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Abstract 

The salicylamidoxime-based complex [Mn6(μ3-O)2(H2N-sao)6(py)6(EtOH)2](ClO4)2·4EtOH 

(1·4EtOH) constitutes the first example of a cationic and ferromagnetic member of the oxime-based 

family of [Mn
III

6] Single-Molecule Magnets. 

 

Introduction 

In the multidisciplinary field of molecule-based magnetism, the structural and magnetic properties of 

molecular nanomagnets have been thoroughly investigated for their fundamentally interesting 

chemistry and physics that can potentially provide a gateway for the discovery of new physical 

phenomena and application in a diverse array of technological applications.
1
 The latter can include 

quantum information processing,
2
 low temperature cooling

3
 and molecular spintronics.

4
 The 

development of novel synthetic methodologies which afford new magnetic materials is therefore a 

fundamentally important issue. In this respect, the use of phenolic oximes has proven to be 

particularly successful, especially for the preparation of Mn(III)-based Single-Molecule Magnets 

(SMMs).
1
 Derivatised salicylaldoximes (Scheme 1) have been employed to generate a large family of 

hexametallic ([Mn
III

6]), and trimetallic ([Mn
III

3]), complexes with SMM behaviour, in which 

chemically-induced structural distortion of the Mn-N-O-Mn torsion angles allowed the preparation 

and isolation of family members displaying remarkably different magnetic properties.
5
 This in turn 

resulted in the formulation of a semi-quantitative magnetostructural correlation which enables 

prediction of the magnetic properties of new family members.
6
 The coordination chemistry of the 

related salicylamidoxime ligand
7
 and its dialkyl derivatives

8
 (Scheme 1) towards the Mn

III
 ion has also 

been explored extensively. Indeed in a recent experimental and theoretical study these 

salicylamidoxime-based [Mn
III

6] SMMs were shown to possess spin ground states varying from 4 to 

12 and anisotropy energy barriers from 24 to 86 K.
7,8

 Interestingly in these latter complexes it was 

established that the critical angle where the exchange coupling between neighbouring Mn(III) ions 

switches from antiferromagnetic to ferromagnetic is ca. 27°, somewhat lower than that of the related 

salicylaldoxime-based complexes (ca. 31°). 

 

 

Scheme 1. The structures of: (A) salicylaldoxime (R-saoH2) and (B) salicylamidoxime (R2N-saoH2). 

R =H, Me, Et, Ph etc.  
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Figure 1. Perspective view of the molecular structure of the [Mn6(μ3-O)2(H2N-sao)6(py)6(EtOH)2]
2+

 

cation of 1. H atoms, ClO4
-
 anions and EtOH solvent molecules have been omitted for clarity. [Colour 

code: pink, Mn; red, O; blue, N; black, C]. 

 

Herein we report the synthesis and magnetostructural characterization of the first cationic, 

ferromagnetically coupled salicylamidoxime-based family member; namely the complex [Mn6(μ3-

O)2(H2N-sao)6(py)6(EtOH)2](ClO4)2·4EtOH (1·4EtOH). The only previously reported cationic 

complex, [Mn6(3-O)2(H2N-sao)6(MeOH)8]Cl2·9MeOH (2·9MeOH), possesses a small spin ground 

state on account of the presence of one dominant antiferromagnetic nearest-neighbour exchange 

interaction.
7c

 Control of the overall charge (and magnetic exchange) of the [Mn6] cluster is an 

important step towards making more ‘advanced materials’, not simply because it can be used to tune, 

for example, solubility, reactivity, purification, stability and substrate specificity, but also because the 

cluster cation/anion produced can be charged balanced through the incorporation of anions/cations 

that bring another physical property or functionality to the material. For example, paramagnetism, 

conductivity, luminescence etc. 

The reaction of Mn(ClO4)2·6H2O with H2N-saoH2 and pyridine (py) in a basic, alcoholic solution, (see 

the ESI for full details) results in the formation of dark green crystals after slow evaporation of the 

filtered mother liquor, after 1 day. The crystals were in a monoclinic crystal system and structure 

solution was performed in the P21/n space group. The structure of 1 is made up of the hexametallic 

cluster cation [Mn6(μ3-O)2(H2N-sao)6(py)6(EtOH)2]
2+

, two ClO4
-
 anions and EtOH solvent molecules 

of crystallisation. A perspective drawing of the [Mn6]
2+

 cation is shown in Figure 1. Each [Mn6(μ3-

O)2(H2N-sao)6(py)6(EtOH)2]
2+

 unit contains two symmetry equivalent {Mn3(μ3-O)} triangular 

moieties, which are linked by two phenolate and two oximate O-atoms and related by an inversion 

centre. Each edge of the triangle is spanned by the -N-O- moiety of the oxime ligand, with the central 
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O
2-

 ion displaced 0.162 Å above the plane of the [Mn3] triangle, towards the terminally ligated py 

molecules. The hexametallic core of 1 is thus rather similar to both its salicylamidoxime-based [Mn6] 

predecessors and to that of complex 2, the main difference being the replacement of the terminally 

bonded carboxylates, halides or ROH molecules on the outwardly facing triangular faces by six 

terminal pyridine molecules. This is actually a very surprising result, since addition of pyridine to all 

previously reported salicylaldoxime-based [Mn6] clusters results in the cleaving of the molecule into 

its constituent [Mn3] triangles, i.e. the formation of a triangle capped on one face by three py 

molecules and on the other by the charge-balancing anion (here ClO4
-
).

6
 This observation highlights 

the relevant importance of the –NH2 group of the salicylamidoxime ligand, and suggests its role may 

not simply be steric. The six Mn(III) ions exhibit distorted octahedral geometries with their Jahn-

Teller axes approximately perpendicular to the [Mn
III

3] planes. The remaining coordination site on 

Mn2 (and symmetry equivalent) is occupied by an EtOH molecule. As observed previously, the 

salicylamidoxime ligands can promote significant twisting of the [Mn
III

3(μ3-O)(H2N-sao)3] triangular 

units, producing Mn–N–O–Mn torsion angles with magnitudes as large as those obtained with the 

bulkiest salicylaldoxime ligands.
7ac

 Indeed the Mn–N–O–Mn torsion angles in 1 are 42.0(4), 39.4(5) 

and 30.8(5)°. 

In the crystal lattice the ClO4
-
 anions sit between neighbouring [Mn6]

2+
 cations and are H-bonded to 

the –NH2 groups on the salicylamidoxime ligands of each (O···N, ~2.9 Å), linking them into square 

sheets (Figure S1). They are also H-bonded to one EtOH molecule of crystallisation (O···O, ~2.8 Å), 

with the latter H-bonded to a different salicylamidoxime –NH2 moiety (O···N, ~3 Å). The second 

EtOH molecule of crystallization (and symmetry equivalent) H-bonds to the terminally bonded 

phenolic O-atom (O···O, 2.9 Å). The result is a 2D H-bonded sheet (Figure S1) with the terminally 

bonded py molecules interdigitated in the third dimension, with the closest C···C interactions being of 

the order of 3.5 Å. 

Dc magnetic susceptibility measurements were carried out on a microcrystalline sample of 1 in the 

300–5 K temperature range and an external magnetic field of 0.1 T. The MT versus T plot is given in 

Fig. 2. At room temperature the MT value is 20.7 cm
3
 mol

-1
 K, somewhat higher than that expected 

for six uncoupled Mn(III) (S = 2) centres (18.0 cm
3
 mol

-1
 K), indicating the presence of dominant 

ferromagnetic exchange interactions between the metal ions. The value of MT rises gradually with 

decreasing temperature, increasing more abruptly at approximately 100 K and reaching a maximum 

value of 32.3 cm
3
 mol

-1
 K at 22 K. Below this temperature the value of MT drops to a final value of 

11.5 cm
3
 mol

-1
 K at 5 K (Fig. 2), likely due to the presence of intermolecular interactions and (at 

lower temperature) zero-field splitting (zfs) effects. Simulation of these data to the maximum in MT, 

having in mind the torsion angles set in 1 and using the 2J model described by the Hamiltonian of eqn 
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(1) and Fig. S2, afforded the parameters g = 1.99 ± 0.01, J1 = +1.90 ± 0.05 cm
-1

 and J2 = +0.85 ± 0.05 

cm
-1

. 

 

A 2J model was used because in 1 there is one Mn–N–O–Mn torsion angle (30.8° associated to J2) 

which is somewhat smaller than the other two (42.0 and 39.4° associated to J1), thus the exchange 

pathways are divided in two groups in the core of the cationic Mn6 complex (Fig. S2). This is nicely 

reflected in the subsequent simulation values, which reflect a more positive J with increasing torsion 

angle (J1 = +1.90 cm
-1

 and J2 = +0.85 cm
-1

). This data treatment has satisfactorily been performed in 

previous works.
5
 Attempts to fit the experimental data in the whole temperature region led to 

numerous solutions of similar quality, since the low temperature drop in MT can be modelled through 

inclusion of both intermolecular interactions and zfs, and both are correlated.
 

 

 

Figure 2. Plot of MT vs. T obtained for compound 1 (o). The solid red line represents the simulation 

of the data obtained for 1. 

 

Variable temperature–variable field dc magnetisation data were collected in the ranges 2–7 K and 

0.5–7 T and fitted to a Zeeman plus axial zero-field splitting Hamiltonian [Ĥ = D(Ŝ
2

z − S(S + 1)/3) + 

μBgHŜ] assuming only the ground state is populated.
5-8

 The experimental data for 1 are plotted as 

reduced magnetisation (M/NμB vs. H/T) in Fig. S3. The best fit afforded the parameters S = 12, g = 

1.98 ± 0.02 and Dcluster = -0.34 ± 0.02 cm
-1

. These are consistent with other congeners of the [Mn
III

6] 

family. Ac susceptibility measurements were performed on a sample of 1 in the temperature range 2–

10 K in zero applied dc field and a 3.5 G ac field oscillating at 50–1000 Hz. Out-of-phase ac signals 

for 1 are shown as ac" vs. T plot in Fig. 3 and are consistent with SMM behaviour. Indeed, a clear 
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frequency-dependent decrease of the ac" maxima is observed. These also decrease with decreasing 

frequency, a feature typical of strong intermolecular interactions in single-molecule and chain 

magnets (SMMs and SCMs), and consistent with the packing of the clusters in the crystal of 1.
9
 These 

data were fitted to the Arrhenius equation [ = oexp(Ueff/kBT), where o is the pre-exponential factor, 

 is the relaxation time, Ueff is the barrier to the relaxation of the magnetisation and kB is the 

Boltzmann constant] and plotted in the inset of Fig. 3. The obtained values for o and Ueff are 5.3 x 10
-

9
 s and 40 K, respectively. The Ueff value for 1 falls into the range (24 K < Ueff < 86 K) for previously 

reported salicylamidoxime-based Mn6 complexes.
7
 

 

 

Figure 3. Out-of-phase ac susceptibility (ac") versus T plot for 1. The inset shows the Arrhenius best-

fit plot (see text). 

 

In summary, the crystal structure and initial magnetic studies of a new salicylamidoxime-based 

[Mn
III

6] compound of formula [Mn6(μ3-O)2(H2N-sao)6(py)6(EtOH)2](ClO4)2·4EtOH (1·4EtOH) are 

reported. 1 constitutes a highly unusual example of a cationic and ferromagnetic [Mn
III

6] single-

molecule magnet. The preparation of 1 opens a new and appealing synthetic route to obtaining new 

magnetic materials: the ability to face-cap Mn6 with pyridine ligands suggests the use of polypyridine-

type ligands should afford a plethora of supramolecular Mn6 cages in which additional paramagnetic 

moieties can be attached to the Mn(III) ions in order to modify the relaxation dynamics. In addition 

the [diamagnetic] ClO4
-
 counter anion can be replaced with alternative ions that bring another physical 

property or functionality to the material to produce a family of multifunctional Mn6 salts. 
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Notes and references 

§ Crystal data for 1: C84H102Cl2O28N18Mn6, M = 2212.38, monoclinic, space group P2(1)/n, a = 

13.039(1), b = 22.772(1), c = 16.487(1) Å,  = 102.87(1)°, V = 4772.2(5) Å
3
, T = 120(2) K, Z = 2,  = 

0.912 mm
-1

, Dc = 1.540 gcm
-3

, 36867 reflections collected, 9828 unique (Rint = 0.0524), final R1 = 

0.0812, wR2 = 0.2070, GoF = 1.043, data/restraints/parameters = 9828/2/618. Single crystal X-ray 

diffraction data of 1 were collected on a Bruker ApexII CCD area detector diffractometer using 

monochromatized Mo-K radiation (λ = 0.71073 Å). The structure was solved by standard direct 

methods and subsequently completed by Fourier recycling using the SHELXTL
10

 software packages 

and refined by the full-matrix least-squares refinements based on F
2
 with all observed reflections. The 

final geometrical calculations were carried out with the PARST97 program
10

 whereas the graphical 

manipulations were performed with the DIAMOND program.
11

 CCDC 943039. 
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