truth of the source positions and microphone

positions, can increase the RMSE.

5. Conclusions

This paper addresses a special multiple source tracking case: noncon-

current multiple acoustic tracking. In such a scenario, one source is active

during a period, and then the other follows. Two EKPF approaches are de-
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veloped to track the sources, and minimise any lag when the source position

changes quickly. The core idea is to utilize an EKF to estimate the state

coarsely, and then use a PF to sample around this posterior state estima-

tion, rather than drawn according to the prior information as in the SIR-PF.

The information included in the amplitudes of the peaks in the PHAT-GCC

that correspond to TDOA measurements have also been incorporated to en-

hance the performance. Simulated experiments, as well as real recordings,

show that the proposed approaches can successfully lock on to the position

of the new source more quickly than previous approaches. By incorporating

multiple TDOA measurements, the MM-EKPF presents even better perfor-

mance. While this work assumes that there is one and only one source at

each time step, future work includes algorithms to track and detect multiple

simultaneously active sources.
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Table 1: Corresponding SRRs generated by different combinations of the source positions

and wall reflections.

SRR -10 0 10 20 30

ρ 0.8 0.8 0.6 0.6 0.1

(x, y) (3.6, 3.0) (0.7, 3.0) (0.8, 1.5) (0.8, 1.9) (0.9, 2.1)
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Figure 1: The RMS amplitudes of PHAT-GCC TDOA peaks, âℓp,k, generated by source

and clutter for varying conditions.
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Algorithm 1: Proposed EKPF for room acoustic source tracking.

Input: Current TDOA measurements Zk.

Output: Sources position estimates x̂k.

Initialisation: draw particles x
(i)
0 ∼ N (x

(i)
0 ;x0,P0), and set initial

weights w̃
(i)
0 = 1/N .

Over all time steps :

for k ← 1 to K do

Over all the particles :

for i← 1 to N do

- implement EKF to obtain the new samples x̄
(i)
k ;

- computing the transition density using (40);

- computing the likelihood using (38);

- computing the importance weight using (41);

end

Over all the particles :

for i← 1 to N do

- normalize weights: w̃
(i)
k = w

(i)
k /

∑N

i=1w
(i)
k ;

end

– replicate particles according to weights.

– output the estimates x̂k.

end

38



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

desk area

Work station

desk area W
id

th
 5

.3
 m

Length 8.1 m

1.5m

2.0 m

3
.9

 m

desk

area

1.6m

1
.2

m

2.0m

1
.5

m

(2.5,1.5)

(6.0,3.5)(2.5,3.5)

(6.0,1.5)

Figure 2: Room environment for experiments. Four microphone arrays equipped with 20

microphones are employed to received the speech signals. The blue and red solid lines

represent the source trajectories.
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Table 2: Parameter setup for the tracking algorithms.

Rk σ2
τ q0 q1 N

EKF 0.5e−4 - - - -

SIR-PF - 1.25e−4 0.2 - 500

V-EKPF 1.25e−4 0.5e−4 0.2 0.1 100

MM-EKPF 1.25e−4 0.5e−4 0.2 0.1 100
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Figure 3: TDOA measurement extracted in a reverberant environment (T60 = 0.35s)

across different microphone pairs.
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Figure 4: Tracking results from a single trial under the reverberant environment (T60 =

0.35s): (a) x-coordinate; and (b) y-coordinate.
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Figure 5: RMSE over 100 Monte Carlo runs under the reverberant environment (T60 =

0.35s).
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Figure 6: Average RMSE under different scenarios
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Figure 7: Real audio room environment for performance evaluation. The laboratory is

located at the University of Edinburgh, Scotland. The room has carpet floor, concrete

block walls and ceiling, and glass windows covered by hard cardboard with a thickness

≈ 0.4cm. The measured reverberation time is 0.836s and the ambient noise level is −40dB
[42].
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Figure 8: TDOA measurement extracted from microphone pair 4 in a real room environ-

ment. Source 1 is active from time step 1 to 65, and then source 2 follows from time step

66 to 123.
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Figure 9: Tracking results from a single trial in the real audio lab environment: (a) x-

coordinate; and (b) y-coordinate.
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Figure 10: RMSE over 100 Monte Carlo runs in the real audio lab environment.
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