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Sequencing and Characterisation of an Extensive Atlantic
Salmon (Salmo salar L.) MicroRNA Repertoire
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Houston2

1 Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, Scotland, United Kingdom, 2 The Roslin Institute and Royal (Dick) School of
Veterinary Studies, University of Edinburgh, Midlothian, Scotland, United Kingdom

Abstract

Atlantic salmon (Salmo salar L.), a member of the family Salmonidae, is a totemic species of ecological and cultural
significance that is also economically important in terms of both sports fisheries and aquaculture. These factors have
promoted the continuous development of genomic resources for this species, furthering both fundamental and
applied research. MicroRNAs (miRNA) are small endogenous non-coding RNA molecules that control spatial and
temporal expression of targeted genes through post-transcriptional regulation. While miRNA have been characterised
in detail for many other species, this is not yet the case for Atlantic salmon. To identify miRNAs from Atlantic salmon,
we constructed whole fish miRNA libraries for 18 individual juveniles (fry, four months post hatch) and characterised
them by Illumina high-throughput sequencing (total of 354,505,167 paired-ended reads). We report an extensive and
partly novel repertoire of miRNA sequences, comprising 888 miRNA genes (547 unique mature miRNA sequences),
quantify their expression levels in basal conditions, examine their homology to miRNAs from other species and
identify their predicted target genes. We also identify the location and putative copy number of the miRNA genes in
the draft Atlantic salmon reference genome sequence. The Atlantic salmon miRNAs experimentally identified in this
study provide a robust large-scale resource for functional genome research in salmonids. There is an opportunity to
explore the evolution of salmonid miRNAs following the relatively recent whole genome duplication event in salmonid
species and to investigate the role of miRNAs in the regulation of gene expression in particular their contribution to
variation in economically and ecologically important traits.
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Introduction

MicroRNAs (miRNAs) are ubiquitous non-protein coding
short RNA molecules (18-26 nucleotides) which play an
important role in the post-transcriptional regulation of gene
expression [1,2]. They act via binding to the 3’ UTR region of
the target mRNAs, resulting in mRNA degradation or
translation inhibition [3]. The expression of miRNA is under
tight regulation in specific tissues and developmental stages in
mammals [4], flies [5], worms [6] and frogs [7]. miRNAs are
involved in the control of diverse processes including animal
development and growth [8], signal transduction [9], disease
[10,11] and virus-induced immune defence [12,13]. The genes
encoding miRNA are initially transcribed by RNA polymerase II
to generate primary miRNAs (pri-miRNAs). These pri-miRNAs
are processed to release miRNA precursors (pre-miRNAs)

approximately 70 nt in length with characteristic hairpin
structures. Pre-miRNAs are then exported from the nucleus to
the cytoplasm. The pre-miRNA hairpin is then cleaved to
generate a double-stranded miRNA duplex with a characteristic
3’ two nucleotide overhang. Subsequently, the double-stranded
miRNA duplex is separated and one strand is selected as the
mature miRNA, whereas most of the other strand, termed
mature star-sequence, is degraded [14].

Before the advent of high-throughput sequencing technology
the number of known miRNAs was limited to approximately
100, discovered by laborious molecular cloning and Sanger
sequencing methods. More recent studies have demonstrated
that high-throughput sequencing can be applied to successfully
discover even low abundance miRNAs in different species
[15,16]. A single mature miRNA can bind to multiple different
mRNA transcripts (up to 200 genes) while each mRNA can
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have recognition sites for more than one miRNA [17]. Over
30% of the human protein-coding genes are believed to be
negatively regulated by miRNA [18,19], which highlights the
significance of their role in transcriptional and post-
transcriptional regulation of gene expression [2,3].

Across all species, in excess of 25,000 mature miRNAs have
been reported and deposited in miRBase [20]. The most recent
release (release 19, August 2012) contains 2,042 mature
miRNAs from Homo sapiens and 368 mature miRNA from
Caenorhabditis elegans (nematode). Fish species are under-
represented, with data available from Danio rerio (zebrafish;
247 mature miRNAs), Oryzias latipes (medaka; 147 mature
miRNAs), Cyprinus carpio (common carp; 146 mature
miRNAs), Tetraodon nigroviridis (Tetraodon; 109 mature
miRNAs), Fugu rubripes (fugu; 108 mature miRNAs),
Paralichthys olivaceus (olive flounder; 38 mature miRNAs) and
Hippoglossus hippoglossus (Atlantic halibut; 1 mature miRNA).

Salmo salar (Atlantic salmon; family Salmonidae) is an
economically important species for both wild fisheries and
aquaculture production. Genomic resources for the species are
advanced compared to other farmed fish, but lag behind
terrestrial livestock and model species. The S. salar genome is
in the process of being sequenced and assembled [21] and a
first draft of the genome sequences is available (NCBI
Assembly GCA_000233375.1). The salmonid genome is
derived from an ancestral whole-genome duplication event that
occurred between 25 and 100 million years ago, and is
considered to exhibit ‘residual tetraploidy’ [22]. Large regions of
chromosome homeology both complicate genomic analyses
and provide an interesting model for the study of many facets
of re-diploidisation following a whole genome duplication event.
One interesting aspect concerns the role that miRNAs may
play in the control of duplicate gene expression and
subsequent downstream effects on the phenotype. To date
experimental exploration of miRNAs in salmonids has been
confined to Oncorhynchus mykiss (rainbow trout) where 210
miRNAs were cloned and sequenced from various tissues [23]
and more recently, high throughput sequencing has been used
[24] to catalogue 496 miRNAs from unfertilised ova.
Information for Atlantic salmon is more sparse, with just two
recent in silico interrogations of publically available EST
sequences being published, reporting computational
predictions for 307 [25] and 102 [26] putative miRNAs.

The aim of the current study was to discover S. salar
miRNAs empirically and to begin to investigate their functional
roles. The primary objectives were to sequence and
characterise an extensive miRNA repertoire and to profile a
reference expression level in S. salar fry. Identifying miRNA
targets is an important step in studying miRNA functions. Gene
targets have conserved perfect or near-perfect complementary
sites to miRNAs [2,27]. Based on sequence complementarity
between miRNAs and mRNAs, computational approaches can
be used as a powerful strategy to predict miRNA targets
[2,28,29]. Consequently, a secondary objective of this study
was the in silico prediction of miRNA targets from the S. salar
transcriptome. This miRNA discovery and characterisation
phase is a first step to understanding the role of miRNA in

regulating gene expression and downstream biological
processes in S. salar.

Results

De-novo identification of miRNAs
Small RNA transcriptomes from 18 S. salar fry were

analysed using high-throughput sequencing (data made
available through the NCBI BioProject accession number
SRP017393). In total, 354,505,167 paired-ended reads (37
nucleotides long) were obtained from the 18 homogenised
whole S. salar fry. Low quality reads, reads with ambiguous
bases, and non-identical paired-end reads were discarded
(6.83%). For the remaining 330,292,464 reads each unique
sequence (5-37 nt long) and its count number were generated,
with 2,477,426 unique sequences being identified (Figure 1A
Table S1). Sequences between 16 and 28 nt long (1,374,027
sequences, 55% of total representing 76% of the read counts)
were matched against S. salar genome assembly (NCBI
Assembly GCA_000233375.1) using miRanalyzer [30], to
identify potential miRNA genes. This produced 11,803
predicted pri-miRNAs with read counts ranging between 1 and
56,087,898 (Figure 1B).

A total of 946 candidate pri-miRNAs with read counts greater
than 10 reads per sample (see criteria from [20]) were filtered
using RepeatMasker [31] to identify and remove repeats and
low complexity sequences (Tables 1 & S1). Following this, 888
robust pri-miRNAs were retained for further analysis.
Collectively these filtered sequences accounted for 72.4% of
the read count (sequences between 16 and 28 nt long) and
had a median read count of 5,007.

Identification of conserved miRNAs in S. salar
The 888 candidate pri-miRNAs were BLASTN searched

against the mature miRNA sequences in miRBase (release 19)
and separately against reported O. mykiss-specific miRNAs
[23,24]. This resulted in 459 pri-miRNAs (51.5% of S. salar
candidates) being identified with high confidence within
miRBase (e-value < 0.5; Table S2). A further 13 pri-miRNAs
(1.5%) were identified as likely homologues of O. mykiss
miRNAs (Table 2). The 416 remaining pri-miRNAs (47% of
candidates) were classified as novel (Table S2). Overall, 547
mature miRNAs were generated from 766 pre-miRNA
sequences covering 888 pri-miRNA genes. All miRNAs
possessed a perfect two nt 3’ overhang generated by Dicer
cleavage. The sequences and the secondary structures of
these pri-miRNAs are shown in Table S2.

Comparative analysis of salmonid miRNA sequences
We compared our miRNA sequences to those identified or

predicted in previous studies in salmonid species and
examined the overlap [23–26]. Before making any comparison,
we applied RepeatMasker to identify nucleotide repetitions and
other structured small RNAs (5S, tRNA, etc.). Our data are
consistent with previous miRNA predictions for S. salar with the
vast majority of predicted miRNAs being verified by the
sequence data in this study (Table 3). A high degree of

Salmon Fry microRNA Repertoire
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conservation between S. salar and O. mykiss miRNAs was
demonstrated, with all the 210 cloned O. mykiss miRNAs [23]
being retrieved in our dataset (Table 3). Only 85 out of 486
miRNAs from the O. mykiss unfertilised egg miRNA dataset
[24] were not detected in this study (Table 3).

miRNA abundance and genomic distribution
The putative gene copy number for each miRNA was

estimated by alignment of candidate miRNA sequences with
the S. salar draft reference genome. Of the 888 pri-miRNA
genes, there were 122 pairs of identical duplicates, i.e., 16% of
the total. The 888 pri-miRNA sequences clustered into 453
families (miRNA with similar mature miRNA, as defined by the
Rfam database [32]). The miRNA families exhibited a wide
range of gene copy number with let-7 (26 gene copies), miR-30

Table 1. Repeat elements identified using the repeat
masker.

RepeatMasker elements Number of occurrences
Retro-elements  
  SINEs 2
  LINEs: L2/CR1/Rex 1
  LTR elements: Gypsy/DIRS1 5
DNA transposons  
  hobo-Activator 2
  Tc1-IS630-Pogo 2
  Tourist/Harbinger 1
Small RNA (tRNA) 39
Simple repeats 6

The final dataset of putative miRNA was depleted of 58 candidate repetitive
elements (details presented Table S1).

(18 gene copies), and miR-181 (13 gene copies) having the
most copies in the S. salar draft genome assembly (Figure 2A).

Three miRNAs families predominated: miR-181 (37.9% of
total miRNA transcripts), miR-10 (35.0%) and miR-26 (5.9%).
Detected gene copy numbers for these miRNAs were 13, 8 and
10 respectively (compared to let-7 at 1.9% of total miRNA
transcripts and miR-30 at 1.1%, Figure 2B Table S3). miRNAs
with fewer than seven gene copies (n = 715) represented only
15.4% of the miRNA abundance in S. salar. The miRNA library
was not normalised, thus providing the opportunity to compare
gene copy number with transcript frequency. To assess the
correlation between putative gene copy number and miRNA
family abundance (Table S3), a Spearman’s rank correlation
coefficient was calculated between the two variables. There
was a positive correlation between gene copy number and
miRNA family abundance (Spearman’s Rho = 0.64, P < 0.001)
indicating that miRNA families with multiple gene copies tend to
have higher overall expression levels. The distributions of the
miRNA family expression among the 18 samples were
compared using DESeq [33]; no significant variation of
expression was detected among either S. salar families or
individuals.

Predicted target genes of miRNAs
The miRNA target genes were predicted using TargetSpy

[34] and RNAHybrid [35] using all 119,912 S. salar mRNA
sequences available from the Centre for Biomedical Research
(University of Victoria) website [36]. In total, 57,907 putative
target genes (474,947 putative target sites) were identified by
TargetSpy and 62,371 putative target genes (519,308 putative
target sites) were identified by RNAhybrid. Overall, 8,065
common putative target genes (9,580 putative target sites;
Table S4) were identified as possible targets for miRNA
regulation (from 548 mature miRNAs). However, confirmation

Figure 1.  Small RNA and candidate miRNAs read number distributions.  (A) Size distribution of the captured small RNA. Low
quality reads or reads with ambiguous bases were discarded. Each sequence (from 5 to 37 nt long) and its count number were
generated. 2,477,426 unique sequences were identified. Only the sequences between 16 and 28 nt were subsequently used. (B)
Read number distribution of the 11,803 putative pri-miRNAs predicted my miRanalyzer.
doi: 10.1371/journal.pone.0070136.g001
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of the true relationships between these miRNAs and their
putative targets requires functional analysis.

Table 3. Comparison of the miRNA with predicted and
cloned mature miRNAs from previously published studies in
salmonid species.

 Published Masked out Hit Not retrieved Source
Predicted S. salar 75 15 48 12 [26]
Predicted S. salar 307 51 248 8 [25]
Cloned O. mykiss 210 0 210 0 [23]
Sequenced O. mykiss 496 10 401 85 [24]

Discussion

In the current study, a detailed characterisation of the miRNA
profile of S. salar fry was performed and their potential target
genes assessed. Unlike most miRNA sequencing studies
where single pass reads have been generated, paired-end
sequencing was used to improve read accuracy, aiding reliable
discrimination between miRNAs differing by only one or two
nucleotides. Guidelines for miRNA discrimination derived from
RNA deep-sequencing data were established in 2011 [20]. All
888 pri-miRNAs identified in this study can be classed as high-
confidence miRNAs according to their criteria.

From a comparison with miRBase it would appear that only
51.5% of the identified mature miRNAs have been previously
reported. This is likely to be a reflection of the comparative
under-representation of fishes in the current database and
stage / state specific expression rather than an indication that

Figure 2.  Pie charts of the novel miRNA abundance.  (A) Distribution of the miRNA gene number by family. The top 17 families
(over 6 genes) represents 19.5% of all the miRNA genes. All the “others” (6 genes and under) represents overall 80.5% of all the
miRNA genes and less than 0.7% individually. (B) Distribution of the miRNA abundance by miRNA family. The top 15 miRNA
families (relative expression over 0.5%) represents 94.3% of the expressed miRNA. All the “others” (miRNA representing
individually 0.5% of the global abundance and under) represents only 5.7% of the overall expressed miRNA.
doi: 10.1371/journal.pone.0070136.g002

Table 2. Conserved mature miRNA sequences identified as having homologues in O. mykiss only; names, sequences,
references.

Family Mature miRNA O. mykiss homolog E-value Sequence (5’-3’) Reference
miR-145 ssa-miR-145-5p omy-miR-145-3p 0.3 GGATTCCAAGAAATGCT [24]
nov-117 ssa-nov-117-3p omy-miR-nov117-5p 0.36 TGTCTTTCACATTCTCT [24]
 ssa-nov-117-3p omy-miR-nov117-5p 0.36 GTCTGTGTCTATTGTCTCT [24]
nov-14 ssa-nov-14-3p omy-miR-nov14-5p 0.36 ACCTGTGCTCACTGTAG [24]
nov-208 ssa-nov-208-3p omy-miR-nov208-5p 0.35 AGTCCTGAGCTATGGCTGG [24]
nov-70 ssa-nov-70-3p omy-miR-nov70-3p 0.36 TCTGTTTCTCTGTGTGT [24]
nov-71 ssa-nov-71-5p omy-miR-nov71-3p 0.36 TCTGTTTGTGCTGTCTTGC [24]
nov-79 ssa-nov-79-5p omy-miR-nov79-5p 0.0000047 GACTTGGTCAAAGCTCCTCAG [24]
miR-205 ssa-miR-205-3p omy-miR-205 0.044 CACACTCCCGAGGACTGAAG [23]
miR-21 ssa-miR-21a-3p omy-miR-21-aa 0.044 AGCTCACCAGATCAGGTG [23]

Salmon Fry microRNA Repertoire
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the remaining sequences are necessarily unique to S. salar.
Lack of detectable differential miRNA expression among
individuals and families, reared in different tanks, suggests
either that the detected miRNA profile is constitutively
expressed in a conserved manner or that responses are
relatively uniform between individuals in this study.

While 453 miRNA families were identified in the current
experiment, just three of these accounted for approximately
78.8% of the miRNA abundance; namely miR-181 (37.9%),
miR-10 (35.0%) and miR-26 (5.9%). This likely reflects the
nature of the biological samples, sequences being derived from
whole fry homogenates leading to overrepresentation of
miRNAs from the more abundant tissues. Given the young age
of the salmon fry in this experiment (approximately 4 months
post-hatching), the fry are fast growing with the predominant
tissue being skeletal muscle. In O. mykiss eggs, Ma et al. [24]
identified let-7, miR-21 and miR-24 as the most abundant
miRNA with 24.06%, 18.71% and 6.59% respectively. Whereas
in O. mykiss pooled tissues [23], miR-21, miR-125 and miR
204 were the most abundant miRNA with 35%, 14% and 10%
respectively. In the current study, let-7 and miR-21 are also
among the most highly expressed miRNAs with 1.9% and 1.1%
of the relative abundance respectively.

All of the three most abundant S. salar miRNAs have been
found to be involved in regulation of developmental processes,
these observations being conserved across several species.
miR-181 regulates haematopoiesis development and plays a
role in T-lymphocyte maturation and the sensitivity of
lymphocytes to T-cell receptor stimulation [37]. miR-10
regulates the highly-conserved transcription factor Hox genes
which have highly conserved roles in early development [38]. In
most vertebrates studied to date, the miR-10 genes co-locate
with the Hox cluster and, in D. rerio, loss of function of miR-10
points to a role in anterior–posterior patterning [39]. Finally,
miR-26 contributes to myogenesis [40] and neurogenesis [41].
miR-26 expression has been suggested to be involved in
O. mykiss embryonic development and Ramachandra et al.
[42] suggested a possible link between the miR-26 response to
hypoxia and the short supply of dissolved oxygen in the aquatic
environment where salmonid eggs develop [42].

The S. salar miRNAs identified in this study may have
applications for both fundamental and applied research. For
example, they can be assessed as potential markers for
specific functional and diagnostic applications in S. salar
aquaculture production. Polymorphism in the miRNA genes or
their target sites may underlie phenotypic variation in
quantitative traits (e.g., fillet characteristics or disease
resistance) and could be assessed for use in selective
breeding programs to improve the efficiency of salmon
production Where the precise function of a miRNA is known,
artificial miRNAs may be used to suppress gene expression for
the knockdown of targeted genes [2] as a potentially useful tool
in salmonid research. Therefore, these miRNAs provide a
platform for the elucidation of gene function via a series of
hypothesis-driven studies in Atlantic salmon for aquaculture
and biomedical research. This functional approach has already
proven productive in the study of the role of hepatic miRNAs in
insulin regulation pathways in O. mykiss [43].

Conclusion

We have discovered an extensive repertoire of putative
miRNA in Atlantic salmon, quantified their expression levels in
basal conditions in fry and identified the location and putative
copy number of the miRNA genes in the draft Atlantic salmon
reference genome sequence. These S. salar miRNAs provide a
novel resource to advance functional genome research in
salmonid species.

Materials and Methods

Animals
Atlantic salmon fry from three families of farmed origin were

reared in separate 15 L family-specific holding tanks, all
supplied with de-chlorinated freshwater maintained at 10-12°C,
at the UK Government’s Centre for Environment, Fisheries and
Aquaculture Science (Cefas) in Weymouth. Negligible
mortalities occurred during this period. At 120 days post-hatch
the fry (six per family, mean weight ~0.7 g) were sampled by
snap freezing in liquid nitrogen, and stored at -80°C until
processed. Fish were euthanised using a non-schedule 1
method under a procedure specifically listed on the appropriate
Home Office (UK) license and under approval of Cefas ethical
review committee. All working procedures complied with the
Animals Scientific Procedures Act [44].

Small RNA library construction and sequencing
(i): Sample processing and RNA extraction.  Each frozen

whole fry was cut into four pieces and immediately
homogenised in 7 mL TRI Reagent (Sigma-Aldrich Co., USA)
using a large Polytron mechanical homogeniser (Kinematica,
Switzerland). Following incubation for 5 min at room
temperature, 1 mL of the homogenate was retained for RNA
extraction, following manufacturer’s protocol. The RNA was
precipitated with 0.5 volume RNA precipitation solution
(1.2 mol/L sodium chloride; 0.8 mol/L sodium citrate
sesquihydrate) and 0.5 volume isopropanol and re-suspended
in nuclease free water. The RNA was quantified by
spectrophotometry using the Nanodrop 1000 (Thermo, Fisher
Scientific, USA), and integrity confirmed by analysis on a
Bioanalyzer 2100 (Agilent Technologies, Inc., USA), all RNA
integrity numbers being over 9.9 indicating high quality RNA for
each sample.

(ii): Library preparation.  Library preparation was
performed according to the Illumina Truseq Small RNA
preparation guide (Illumina, Inc., USA), using total RNA as start
material. In brief, 5’ and 3’ RNA adapters, designed such that
they would preferentially ligate small RNAs, were added to 1 µg
total RNA. The adapter-ligated small RNA was then reverse
transcribed and amplified through PCR. The resulting product
was size selected using PAGE, where molecules sized
145-160 bp were excised from polyacrylamide gel and
subsequently purified and concentrated through ethanol
precipitation. The libraries were validated using a Bioanalyzer
2100 (Agilent Technologies, Inc., USA). One multiplexed
barcoded pool containing all libraries was sequenced (two
lanes Illumina HiSeq 2000, 37 base paired-end run) at ARK-
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Genomics (Roslin, UK). Raw sequence data were made
available through the NCBI BioProject accession number
SRP017393.

Identification of novel miRNA candidates
All reads that were mapped to known small RNAs were

removed, including: RNA from RFam 10.1 [32]; tRNA from the
GtRNAdb [45]; piRNA from RNAdb [46] and mRNAs from the
Reference Sequence (RefSeq) database [47]. We used an
accurate machine learning algorithm to predict miRNA
implemented in miRanalyzer version 0.3 [beta] [30]. Sequences
between 16 and 28 nucleotides in length were aligned with the
S. salar genome (NCBI Assembly GCA_000233375.1).

Guidelines for miRNA annotation using RNA deep-
sequencing experiments were established in 2011 [20]; They
require that 1) multiple reads be identified to support the
presence of the mature ~22 nt miRNAs; 2) the reads map to an
extended sequence region, and the sequence flanking the
putative mature miRNA folds to form a miRNA precursor-like
hairpin with strong pairing between the mature miRNA and the
opposite arm; 3) mapped reads should not overlap other
annotated transcripts; 4) reads mapping to a locus support
consistent processing of the 5’-end of the mature sequence; 5)
reads support the presence of mature sequences from both
arms of the predicted hairpin (mature and mature star-
sequences), and the putative mature sequences should base-
pair with the correct 3’-overhang.

The pre-miRNA is defined as the sequence that starts at the
first “bulge” (regions in which one strand of a miRNA has
“extra” inserted bases with no counterparts in the opposite
strand) before the 5’ mature miRNA, and ends at the
corresponding position at the 3’ terminus. The minimum length
of pre-miRNA is 65 nt if the flanking side of the pre-miRNA
does not extend to the next bulge [30]. The secondary
structures of the miRNAs were determined by the RNAfold
version 2.0.7 [48] using a minimum free energy (MFE)
algorithm [49].

All novel pre-miRNAs were identified based on the presence
of a classic hairpin structure, Dicer cleavage pattern (a
characteristic 2 nt 3’ overhang), the mature and mature star-
sequences, and conservative 5’ sequence, as well as
detectable expression: all candidate miRNAs with fewer than
10 read count per samples were removed. The remaining
candidate miRNAs were filtered with RepeatMasker open-4.0.0
[RMLib release 20120418 and Dfam release 1.1; 31] and then
aligned to a set of all known miRNAs from miRBase version 19
[20] using BLASTN [50]. These mapped reads were retained
and considered as belonging to putatively homologous miRNAs
(detected in other species). In the case of S. salar-specific
miRNAs, the length of the most highly expressed read was
considered as the length of the mature miRNAs [51].

Target predictions for S. salar miRNAs
The 119,912 full-length transcript sequences were

downloaded from the Centre for Biomedical Research
(University of Victoria) website [36]. TargetSpy v 1.0 [34] and
RNAHybrid v 2.1 [35] were used to predict the target genes of
the miRNAs on the 3’ UTR regions of the transcripts. The

TargetSpy principle of predicting miRNA target genes is based
on machine learning and selected features, such as
compositional, structural, and base-pairing features. The
RNAHybrid algorithm, on the other hand, is based upon the
identification of thermodynamically stable matches. S. salar xi
(position) and theta (shape) parameters were 2.327203 and
0.216961 respectively, based on S. salar dinucleotide
frequency of the 119,912 full-length transcript sequences. The
predictions were filtered to make sure that the binding site
presented a seed of at least 7 nt and started at the first or
second position of the miRNA.

Data deposition
The sequencing data generated in this study have been

submitted to the NCBI Sequence Read Archive (SRA) and are
accessible under the NCBI BioProject accession number
SRP017393.

Supporting Information

Table S1.  58 miRNA precursors filtered out by
RepeatMasker.  Names, mature and pri-miRNA sequences,
predicted secondary structure (using ViennaRNA dot-bracket
notation [48]), genomic location and type of repeat or small
RNA.
(CSV)

Table S2.  888 miRNA precursors identified from S. salar
genome.  Names, mature and pri-miRNA sequences,
predicted secondary structure (using ViennaRNA dot-bracket
notation [48]) and genomic location.
(CSV)

Table S3.  The 453 S. salar miRNA families: gene copy
number and relative abundance.  (CSV)

Table S4.  The putative target genes of the S. salar miRNA
families: TargetSpy and RNAhybrid detailed results and
structure of the target site / microRNA binding site
secondary structure (using ViennaRNA dot-bracket
notation [48]).  (CSV)
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