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Abstract 

The adsorption of surfactants from dilute oil solutions on to solid surfaces is studied as a function of 

surface curvature and surface coverage. Coarse-grained molecular models, computer simulations, and 

umbrella sampling are used to compute the dependence of the free energy of adsorption on to a 

spherical colloid surface with radius R. It is shown that for fixed surface coverage, and with all other 

things being equal, the free energy of adsorption decreases with decreasing R. For fixed surface 

curvature, the free energy of adsorption increases with increasing surface coverage. These trends arise 

from the excluded-volume interactions between the surfactant tails. The dependence on surface 

curvature is due to the geometrical effect of there being more free volume for the surfactant tails with 

a smaller colloid radius. The consequences of these effects on equilibrium partitioning are examined. 

It is shown that for surfactants adsorbed on small-colloid and large-colloid surfaces in mutual 

equilibrium with a dilute solution, the surface coverage of the small particles is significantly greater. 

The implications for industrial applications are discussed and could be significant. 

 

1. Introduction 

The adsorption of surfactants onto the interface between a solid and a liquid solution is important in 

many applications, including lubrication, detergency, wetting, and emulsions. The most common 

examples involve aqueous solutions of surfactants with hydrophobic tail groups and polar or ionic 

head groups in contact with a planar solid surface or the surfaces of solid colloidal particles. In this 

situation, the surfactants may self-assemble to form micelles and other structures, and the interplay 

between self-assembly and surface adsorption can give rise to interesting structural and kinetic 

effects. Probably the best-studied situation is the adsorption of ionic and non-ionic surfactants (and 

their mixtures) on to hydrophilic silica surfaces.
[1–14]

 In many of these studies, the silica is colloidal, 

with radii on the order of 100 Å. The surfactants may either form uniform bilayers, defective bilayers, 

or surface micelles, and the presence of these adsorbed layers has been found to play a significant role 

in the effective interactions between the colloidal particles. Central to these phenomena is the 

interplay between the radius of curvature of the solid surface and the spontaneous curvature of the 

micelles, which is controlled by the molecular architecture of the surfactant.
[3,7,9–11,13]

 

Despite its industrial relevance to the lubricant industry, the adsorption of amphiphilic molecules on 

to inorganic surfaces from oil-based solutions has received less detailed attention. One important 

example is an overbased detergent, this being a combination of inorganic particles (such as calcium 

carbonate) solubilised with ionic surfactants. The inorganic particles are relatively small, with radii in 

the region of 10–50 Å. These systems are added to engine oils to neutralise corrosive acidic products 

of sulphur and oil oxidations. Bearchell et al. studied the detailed structures of various surfactants 
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adsorbed on calcium carbonate particles, using Langmuir trough, Langmuir–Blodgett, and 

ellipsometry experiments, in combination with molecular-dynamics simulations.
[15,16]

 In typical 

applications, the surfactant tail groups are aliphatic and hence solvophilic. The head groups are polar 

or ionic and hence solvophobic, which favours adsorption on to typical inorganic surfaces. 

Potentially, surfactants could self-assemble to form reverse micelles in solution, and one would then 

have to consider the particle curvature and the micellar spontaneous curvature, just as in aqueous 

solutions. As an example, small-angle X-ray scattering studies show that 10 wt% glycerol 

monooleate in alkanes forms ellipsoidal reverse micelles, and that the presence of a small amount of 

water ( 1 wt%) promotes micelle formation.
[17]

 In general, though, for typical surfactants (with 

‘small’ head groups and ‘large’ hydrophobic tails) reverse micelle formation in non-aqueous solvents 

is far less common than micelle formation in water. Hence, the surfactant may form a single layer on 

the inorganic surface without prior or subsequent self-assembly.
[15,16]

 

Molecular simulations provide valuable insights on the microscopic structures and thermodynamics of 

adsorbed layers. For instance, atomistic molecular dynamics simulations may be used to study the 

thermodynamics of adsorption of molecules on to planar inorganic surfaces,
[18]

 organic solids,
[19]

 

membranes,
[20]

 or various carbon surfaces.
[21]

 Bearchell et al. used atomistic simulations to examine 

the molecular structure of overbased detergents.
[15,16]

 Alternatively, coarse-grained molecular models 

and Monte Carlo simulations may be used to study the more demanding problem of self-assembly and 

adsorption.
[22,23]

 This work is focused on the role of the surface curvature on the thermodynamics of 

surfactant adsorption at the solid–liquid interface. This should be important for situations where there 

is competition between adsorption at surfaces of different curvature. An obvious example is an oil-

based solution of surfactants in equilibrium with the adsorbed layers on the rough surfaces of a 

container and the curved surfaces of colloidal particles dispersed in the solution. Another example 

would be the partitioning between different dispersed particles in a highly polydisperse system. 

In this work, the effects of surface curvature are isolated by constructing coarse-grained models of 

typical surfactant molecules, and solid spherical surfaces. The interactions between the surfactants 

and the surfaces are parametrised in such a way that the only variables are the surface coverage and 

the radius of curvature of the surface; this is equivalent to making all surfaces from the same material. 

The surfactant solution is considered to be so dilute that (i) the solution is essentially ideal, and (ii) 

there is no self-assembly of the surfactants to form reverse micelles (as is often the case in non-

aqueous solvents). The thermodynamic functions characterising adsorption are calculated using 

Langevin dynamics simulations and umbrella sampling. Specifically, the reversible work (free energy 

change) of bringing the head group from infinitely far away to the surface is computed as a function 

of the perpendicular distance.
[24]

 This is also known as the potential of mean force (PMF).
[25]

 The 

PMF is essentially a free energy at a constrained head–surface distance since all other degrees of 
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freedom associated with the surfactant tail and the adsorbed surfactants are ‘integrated out’.
[26]

 It is 

shown that the adsorption of a surfactant molecule on to a surface of fixed coverage becomes less 

favourable with increasing radius. This means that the higher the surface radius, the higher the 

solution concentration must be to achieve the same surface coverage. For a surface of fixed radius, 

adsorption becomes less favourable with increasing surface coverage. These variations with coverage 

and radius reflect the interplay between the intermolecular interactions between the surfactants and 

their compatibility with the surface structure [see Figure 2(b) and (c)]. The dependences of the 

thermodynamic functions on the material parameters allow an assessment to be made of the likely 

equilibrium partitioning of surfactants between surfaces of different curvature at mutual equilibrium 

with a solution. 

The situation considered in this work (adsorption on to particles dispersed in oil) is significant 

different from the aqueous systems referred to above. Firstly, the typical particle sizes in overbased 

detergent systems are small, so the curvature of the particle surface is likely to be important. 

Secondly, (reverse) micelle formation of surfactants in oil is generally much less common than in 

aqueous media, and so a competition between spontaneous micelle curvature and particle curvature is 

not likely to be an important consideration. This provides a straightforward situation which can be 

considered in detail. Finally, oil-based systems have received far less attention to date, despite their 

industrial importance: in particular, there has not yet been an in-depth, systematic survey of 

adsorption on to colloidal particles of different sizes. For all of these reasons, the current work 

provides a new contribution to the detailed study of surfactant adsorption from oil and on to spherical 

colloidal surfaces. 

This paper is organised as follows. In Section 2, the coarse-grained model is defined. In Section 3 the 

basic simulation approach is described, and the method for calculating adsorption is detailed. The 

results are presented in Section 4, focused on the change in free energy on adsorbing a surfactant 

molecule on to the surface, the adsorption isotherms, and the consequences for the partitioning 

between surfaces of different curvature. The overall conclusions are presented in Section 5. 

 

2. Model and methods 

A surfactant was modelled as a chain of twelve solvophilic coarse-grained beads (the tail groups), and 

one solvophobic and ‘surface-philic’ head bead (the head group). The solvent is implicit. The 

solvophobic groups experience a mutual attraction and an attraction to the surface. The solvophilic 

groups are ambivalent, and all of their interactions are made purely repulsive (excluded-volume 

interactions). All non-bonded interactions between beads were expressed in terms of the Lennard-

Jones (LJ) pair potential 
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   (1) 

where r is the distance between two beads, and ε and σ are the energy and bead diameter, respectively. 

Attractive head–head interactions were represented by the LJ potential cut and shifted at rc = 2.5σ. 

Repulsive tail–tail and head–tail interactions were given by the LJ potential cut and shifted at the 

minimum rmin = 2
1/6
σ, i.e., the Weeks–Chandler–Andersen (WCA) potential, uWCA.

[27]
 The interaction 

between bonded beads was a combination of the WCA potential and a finitely extensible non-linear 

elastic potential 

   (2) 

where κb = 30ε/σ
2
 and rb = 1.5σ are conventional choices.

[28–30]
 The interactions between non-bonded 

and bonded beads are shown in Figure 1(a) and (b), respectively. Figure 1(b) shows that the 

combination of ub and uWCA gives a bonding potential with an equilibrium distance of about 1σ. 

 

Figure 1. (a) Interaction potentials for non-bonded beads: (black solid line) head–head interactions 

(uLJ cut-and-shifted at rc = 2.5σ); (red dashed line) head–tail and tail–tail interactions (uWCA). (b) 

Interaction potentials for bonded beads: (black solid line) finitely extensible non-linear elastic 

potential (ub); (red dashed line) head–tail and tail–tail interactions (uWCA); (green dot-dashed line) 

total interaction (ub + uWCA). 
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Colloidal surfaces were modelled as structureless spheres. The interactions between surfactant beads 

and the surfaces were given in terms of the potential 

   (3) 

where z is the perpendicular distance of the bead from the surface, and εs is an energy parameter. φs(z) 

is obtained by integrating the LJ potential between a bead and a planar surface,
[31,32]

 but it is adopted 

here also for colloid surfaces to give a consistent bead-surface potential amongst all of the systems 

studied. The head groups are assumed to be attracted to the surface, and hence the potential is φs(z). 

For the tail groups, the bead-surface potential was φs(z) cut and shifted at its minimum zmin = (2/5)
1/6
σ 

to give a purely repulsive interaction. Of course, this is a crude model that ignores important effects 

such as specific interactions, and the effects of solvent restructuring on solute adsorption, but it should 

allow a systematic study of the effects of surface curvature. 

For a typical straight-chain surfactant molecule with a C24 backbone and a head group rendered as a 

chain of thirteen coarse-grained beads, each bead roughly corresponds to a group of two CH2 units. If 

one bead equates to a group with formula CH3CH3, then the LJ ε and σ can be estimated from the 

known critical properties of ethane. From ref. 33, the critical temperature is Tc = 305 K and the critical 

molar volume is Vc = 146 cm
3
 mol

−1
. For the cut-and-shifted LJ fluid, kBTc/ε = 1.08 and V/Nσ

3
 = 

3.11.
[34]

 These data imply that σ  4 Å and ε/kB  282 K. Spherical colloids with radii of R/σ = 2, 4, 

6, 8, and 10 were considered. In real units, these diameters lie in the range 16 ≤ 2R ≤ 80 Å, which is 

absolutely typical for overbased detergent systems. 

N surfactant molecules were packed on to the surfaces to give nominal coverages in the range 0 ≤ Γσ
2
 

≤ 0.50, where Γ = N/(4πR
2
). Systems were simulated without boundaries since the surfactants were 

sufficiently strongly adsorbed to avoid desorption on the simulation timescale. The thermodynamics 

of adsorption was studied under the assumption of an ideal surfactant solution, and so it was not 

necessary to simulate this explicitly. A typical simulation snapshot is shown in Figure 2(a). 

(turn to next page →) 
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Figure 2. (a) Simulation snapshot of a colloid of radius R = 8σ with surface coverage Γσ
2
 = 0.101. 

The surfactant molecules are represented with yellow beads for tail groups and orange beads for head 

groups. A selected surfactant molecule is anchored away from the surface to carry out umbrella-

sampling. (b) and (c) Schematic diagrams of surfactant molecules adsorbed on (b) a curved surface 

and (c) a planar surface with equal surface coverages. The dashed lines indicate the volume per 

surfactant tail. 

 

3. Computer simulations 

The model systems were simulated using Langevin dynamics in which the surfactants in the fluid 

experience random and drag forces (mimicking the Brownian forces in a solvent) and the conservative 

interaction forces derived from the potentials given above. The equation of motion for bead i reads 

m i = −∇Ui − γmṙi + Wi(t)   (4) 

where m is the bead mass (assumed to be the same for all beads), ri is the position vector of bead i, γ is 

the Langevin friction coefficient, Wi(t) describes the random, Brownian forces of the solvent acting on 
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the bead, and Ui is the potential energy of the bead from which the force is derived. The total potential 

energy is given by a sum over pairwise additive interactions. Wi(t) is represented by Gaussian white 

noise that satisfies the fluctuation-dissipation theorem:
[35]

 

〈Wi(t)·Wj(t′)〉 = 6kBTmγδijδ(t − t′)  (5) 

The simulations were conducted in reduced units. The reduced temperature is given by T* = kBT/ε and 

all simulations were conducted at T* = 1 since ε is in the region of 282 K. At room temperature kBT = 

ε  2.5 kJ mol
−1

; the interactions that bind surfactant head groups to surfaces are typically a few tens 

of kilojoules per mole, and so the bead–surface interaction parameter εs was set equal to 10ε. The 

basic unit of time is τ = (mσ
2
/ε)

1/2
; with σ = 4 Å, m = 30 amu, and ε = kBT, this corresponds to τ = 1.2 

ps at room temperature. The time-step for the dynamics simulations was δt= 0.001τ and the friction 

coefficient was γ = 0.5τ
−1

. 

Simulations were used to estimate the free energy change of bringing a single surfactant molecule to a 

height z above a surface with coverage Γ, and thereby to calculate the adsorption isotherm. The theory 

is outlined first, and the simulation details are given afterwards. 

 

3.1. Adsorption 

Consider the process of adsorbing a molecule on to a surface with coverage Γ. It is assumed that the 

surfactant molecules adsorbed on the surface are in equilibrium with surfactant in bulk solution, and 

that the concentration of the bulk solution (c0) is sufficiently low that the solution can be considered 

ideal. In this case, the chemical potential of the surfactant in bulk solution is given by 

   (6) 

where μ  is the standard chemical potential at standard concentration c . Now consider the 

chemical potential of a surfactant molecule adsorbed at a height z that is taken to be the perpendicular 

separation between the surface and the head group of the surfactant; this is written in the form 

 (7) 

where c(z) is the local concentration of surfactant head groups, and w(z) is the change in excess free 

energy on transferring a surfactant from an ideal bulk solution remote from the surface (z → ∞) to the 
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position z from the surface with coverage Γ. Being an excess property, w(z) arises from the 

interactions with the other surfactants and the surface. At chemical equilibrium, μ(z) = μ0 and so 

c(z) = c0 exp[−βw(z)]   (8) 

where β = 1/kBT. The total adsorbed number of molecules per unit area of surface is given by 

  (9) 

where z* is a dividing height between adsorbed and desorbed states (to be discussed below). A similar 

expression could also be used to determine the excess adsorption, Γex: 

  (10) 

The total adsorption Γ is fixed in the current simulations and so eqn (9) is most useful. Results similar 

to eqn (9) have been derived before for the adsorption at radius R for a spherical liquid droplet in 

equilibrium with its vapour,
[36]

 and for the adsorption of a molecule on to a membrane.
[20]

 The 

adsorption isotherm is defined by 

      (11) 

The smaller the value of K(Γ), the higher the solution concentration has to be to achieve surface 

coverage Γ at equilibrium. K(Γ) is therefore a kind of equilibrium constant for adsorption. 

For very small particles, the equilibrium distance of a head group from the surface ( σ) is significant 

compared to the particle radius, and hence the actual concentration of adsorbate in the adsorbed layer 

will be less than the number of particles per unit area of colloid surface. To compare the effects of 

particle curvature it is important to consider a surface concentration that reflects the true packing 

density of head groups near the surface. For surfactants at a height z from the particle surface, the 

surface area over which they are distributed is 1/4π(R + z)
2
. An effective surface concentration Γeff can 

therefore be defined as 
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   (12) 

where eqn (8) has been inserted for c(z). Comparing eqn. (9) and (12) shows that 

    (13) 

This ratio is equal to unity for a planar surface, and decreases with decreasing particle radius R. 

Ignoring the effects of the tails, this ratio can be approximated using w(z) = φs(z). 

 

3.2. Umbrella sampling 

From the reversible-work theorem,
[24]

w(z) can be written in the form 

    (14) 

where P(z) is the probability of the head group of a selected surfactant being found at height z above 

the surface, and P0(z) ∝ 4π(R + z)
2
 is the corresponding probability in an ideal solution. [This relation 

also follows from eqn (8).] It is interesting – and numerically convenient – to measure the function 

  (15) 

where P′(z) ∝ P(z) exp[βφs(z)] is the probability distribution when there is no head–surface interaction 

for the selected molecule. Δw(z) is the contribution to the free energy arising from head–head, head–

tail, and tail–surface interactions, but not the head–surface interaction for the selected molecule. P′(z) 

was measured using umbrella sampling
[37]

 with a window potential given by 

     (16) 

so that the measured biased distribution is equal to  The portions of P′(z) 

obtained from different windows of z were concatenated and inserted in to eqn. (14) and (15) so that 

w(z) and Δw(z) are smooth and tend to zero as z → ∞. In this work, the biased simulations were 
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performed with spring constant κu = 10εσ
−2

 and in equally spaced windows centered at 

zu/σ = 1, 2, 3,…. 

 

4. Results 

4.1. Free energy of adsorption 

Figure 3 shows free-energy profiles for the adsorption of single surfactant molecules on to spherical 

surfaces with radii R = 2σ and 10σ, and with various coverages Γ. Figure 3(a) shows results for R = 2σ 

and Γσ
2
 = 0.517. The points represent βΔw on a discrete grid as extracted from simulations. 

βΔwrepresents all interactions except for the head–surface interaction for the selected bead, and 

because it is dominated by the tail–tail excluded-volume interactions, it is purely repulsive. The 

function βφs is a steeply varying function in the vicinity of the particle surface, and therefore so is the 

total free energy βw. To eliminate discretisation errors in the subsequent analysis, it is important to 

have βΔw(z) available on a fine grid in z. This was achieved by fitting, and in all cases a simple 

function of the form 

   (17) 

was found to be suitable. This is a ratio of two quadratic functions (a Padé approximant) with the 

function in the numerator being equal to zero at some cut-off distance zc. The fit is shown in Figure 

3(a), as is the total free energy βw derived from it. The head–surface interaction is, of course, 

attractive, but the tail–tail interactions are repulsive and the resulting excluded-volume interactions 

give rise to a significant free-energy barrier to adsorption of approximately 4 kBT at z  2.5σ. Figure 

3(b) shows the total free energy curves for R = 2σ and Γσ
2
 = 0.119, 0.318, and 0.517. As the surface 

coverage increases, the depth of the attractive well decreases and the height of the repulsive barrier 

increases, as a result of increased excluded-volume interactions. 

(turn to next page →) 
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Figure 3. Components of the free energy of adsorption of single surfactant molecules on to surfaces 

with radius R and coverage Γσ
2
: (a) βw, βφs, and βΔw for R = 2σ and Γσ

2
 = 0.517; (b) βw for R = 2σ 

and Γσ
2
 = 0.119, 0.318, and 0.517; (c) βw, βφs(z), and βΔw for R = 10σ and Γσ

2
= 0.501; (d) βw for R = 

10σ and Γσ
2
 = 0.101, 0.301, and 0.501. In (a) and (c), the blue crosses are Δw as measured in 

simulations. The remaining curves are derived from a fit to βΔw using eqn (17). 

 

Figure 3(c) and (d) show the same data but for a surface with radius R = 10σ. Firstly, Figure 3(c) 

shows that the repulsive contribution βΔw for Γσ
2
 = 0.501 is far greater than that for R = 2σ and a 

similar surface coverage. As a result, the total free energy βw exhibits a far bigger repulsive barrier of 

height 14 kBT, and a much smaller attractive region where w < 0. The variation of βw with surface 

coverage is shown in Figure 3(d); again, with increasing surface coverage, the free energy becomes 

less attractive and the barrier becomes more repulsive, due to the excluded-volume interactions. 

There are two contributions to the variation of βΔw with surface curvature at fixed surface coverage. 

The first one is due to the effective surface concentration of an adsorbed monolayer, taking in to 

account the bonding distance of the head group from the surface, as expressed in eqn. (13). For a 

given surface coverage Γ = N/(4πR
2
), the effective concentration Γeff < Γ, with the difference 

decreasing with increasing radius. Hence, the excluded-volume interactions should be less 

pronounced for smaller particle radii. This does not account fully for the variations in free energy, as 

will be shown when the adsorption isotherms are considered in Section 4.2. So, in the mean time, the 

surface coverage will be characterised by Γ. The second contribution can be understood using the 

cartoons shown in Figure 2(b) and (c). The diagrams show curved and planar surfaces with strongly 

adsorbed surfactant molecules at the same surface coverage. In the case of the curved surface, the 

solvophilic tail groups have more available volume due to the diverging radial lines dividing each 
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molecule from its neighbours. For a colloid of radius R with a surfactant layer of thickness l and 

surface coverage Γ, the volume per surfactant is 

  (18) 

which is a monotonically decreasing function of both R and Γ. A free-volume theory could be 

constructed in which the contribution Δw is represented by a term proportional to −NkBT ln(v − v0) 

where v0 is a close-packed volume-per-molecule. This approach is not taken here, and the focus 

remains on the accurate numerical results from computer simulations. 

Although adsorption kinetics are not the focus of this study, the significant free-energy barriers to 

adsorption and their dependence on surface curvature and surface coverage should have some 

interesting consequences for the approach to equilibrium. Starting from empty surfaces, the rate of 

approach to high equilibrium surface coverages should be slower for flat surfaces than for highly 

curved surfaces. The physical picture is of a molecule having to penetrate a thick canopy of adsorbed 

molecules in order for its head group to interact with the surface. Highly curved surfaces should have 

more exposed volume due to the radial arrangement of the tails, as indicated in Figure 2(b) and (c). 

 

4.2. Adsorption 

The adsorption isotherm in eqn. (11) is characterised by the integral 

     (19) 

and so the question is how to choose the cut-off distance z* which basically delimits the boundary 

between ‘adsorbed’ and ‘desorbed’ states. Figure 3shows that the total free energy βw possesses a 

significant global minimum and a local maximum of order 1–10 kBT in the region of z = 2–3σ, 

depending on curvature and surface coverage. Hence, the running integral with increasing z* should 

converge in the region of z = 2–3σ. This is demonstrated explicitly in Figure 4, where the logarithm of 

K(Γ) is shown as a function of cut-off distance z. The specific examples given are for R = 10σand Γσ
2
 

= 0.101, 0.301, and 0.501, i.e., the same data as in Figure 3(d). In all cases, the integrals plateau well 

before z* = 2σ, and so in practice K(Γ) can be evaluated with this choice of cut-off distance. 
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Figure 4. The logarithm of the integral K(Γ) from eqn (19) as a function of the cut-off distance z* 

separating bound and unbound states. The examples shown are for R = 10σ and Γσ
2
 = 0.101, 0.301, 

and 0.501. 

 

Figure 5 shows the logarithm of the integral K(Γ) in eqn (19) calculated as a function of the surface 

coverage Γσ
2
 for colloid radii R/σ = 2, 4, 6, 8, and 10. Plotted in this form, there is a roughly linear 

relationship between ln K(Γ) and Γ. Fitted parameters from the equation ln K(Γ) = A + BΓσ
2
 are given 

in Table 1. The Γ → 0 limits should be roughly the same for all radii, apart from some minor 

geometrical effects. The average intercept parameter A  18 with a spread of about ±1. Since the 

integral K(Γ) will be dominated by the contribution from the minimum in βw(z), this indicates a 

typical statistical error in w(z) of about ±1 kBT, which is reasonable. For a given surface coverage, ln 

K decreases with increasing surface radius. As explained in Section 3.1, the smaller the value of K(Γ), 

the higher the solution concentration has to be to achieve an equilibrium surface coverage Γ. The 

decrease in K with increasing Γ arises from the effects of molecular crowding on the surface. This 

effect is more pronounced with larger radii due to the decrease of available volume per surfactant, as 

indicated in Figure 2(c). 

 

R/σ A B Γeff/Γ 

2 17.02(20) −7.73(61) 0.485 

4 17.75(27) −17.86(89) 0.674 

6 18.52(10) −23.84(28) 0.762 

8 17.96(21) −29.29(70) 0.813 

10 18.26(34) −33.5(1.1) 0.846 

 

Table 1. Fitting parameters for the integral K(Γ) = exp(A + BΓσ
2
), and the ratio of the effective and 

actual surface concentrations defined in eqn. (13) 
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Figure 5. The logarithm of the integral K(Γ) from eqn (19) as a function of surface coverage Γ: (black 

circles) R = 2σ; (red squares) R = 4σ; (green diamonds) R = 6σ; (blue up triangles) R = 8σ; (magenta 

left triangles) R = 10σ. The lines are linear fits, with the parameters given in Table 1. 

 

Figure 6(a) shows the adsorption isotherms [eqn (11)] in the form of Γσ
2
 against c0σ

3
. For a given 

solution concentration, the surface coverage increases with decreasing colloid radius. As an example, 

the surface coverages on surfaces with R = 2σ and R = 10σ in mutual equilibrium with an ideal 

solution of concentration c0σ
3
 = 1 × 10

−6
 are Γσ

2
  0.503 and 0.183, respectively. To give an idea of 

real parameters, with σ = 4 Å, c0σ
3
 = 1 × 10

−6
 corresponds to c0  26 μmol L

−1
. A surface 

concentration of Γσ
2
 = 0.5 corresponds to an area-per-surfactant of 32 Å. This is an entirely realistic 

value for detergent-in-oil systems. 

(turn to next page →) 



Page 15 of 20 

 

Figure 6. (a) Adsorption isotherms defined by eqn (11) with K(Γ) = exp(A+ BΓσ
2
) and the fit 

parameters given in Table 1: (black line and circles) R= 2σ; (red line and squares) colloid with R = 4σ; 

(green line and diamonds) colloid with R = 6σ; (blue line and up triangles) R = 8σ; (magenta line and 

left triangles) R = 10σ. (b) The same isotherms but with the effective surface concentration Γeff given 

by eqn (13). 

 

Figure 6(a) shows that Γσ
2
 shows a strong dependence on the particle radius, more so than one might 

anticipate on the basis of the excluded-volume mechanism illustrated in Figure 2(b) and (c). As 

explained in Section 3.1, the effective surface concentration takes account of the distances of the head 

groups from the surface, and these will be significant for smaller particles. Figure 7 shows the ratio 

Γeff/Γ computed using eqn (13) and the full free-energy profiles βw extracted from simulations. For a 

given value of R, this ratio shows essentially no variation with surface coverage (actually much less 

than 1%). The numerical values are given in Table 1. Figure 7 also shows a theoretical curve from the 

approximation w(z) = φs(z) (tail contributions are ignored). This is very accurate because the head–

surface interaction is so strong compared to the other contributions plotted in Figure 1. 
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Figure 7. Ratio of the effective surface concentration Γeff to the nominal value Γ = N/(4πR
2
) as a 

function of particle radius R, calculated using eqn (13). The points are from simulations and the line is 

an approximation withw(z) = φs(z). 

 

Figure 6(b) shows the effective surface concentration as a function of bulk concentration. The 

variation of Γeff is less than that of Γ, but there is still a systematic decrease with increasing particle 

radius. For the same example given above, the effective surface concentrations at c0σ
3
 = 1 × 10

−6
 

areΓeffσ
2
  0.244 and 0.155 for R = 2σ and R = 10σ, respectively. This is still a significant effect, no 

matter how the surface concentration is measured. The variations described here may be significant 

for practical applications. In a situation where particles are to be introduced in to system to adsorb 

molecules, then the smaller the particles the better. Not only does this give the best surface area-to-

volume ratio, but also the packing of adsorbate on to small particles is greater. In a situation where 

particles are to be solubilised (such as in overbased detergents), it requires less surfactant per unit area 

to solubilise a large particle than a small particle. Hence, the total particle mass and total surfactant 

surfactant could be optimised simultaneously to yield the lowest cost per total particle surface area. 

 

5. Conclusions 

The thermodynamics of surfactant adsorption on colloidal surfaces has been studied using coarse-

grained models and computer simulations. The models were constructed to isolate the effects of the 

geometry of the solid–solution interface and the surface coverage. Using an umbrella-sampling 

technique, the free energy of adsorbing a surfactant molecule from a dilute solution on to a spherical 

colloid surface has been measured as a function of radius and coverage. The main result is that, for a 
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given surface coverage, the free energy of adsorption decreases with increasing curvature of the 

surface. For a given surface curvature, the free energy of adsorption increases with increasing surface 

coverage. These trends arise from the excluded-volume interactions between the surfactant tails on the 

surface. The dependence on surface curvature is due to the geometrical increase in available volume 

for the surfactant tails with decreasing colloid radius. The dependence on surface coverage is due 

simply to increased tail–tail interactions with increasing coverage. The consequences of these effects 

on the equilibrium partitioning of surfactant between different types of surface have been outlined. 

These observations suggest that, all other things being equal, the presence of different curvature 

surfaces in a heterogeneous system could be enough to stabilise an uneven distribution of adsorbate 

between surfaces. 

Future work will move in three directions. Firstly, the methodology employed here will be applied to 

atomistic models with explicit solvent, in order to resolve the effects of specific chemical interactions 

and desolvation on the adsorption free-energy profile. Secondly, coarse-grained models will be 

extended to take account of differences in surfactant shape. For example, wedge-shaped molecules 

with small head groups and multiple tails may adsorb preferentially on a surface with a specific 

curvature that optimises the molecular packing. Finally, competitive adsorption between several 

different surfactants may be examined by mapping out the free energy of adsorption as a function of 

the individual surface coverages. 
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