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ABSTRACT 

 

Sub-monthly evolution of the interannual variations of absorbing aerosols and related 

hydrometeorology over South Asia in the pre-monsoon period is investigated from the analysis 

of pentad-resolution observational datasets.  

It is shown that pre-monsoon (late April - early May) variations are characterized by 

increased aerosols, reduced cloudiness and precipitation, and increased downward shortwave 

radiation. Lead-lag regressions indicate the significant influence of synoptic-scale advection (and 

related vertical motion) in simultaneously shaping the aerosol distribution and associated 

significant hydroclimate (precipitation, cloudiness, surface shortwave radiation, 2-m air 

temperature) over the Indo-Gangetic Plain.  

The above findings can be reasonably interpreted as manifestation of the aerosol “semi-

direct” effect, if one is not mindful of the prevailing circulation anomalies and their concurrent 

impact on aerosol and hydroclimate. The complex interplay among aerosols, dynamics and 

precipitation also shows the challenge of extracting the aerosol impact from observational 

analysis. Finally, the analysis points to the pitfalls of a columnar, circulation-blind framework in 

investigating aerosol-monsoon interactions, a concern of relevance in analyses of the impact of 

long-term aerosol trends, as well. 

 

Keywords: absorbing aerosols; pre-monsoon hydroclimate. 
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1. Introduction 

Over the past decade there has been substantial improvement in the knowledge of the 

amount, geographical distribution, physical and chemical properties of atmospheric aerosols. 

Intensive field experiments, new surface and remote-sensing observations, and improved 

representation of aerosol processes in models have shed new insights into the controlling 

mechanisms, radiative effects, and the influence of aerosols on climate.  

The influence of anthropogenic aerosols on the Earth’s radiation budget is however still 

considered the largest uncertainty in radiative forcing under climate change (IPCC, 2007). The 

quantification of tropospheric aerosol effects is challenging because of their large spatial and 

temporal variability, diverse physical and chemical properties, and complex interactions of 

aerosols with radiation, microphysical processes and circulation (e.g., Ramanathan et al., 2001; 

Menon, 2004; Lohmann and Feichter, 2005). The influence of large-scale circulation on both 

aerosol distribution and regional hydroclimate is an additional complicating factor in the analysis 

of aerosol effects – one emphasized in this study. 

A number of observational studies have characterized the South-Asian aerosol cloud (e.g., 

Eck et al., 2001; Hsu et al., 2003; Ramanathan and Ramana, 2005; Dey and Tribathi, 2007; 

Gautam et al., 2007; Prasad and Singh, 2007; Ramachandran and Cherian, 2008), a 3-km thick 

brown layer persisting from October to May from the Himalayan foothills to the northern Indian 

Ocean, with a large contribution to aerosol optical depth from absorbing aerosols (e.g., dust 

(12%) and black carbon (11%); Ramanathan et al., 2001). This haze induces a large perturbation 

to the radiative energy budget of the region (up to −25 Wm
-2

 in the mean clear-sky surface 

radiation; Ramanathan et al., 2005) which has significant implications for the water budget, 

agriculture and health. Understanding the effects of aerosols on the distribution and duration of 
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the South Asian monsoon rainfall (which accounts for nearly 75% of the yearly precipitation 

over many regions of the subcontinent) would be relevant for more than 60% of the world’s 

population. 

The large-scale impact of aerosols on the monsoon, mostly its climatological rainfall 

distribution, has been addressed by general circulation modeling studies (Menon et al., 2002; 

Ramanathan et al., 2005; Chung and Ramanathan, 2006; Lau et al., 2006; Meehl et al., 2008; 

Randles and Ramaswamy, 2008) and several mechanisms have been proposed (e.g., Ramanathan 

and Carmichael, 2008). Despite the usefulness of climate models in highlighting the physical 

processes and mechanisms involved in aerosol-monsoon interaction, some caution is necessary 

in interpreting the results, as these models are known to have significant biases in the 

climatological distribution and evolution of monsoon precipitation (e.g., Dai, 2006; Bollasina 

and Nigam, 2008). Furthermore, aerosol effects are only partially represented in many models 

(e.g., Kiehl, 2007), and large uncertainties are associated even with those effects currently 

included (e.g., Kinne et al., 2006). 

Reanalysis and remote-sensed gridded observational datasets have been recently analyzed 

by Lau and Kim (2006) and, somewhat more comprehensively, by Bollasina et al. (2008) 

(hereafter BNL). In particular, BNL showed interannual variations of absorbing aerosols over the 

Indo-Gangetic Plain (IGP) in late spring to have a large-scale impact on the development of the 

ensuing summer monsoon through aerosol-induced anomalies of cloudiness (the “semi-direct” 

effect; Hansen et al., 1997) and the mediation of land-surface processes: reduced cloudiness (and 

rainfall) over the IGP in May associated with high aerosol loading leads to heating of the land 

surface and development of low-level cyclonic circulation that brought more rain to northeastern 

India in May, and to western peninsular India in June.   
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However, the coarse-resolution monthly data used in BNL did not allow a close temporal 

investigation of the development of aerosol anomalies and of the evolution of their linkages with 

atmospheric and surface anomalies. This motivated the present work.  

This study analyzes observational data at higher temporal resolution (i.e., five-day averages 

(pentads) instead of monthly data) and focuses on the transition period prior to monsoon-onset. 

The goal was to describe the evolution of aerosol-related anomalies in radiative and 

hydrometeorological fields in order to better pinpoint aerosol effects. Indeed, the analysis 

showed IGP aerosols to lead large-scale anomalies over the Indian Subcontinent starting by the 

end of April and for several pentads. However, the identification of mechanisms at play and 

aerosol effects, per se, is shown to be challenging given the dominant role played by the large-

scale low-level horizontal advection and associated vertical circulation. In this view, caution is 

necessary in attributing causes and effects if one is not cognizant of the orchestrating role of the 

large-scale low-level circulation. 

The paper is organized as follows: data and methods used in the analysis are described in 

Section 2. Section 3 examines the variability of absorbing aerosols over India and associated 

links with large-scale pre-monsoon conditions. Concluding remarks follow in Section 4. 

 

2. Datasets 

Several independent datasets were used in this study. The loading of absorbing aerosols 

was characterized by means of daily values of the Total Ozone Mapping Spectrometer (TOMS) 

Aerosol Index (AI), available on a 1.25º x 1° grid from November 1978 onwards (Torres et al., 

2002). As discussed in BNL, several issues limited the length of the time series used in this 

analysis to the period 1979-1992.  
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The European Center for Medium-range Weather Forecasts (ECMWF) Reanalysis (ERA-

40; Uppala et al., 2005) provided 6-hourly atmospheric and surface data on a 2.5° x 2.5° grid. 

Observed precipitation came from the Global Precipitation Climatology Project (GPCP) pentad 

dataset, available on a 2.5° x 2.5° grid from 1979 (Adler et al., 2003). Daily surface shortwave 

radiation and total cloud fraction data were obtained from the Global Energy and Water Cycle 

Experiment (GEWEX) Surface Radiation Budget (SRB) Project at 1° resolution from January 

1984 onward (Gupta et al., 1999). The National Oceanic and Atmospheric Administration 

(NOAA) daily outgoing longwave radiation (OLR) data on a 2.5° x 2.5° grid (Liebmann and 

Smith, 1996) were also used.  

All data were averaged over pentad intervals (starting every year on January 1), and 

correlations/regressions were computed using linearly detrended time series of anomalies (with 

respect to the 1979-1992 mean annual cycle) in order to minimize the influence of trends on the 

strength of the deduced relationships. Pentad averaging is effective in masking out the day-to-

day fluctuations of weather while retaining sub-monthly variability arising from the super-

synoptic time-scale processes in the atmosphere − the component of interest here. 

 

3. Results  

The fundamental characteristics of absorbing aerosols over the Indian Subcontinent are 

summarized in Fig. 1. The climatological distribution during 26 April-10 May – a three-pentad 

period corresponding to peak aerosol loading over most parts of India – is shown in Fig. 1a. The 

aerosol cloud is clearly piled up against the Himalayan foothills, and has a distinct maximum 

over the IGP with northwestward extension towards Pakistan. Climatologically, the lower-

tropospheric subsidence over northwestern India associated with westerly flow across 
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Afghanistan and Pakistan plays a major role in building up the aerosol layer during spring (e.g., 

Dey et al., 2004). Dust storms are common in the Middle East and the Thar Desert in late spring 

and early summer, and they are an effective dust source for the Indian subcontinent because of 

the prevailing westerlies. The IGP is one of the most densely populated basins in the world and 

the large emission of regional pollutants from fossil fuels (typically invariant through the season) 

and biomass burning (predominant in winter and spring) also contributes to the total aerosol 

loading (e.g., Habib et al., 2006).  

The solid dots marked in Fig. 1a delineate the region used in defining the aerosol time 

series, consistently with BNL. The dots mark the locations of highest interannual variability of 

aerosols (standard deviation of TOMS AI greater than 0.5), and the resulting time series of areal 

averaged aerosol anomalies (referred to as the “IGP aerosol time series”) is thus an efficient 

marker of the aerosol signal. Lead/lag regressions of the Sub continental atmospheric circulation 

on this regional aerosol time series are used to characterize the aerosol-related anomalies. The 

seasonal evolution of the detrended time series is displayed in Fig. 1b. The pentad data shows 

rapid buildup of aerosols in late spring and a precipitous drop in June due to monsoon onset – 

features not discernible in monthly data (cf. Fig. 1e in BNL). The aerosol loading peaks in the 

first pentad of May (i.e., 1-5 May). The envelope around the seasonal curve marks the range of 

variability at plus/minus one standard deviation. The interannual variability is evidently much 

larger in late spring and early summer (i.e., in the pre-monsoon onset period) than at other times.  

The detrended record of the IGP aerosol anomalies averaged over three pentads (26 April-

10 May) is shown in Fig. 1c, the linear trend in the 1979-1992 period being +0.042 yr
-1

. The time 

series displayed in Fig. 1c is used in the following regression analysis. 
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Figure 2 displays the lead/lag regressions and correlations of the IGP aerosol anomalies 

with aerosols over central-eastern India (Fig. 2a), and of the IGP aerosol-tendency (computed as 

centered differences of the aerosol anomalies) with aerosols and precipitation of the same region 

(Figs. 2b and 2c, respectively). Central-eastern India, as defined here, includes the core of the 

Indian peninsula and, referring to the homogeneous monsoon rainfall divisions of the Indian 

Institute of Tropical Meteorology, encloses the west central, central northeast (up to 85°E), and 

the peninsular (to 15°N) divisions. The IGP aerosol time series exhibits a certain amount of 

autocorrelation at all times (not shown) since aerosol loading is maintained by the eastward 

advection of dust and local emissions, resulting in a residence time of the order of one pentad. 

Figure 2a shows that IGP aerosols are strongly linked with aerosol loading over central-eastern 

India (a downstream region, see bottom panels in Fig. 3) from the end of April to mid-May, 

especially at +2-3 pentad lag (i.e., IGP aerosols leading by 2-3 pentads), indicating a role for 

large-scale advection in aerosol buildup over the latter region. The advection link is consistent 

with Fig. 2b, which shows the lead/lag relationship of the IGP aerosol-tendency. A positive 

tendency is linked with increased aerosol anomalies over central-eastern India 2-3 pentads later, 

but uncorrelated with antecedent anomalies of the same region. 

The lead/lag links of the tendency of a quantity (as above) generally highlight the high-

frequency response (Cayan, 1992). These links are often more pertinent as the tendency, rather 

than the quantity itself, is part of the related prognostic equation. Figure 2c shows positive AI-

tendency over the IGP region to be negatively linked with precipitation over central-eastern India 

in late April and early May. The negative correlations originate at lag 0 and persist for several 

(positive) lags. This pattern may indicate an influence of aerosols on the atmosphere. However, 

the similar delay in aerosol-increase and precipitation-decrease over central-eastern India 
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suggests that either one pentad is a too long interval for discerning cause and effect or an 

orchestrating role for the large-scale circulation (shown later in Fig. 3).  

The lead/lag links of aerosol-tendency, aerosols, and precipitation over the same region 

(e.g., central-eastern India) are similar to those depicted in Fig. 2, and thus not shown. The 

aerosol-tendency is anticipated to lead aerosols, but not precipitation, necessarily. For instance, 

aerosol-washout will manifest as negative contemporaneous correlation, in the absence of other 

influences. Negative correlations in Fig. 2c (and in a corresponding figure where all quantities 

are for central-eastern India, not shown) are however strongest at lag +2 pentads, suggesting that 

washout alone is not the major process, although it may well be important in conjunction with 

other processes (e.g., aerosol advection). 

The relationship between regional aerosol variability (viz. the IGP aerosol tendency) and 

the larger-scale circulation and hydroclimate variability is shown in Fig. 3 with respect to the 

base period of 26 April – 10 May, when the IGP aerosols have pronounced delayed links. Mean 

spatial patterns during this three-pentad period are shown at various lead/lags, beginning with the 

distribution of absorbing aerosols themselves. Not surprisingly, the IGP AI-tendency is linked 

with aerosol buildup which is striking across the ±one-pentad lag/lead regressions. The buildup 

is not confined to the north central region (covered by solid dots in Fig. 1a) but is more 

expansive, covering much of the Subcontinent over a two-pentad period. The buildup evidently 

persists, at least for one more pentad (i.e., lag +2). The direction of the buildup (southeastward) 

and its delayed nature indicate a significant role of the large-scale circulation, especially 

advection.  

The correlations between precipitation and AI-tendency show diminished precipitation, 

especially to the south of the core aerosol buildup. The lack of collocation is noteworthy, and 
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indicative of the significance of processes that generate a nonlocal hydroclimate response to 

aerosol loading, or of the role of circulation (advection and convergence) in modulating both 

aerosol loadings and precipitation. The next three variables – downward surface shortwave 

radiation, total cloudiness fraction, and 2-m air temperature – obtained from independent data 

sets, paint a coherent picture showing aerosol-buildup and diminished precipitation to be linked 

with reduced cloudiness, more surface shortwave radiation, and higher 2-m temperature (and 

reduced convection, as manifested in the OLR anomalies, not shown here). While a physically 

consistent scenario emerges, attribution remains challenging for reasons mentioned earlier. For 

instance, both diminished precipitation (from non-aerosol influence) and aerosol buildup can 

initiate the displayed sequences, the latter mechanism being envisioned through its semi-direct 

effect. Interestingly, both effects can be simultaneously generated by the large-scale flow, 

blowing from the dry and dusty desert regions to the west/northwest. Regardless of the 

instigating mechanism, this analysis indicates that aerosol buildup is accompanied by more 

surface shortwave radiation, suggesting that cloudiness fluctuations can easily overwhelm the 

surface radiation shortfall due to aerosol absorption.  

The 850-hPa anomalous circulation (not plotted in the Himalayan foothills to avoid the use 

of fictitious, below-ground values), especially the northwesterly-to-westerly flow, argues for the 

importance of advection (and horizontal convergence) in aerosol buildup, which is also indicated 

by the rapidity of the buildup (cf. top panel). The advective contribution is further shaped by 

related vertical motions (not shown). A comparison of 850 hPa convergence (Fig. 3, bottom 

panels) and aerosol distributions indicates that convergence can be influential (e.g., at lag +1).  
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4. Concluding Remarks  

Sub-monthly evolution of the interannual variations of absorbing aerosols and related 

hydrometeorological conditions over South Asia in the pre-monsoon period is investigated using 

pentad-resolution observational datasets during the period 1979-1992. This study was motivated 

by the findings of Bollasina et al. (2008) on the linkage between anomalous aerosol build-up in 

May and delayed rainfall onset, based on the analysis of monthly data. The delayed onset was 

attributed to the aerosol “semi-direct” effect and ensuing land-atmosphere interactions. The 

initial goal of this study was to uncover the process sequence underlying aerosol-climate 

interactions. However, the present analysis indicates the challenge of an observationally-based 

approach.  

The pentad-resolution analysis portrays a complex picture of aerosol evolution over 

central-eastern India, in which circulation plays a significantly role. The pervasive influence of 

advection precludes a robust analysis of the aerosol impact. Removal of the advective 

contribution is reasonably straightforward in case of aerosol loading, but not for many other 

meteorological parameters that interact with aerosols (e.g., cloudiness, precipitation). 

The late-April to early-May variations are characterized by aerosol loadings in central-

eastern India lagging the build-up in the northern plains. Anomalous aerosols are shown to be 

associated with significant anomalies of surface and atmospheric variables over the Indian 

Subcontinent. The precipitation evolution is nearly synchronous but not collocated with the 

aerosol build-up core. Cloudiness, surface shortwave radiation, and 2-m air temperature evolve 

in concert, precluding attribution of the noted changes. 

Extraction of the aerosol impact is very challenging, observationally, in large measure 

because of the significant influence of large-scale advection and horizontal divergence in shaping 
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aerosol distribution as well as regional hydroclimate. For instance, the spatiotemporal evolution 

displayed in Fig. 3 – specifically, aerosol-increase, reduced cloudiness and precipitation, and 

increased downward shortwave radiation – can be reasonably interpreted as the manifestation of 

the aerosol “semi-direct” effect, or equally, of the influence of reduced precipitation (from non-

aerosol causes), if one were not mindful of the concurrent circulation anomalies. Inspection of 

the low-level flow structure as well as its horizontal convergence however suggests that all the 

above effects can just as well arise, simultaneously, from the evolving synoptic scale flow and 

related hydrometeorology – pointing to the pitfalls of a columnar, circulation-blind analysis 

framework. 

Regardless of the instigation mechanism, it is shown that aerosol buildup is accompanied 

by more surface shortwave radiation associated with cloudiness reduction, suggesting that 

cloudiness fluctuation can be as relevant as surface radiation shortfall due to aerosol absorption. 

This point is important for modeling studies of absorbing aerosol effects on climate, especially 

considering model deficiencies in realistically simulating cloud changes and feedbacks (e.g., 

Randall et al., 2007). 

This pentad resolution analysis of anomalous aerosol evolution in the pre-monsoon-onset 

period indicates a prominent role for low-level circulation advection (and related vertical 

motions) in modulating aerosol loadings, both mechanistically and through related meteorology. 

The role of large-scale circulation in modulating aerosol loading (and related impacts) may be 

appreciable even in context of decadal variability and longer-term trends in regional 

hydroclimate. 
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Figure Captions 

 

Figure 1. Characteristics of the absorbing aerosol layer based on the TOMS AI (dimensionless) 

during the period 1979-1992: (a) the mean spatial distribution for the three-pentad period 26 

April – 10 May; (b) climatological annual cycle (crossed line), with the range of plus/minus one 

standard deviation around the mean enclosed by the shaded area, averaged over region marked 

with black points in (a); (c) time series of anomalies (averaged between 26 April – 10 May and 

after removing the linear trend, which is 0.042 yr
-1

) averaged over the same region of (b). The 

points marked in (a) are consistent with Bollasina et al. [2008] and correspond to locations of 

highest interannual variability (standard deviation greater then 0.5). 

 

Figure 2. Time evolution of central-eastern India (CEI) anomalies (shaded) of aerosols ((a) and 

(b); dimensionless) and precipitation ((c); mm day
-1

) lead/lag regressed on (a) the aerosol time 

series and (b) and (c) the aerosol tendency time series over the IGP (defined in Fig. 1b). The 

±0.46 and ±0.66 contour lines show the 90% and 99% confidence levels, respectively. The x-axis 

is the reference pentad of IGP anomalies, the y-axis is the lead/lag (negative/positive) of CEI 

anomalies with respect to IGP anomalies in terms of number of pentads. The horizontal line 

denotes the zero-lag axis, while the dotted vertical lines highlight the period 26 April – 6 May. 

 

Figure 3. Aerosols (AI, dimensionless), precipitation (PCP, mm day
-1

), downward shortwave 

radiation (DSW, W m
-2

), total cloudiness (CLD, fraction), 2-m air temperature (T2M, ºC), 850-

hPa streamlines (STR) and convergence (s
-1

, shaded) regressed on the aerosol tendency time 

series over the IGP at different lead/lags during 1979-1992 (1984-1992 for cloudiness and 



 19 

radiation). The base period (lag 0) is the three-pentad period 26 April – 10 May. The ±0.26 

(±0.32) and ±0.39 (±0.48) contour lines show the 90% and 99% confidence levels, respectively. 
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(dimensionless) during the period 1979-1992: (a) the mean spatial distribution for the 
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 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Time evolution of central-eastern India (CEI) anomalies (shaded) of aerosols 

((a) and (b); dimensionless) and precipitation ((c); mm day
-1

) lead/lag regressed on (a) the 

aerosol time series and (b) and (c) the aerosol tendency time series over the IGP (defined 

in Fig. 1b). The ±0.46 and ±0.66 contour lines show the 90% and 99% confidence levels, 

respectively. The x-axis is the reference pentad of IGP anomalies, the y-axis is the 

lead/lag (negative/positive) of CEI anomalies with respect to IGP anomalies in terms of 

number of pentads. The horizontal line denotes the zero-lag axis, while the dotted vertical 

lines highlight the period 26 April – 6 May. 
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Figure 3. Aerosols (AI, dimensionless), precipitation (PCP, mm day

-1
), downward 

shortwave radiation (DSW, W m
-2

), total cloudiness (CLD, fraction), 2-m air temperature 

(T2M, ºC), 850-hPa streamlines (STR) and convergence (s
-1

, shaded) regressed on the 

aerosol tendency time series over the IGP at different lead/lags during 1979-1992 (1984-

1992 for cloudiness and radiation). The base period (lag 0) is the three-pentad period 26 

April – 10 May. The ±0.26 (±0.32) and ±0.39 (±0.48) contour lines show the 90% and 

99% confidence levels, respectively. 


