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Abstract

For individuals with severe speech impairment accurate spoken commu-
nication can be difficult and require considerable effort. Some may choose to
use a voice output communication aid (or VOCA) to support their spoken
communication needs. A VOCA typically takes input from the user through
a keyboard or switch-based interface and produces spoken output using ei-
ther synthesised or recorded speech. The type and number of synthetic voices
that can be accessed with a VOCA is often limited and this has been impli-
cated as a factor for rejection of the devices. Therefore, there is a need to be
able to provide voices that are more appropriate and acceptable for users.

This paper reports on a study that utilises recent advances in speech syn-
thesis to produce personalised synthetic voices for 3 speakers with mild to
severe dysarthria, one of the most common speech disorders. Using a sta-
tistical parametric approach to synthesis, an average voice trained on data
from several unimpaired speakers was adapted using recordings of the im-
paired speech of 3 dysarthric speakers. By careful selection of the speech
data and the model parameters, several exemplar voices were produced for
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each speaker. A qualitative evaluation was conducted with the speakers and
listeners who were familiar with the speaker. The evaluation showed that for
one of the 3 speakers a voice could be created which conveyed many of his
personal characteristics, such as regional identity, sex and age.

Keywords:
speech synthesis, augmentative and alternative communication, disordered
speech, voice output communication aid

1. Introduction

The use of Voice Output Communication Aids (VOCAs) has been shown
to increase quality of life for individuals with speech impairment (Mathy
et al., 2000). VOCAs take input from a user through a keyboard or switch-
based interface and use a pre-recorded or synthesised voice as output to ap-
proximate oral communication that occurs between conversational partners.
Whether people persevere with using a VOCA depends on the acceptability
of the device including motivation and attitudes of both conversation part-
ners and features of the technology itself (Mathy et al., 2000; Lasker and
Bedrosian, 2001). Lasker and Bedrosian’s (2001) model of acceptability of
augmentative and alternative communication (AAC) interventions explicitly
includes customisation of the device and voice output quality. This suggests
that if the range of voices available in VOCAs does not provide a suitable
choice for the user, the associated risks of abandonment are increased.

People who use VOCAs are individuals who have lost or are losing the
ability to produce their own speech due to either acquired conditions such
as motor neurone disease (MND), or congenital conditions such as cerebral
palsy (CP).

The speech impairment due to such conditions is collectively termed
dysarthria. In general, dysarthria is characterised by abnormalities in the
speed, range and accuracy of movement required to control the respiratory
and articulatory systems used in speech production (Duffy, 2005).

Acquired disorders are either progressive such as Parkinson’s disease, or
can have a sudden onset as a result of traumatic brain injury such as a stroke
or cerebrovascular accident (CVA). Congenital conditions are usually stable
in presentation whereas acquired progressive disorders are usually preceded
by having normal speech development and the diminishing neurological func-
tion leads to a progressive deterioration in the individual’s ability to produce

2



speech. Dysarthria is thought to affect 170 people per 100,000 in the UK
(Enderby and Emerson, 1995).

In progressive conditions, deterioration of speech is usually the first symp-
tom to present (Duffy, 2005; Holmberg et al., 1996) and as motor control is
lost, the severity of impairment increases and understanding the speech be-
comes more difficult.

The severity of dysarthria depends on the location and extent of the
brain injury, which defines the type of dysarthria, formalised by Darley et al.
(1969) as: spastic, flaccid, ataxic, hypokinetic, hyperkinetic and mixed. In
general terms the more severe the dysarthria the greater the reduction in
intelligibility, voice quality and prosody, see Duffy (2005); Enderby (1983);
Weismer (2007); Ziegler (2008).

When an individual experiences speech impairment, maintenance of so-
cial interaction is vital for the avoidance of withdrawal from society (Light,
1988; Murphy, 2004; O’Keefe et al., 1998). Using a VOCA, an individual has
to like and identify with the voice to feel motivated to use it. A voice pro-
vides clues about the gender, age, size, ethnicity and geographical identity
of that individual (Chambers, 1995; Wells, 1982) and is a personal identifier
of an individual to family members and acquaintances. Embarrassment and
negative attitudes towards an individual’s own speech can create barriers to
socialisation (Miller et al., 2006), which can be extended to having negative
attitudes towards the voice in a VOCA that they are using.

Without personalisation of identity, an individual’s ability to form asso-
ciations with others through their speech may be lost, which is detrimental
to their participation in society (Angelo et al., 1996; Hetzroni and Harris,
1996; Parette and Huer, 2002; Smith, 2005).

Evaluations of fluent speakers’ preferences for VOCA use matched the
most natural-sounding and gender-appropriate voice to themselves (Crabtree
et al., 1990). This supports results from studies of assistive technology design,
suggesting that individuals prefer a VOCA to have a voice that is consistent
with the characteristics of the person who is using it (Light et al., 2007).
Offering the user a choice of voices for their communication aid including
one which matches their vocal identity pre-deterioration could lead to more
acceptance of this type of technology.

For VOCA users, there is limited choice of voices available to distinguish
themselves from others and to represent themselves. Personalisation has
previously been attempted by interpolating between existing voices (Murray
and Arnott, 1993) or morphing voices to more closely match the user in terms
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of age, such as in the Tango (BlinkTwice) communication aid.
Another approach at personalisation can be found in the ModelTalker

project (Bunnell et al., 2010). This supports a procedure to “bank” speech
recordings and create a personalised synthetic voice from those recordings.
This approach is specifically designed for people with progressive conditions
who may make the recordings before their speech has deteriorated. To build
an acceptable voice requires a large amount of data to be recorded, which
can be difficult for individuals with conditions causing speech impairment to
produce.

Commercial alternatives requiring large datasets are also available, for
example, film critic Roger Ebert and American footballer Steve Gleason who
lost their voices due to medical conditions and had personalised voices built
for them by CereProc Ltd. These cases highlight the demand for personalised
vocal output in a communication aid.

Those individuals with sudden onset acquired conditions such as CVA,
or congenital conditions have no opportunity to personalise a synthetic voice
to their own characteristics. Work carried out to address this problem has
attempted to capture the relatively unimpaired source characteristics from
a dysarthric speaker and use it to replace those of a fluent synthesised voice
working within the ModelTalker framework (Jreige et al., 2009). However
a technique that addresses both source and filter components could convey
much more of the individual’s vocal identity.

This paper introduces the potential benefits of providing personalised
synthetic voice output and identifies a target population who are not cur-
rently being provided with access to personalised voice building, namely those
whose speech has begun to deteriorate due to a progressive condition. The
paper extends the work detailed in Creer et al. (2010) and provides detailed
case studies for the work referred to in Yamagishi et al. (2012).

Section 2 reviews statistical parametric synthesis and section 3 proposes a
methodology for applying this procedure to dysarthric speech data. Section
4 introduces the procedures involved in building voices for 3 individuals with
different types and severity of dysarthria and presents the methodology for
the evaluation of these voices. The results of the evaluation are presented in
section 5 and discussed in section 6.
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2. Statistical parametric synthesis

To provide personalised synthetic voices for VOCA a technique is re-
quired which produces intelligible and natural-sounding speech. Moreover,
the speech output should be sufficiently similar to the user’s own voice pre-
deterioration, or in the case of users with congenital conditions be sufficiently
similar to the individual characteristics of their voice. The technique must
be able to be take into account data which has begun to deteriorate and not
recreate the errors in the output while still using a minimal amount of data
for input.

One such system is model-based statistical parametric speech synthesis
which uses Hidden Markov model (HMM) based techniques to probabilisti-
cally model and generate sequences of feature vectors, discrete representa-
tions of the speech signal at a segment of time (Zen et al., 2009). Models are
trained on a corpus of speech data to produce statistical representations of
the acoustics. Novel speech utterances are then formed by concatenating the
appropriate models, generating the most likely sequence of feature vectors
from the concatenated model from which a speech waveform is synthesised.

This data-driven technique produces highly intelligible, consistent output
and is more robust to inconsistent recording conditions than systems built
using pre-recorded sections of speech (Yamagishi et al., 2008a). Using this
system means speaker adaptation techniques can be used to adapt from ro-
bust speaker-independent models to personalise the system using a minimal
amount of data.

The HTS toolkit (‘H Triple S’ - HMM-based Speech Synthesis System)
(Yamagishi et al., 2007; Zen et al., 2007; Zen and Toda, 2005), an extension to
the HTK speech recognition toolkit (Young et al., 2002), provides a research
tool for HMM-based synthesis and is described in more detail in the following
sections.

2.1. Feature vectors

To build the models, the speech data has to be discretised into perceptu-
ally relevant feature vectors, which are sufficiently detailed to reconstruct the
speech signal sufficiently accurately to produce a natural-sounding output.

HTS uses STRAIGHT (Kawahara et al., 1999) vocoding to both extract
features and resynthesise the waveform. The feature vectors comprise sep-
arate streams for: spectral features including energy; log F0, the acoustic
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correlate of pitch; band aperiodicity, representing the relative energy of aperi-
odic components in the periodic signal and the delta and delta-delta dynamic
components (Furui, 1981) of each stream.

F0 is modelled on a logarithmic scale as motivated by the Fuijisaki model
(Fujisaki and Hirose, 2000) which facilitates the combination of F0 contours
at both the accent and phrase levels of speech.

HTS simultaneously models the features to ensure that the alignment
between the spectral features and the prosodic features remains consistent.

2.2. Models

An HMM consists of a statistical model of the observed data in the form of
feature vectors and the temporal sequence in which they occur. The temporal
variation of speech is modelled with a Markov chain of states with associated
transition probabilities between these states. Associated with each state is a
statistical model of the acoustics of a particular segment of speech, usually
a continuous probability distribution. To estimate this statistical represen-
tation, a training process is performed. The model is exposed to multiple
examples of the unit being modelled and its parameters are re-estimated such
that the likelihood of the model, given the examples, is maximised.

The different states capture sub-phonetic temporal variation. The unit
modelled in HTS is the context-dependent phone, phone-sized units with
contextual information and is modelled by five emitting states. This rela-
tively high number of states allows acoustic information to be captured with
high temporal resolution.

A geometric duration distribution is implied by standard HMMs, which is
a poor model of actual phone durations. HTS therefore estimates a normally
distributed state duration probability density for each state in each model
during training, which is explicitly attached to the model for both training
and synthesis. This alters some of the mathematical properties of the model
and results in a Hidden Semi-Markov Model (HSMM) (Zen et al., 2004). The
training corpus or adaptation data is used to estimate the parameters of the
duration model.

Rich contextual information is required to contribute to the generation
of phonetic and prosodic elements of the output synthesised speech. In HTS
contextual phonetic and prosodic information is provided at the phoneme,
syllable, word, phrase and utterance levels. The data sparsity problem in-
troduced by the rich contextual information is addressed by sharing the pa-
rameters of the state output distribution between acoustically similar states.
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This sharing is performed using decision trees which define clusters of acous-
tically similar states using splitting questions based on the detailed phonetic
and prosodic contextual labels. The minimum description length criterion
(Shinoda and Watanabe, 2000) is used to determine both the structure and
complexity of the decision tree.

Different contextual factors affect the acoustic distance between vectors
for duration, spectral information, log F0 and aperiodicity and so these fea-
ture streams are clustered independently of each other. There are separate
models for each feature stream and they are combined only at synthesis time.

2.3. Adaptation

For this application, an adaptation method using minimal input data
is required. It is possible to adapt speaker-independent or average voice
models, trained on large amounts of data from multiple speakers, to more
closely match a speaker’s individual voice characteristics. The average voice
starting point provides a strong prior for the adaptation data, data taken
from one speaker used to adapt the models, and enables robust estimation of
the target speaker model. In building an average voice model, speaker- and
gender-dependent characteristics in the data are neutralised capturing a ro-
bust model of the phonetic variation in speech, not a model of inter-speaker
variation. This is done using speaker adaptive training (SAT) for parameter
re-estimation. The SAT framework (Anastasakos et al., 1996) ensures that
the acoustic variation due to the speaker population is reduced when estimat-
ing the variance of the acoustic model parameters. The adaptation procedure
then transforms the average voice model towards the target speaker.

2.4. Synthesis

The first stage of synthesis is to convert the orthographic text to be syn-
thesised into a sequence of context-sensitive labels. A composite HSMM is
then created by concatenating the context-dependent models corresponding
to this label sequence. A duration is assigned to each state in the compos-
ite HSMM which maximises the likelihood of the state duration probability
density.

The feature sequence of maximum conditional probability, given the input
state sequence and models, including the probability distributions over the
deltas and delta-deltas as well as those for the static features, is found using
the feature generation algorithm (Tokuda et al., 2000). This feature sequence
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is subsequently converted into a waveform using the STRAIGHT vocoder
(Kawahara et al., 1999).

2.5. Global variance

The statistical nature of this technique results in spectral details being av-
eraged out with high priority placed on producing a smooth output trace for
each feature. In an attempt to improve the speech output and prevent over-
smoothing, refinements to the feature generation algorithm were introduced
which model the utterance level variance (also called the global variance)
of each stream. For each utterance in the adaptation data and for each set
of features: mel cepstra, log F0 and aperiodicity, a variance is calculated.
The mean of these variances and the variance of these variances is calculated
across all the utterances in the data set. The global variance is integrated
into the feature generation algorithm and ensures that the features gener-
ated more accurately reflect the utterance level variance of the data rather
than over-smoothing the cepstral coefficients, log F0 and aperiodicity output
(Toda and Tokuda, 2007).

3. Statistical parametric synthesis using impaired speech

For those speakers whose speech has begun to deteriorate, the synthesis
needs to avoid reconstructing errors in production or misalignments between
models and acoustics in the output. The following sections further detail the
issues involved for using HTS with dysarthric data and attempt to provide
a solution for reconstructing the voices of individuals, compensating for any
impairment captured in adapting the models.

3.0.1. Data selection

In the adaptation stage of the HTS procedure, at each iteration, an align-
ment between the data and current models is performed. If the sum of all the
utterance alignment likelihoods is too low (log likelihood less than −1010),
the whole utterance is rejected from the adaptation data along with poten-
tially intelligible sections. Speech production is a difficult task for the target
individuals and therefore a way of maximising the use of this data is required.

Intelligible sections of speech can be extracted from the recordings and
associated with the corresponding sections of the full phonetic and prosodic
context transcription derived from orthographic transcription of the expected
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data. Although not necessarily an accurate representation of what was actu-
ally produced by the speaker and the surrounding context, this method links
the speech produced with the cognitive planning of what was intended to
be said, as shown through the presence of anticipatory coarticulation in the
data (Katz, 2000) and avoids the need for expensive and difficult phone-level
relabelling. This approach allows a much higher percentage of data to be ac-
cepted as adaptation data than if the data has not been edited, specifically
for those speakers with more severe dysarthria. By using only intelligible seg-
ments of speech data, the possibility of recreating dysfluencies in the output
voice is minimised.

Data selection can be done manually by a human listener making a judge-
ment on whether a section is intelligible. Using human judgement and manual
selection of intelligible data is not an ideal solution as it is time-consuming
and inconsistency in judging intelligibility arises as a human becomes more
attuned to the speech of an individual over time (Carmichael and Green,
2003).

Figure 1 demonstrates the complexity of trying to automate the selection
process. The figure shows a short section of an Arctic database (Kominek
and Black, 2003) sentence as spoken by a dysarthric speaker: “I may manage
to freight a cargo back as well”. The transcription panel nearest the spec-
trogram shows what different fragments are present in the speech files. They
consist of pauses (labelled ‘pau’), words or syllables (shown in forward slash
delimiters ‘//’), non-vocal sounds (labelled ‘noise’) and vocal insertions (la-
belled ‘vocal’). The central panel shows where the words occur in the phrase
and the topmost panel shows which sections of the phrase are selected as
being intelligible and therefore usable as adaptation data.

Detecting non-speech noise including silences and extraneous noise may
be possible to automate but there is a high occurrence of vocalised noise. The
vocalised insertions in the dysarthric output have speech-like characteristics
which makes it more difficult to automatically discriminate them from the
speech that is to be retained in the adaptation data.

3.0.2. Feature selection

If there are errors in a dysarthric individual’s speech, it would be useful
to only use for adaptation those features which are not affected by the dis-
order. The remaining affected features would not be used as target speech
for adaptation but the corresponding features in the starting point average
voice model would be retained. The structure of HTS allows an approxi-
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Figure 1: The phrase “back as well” as spoken by a dysarthric speaker. It is labelled to
show which sections of the phrase are usable as adaptation data (USED/UNUSED). The
central pane indicates the word boundaries. The third pane shows the type of segment:
pauses (pau), words or syllables (shown between //), non-vocal sounds (noise) and vocal
insertions (vocal).

mation to this behaviour. The feature vectors are extracted and used to
adapt the HSMMs simultaneously, but the spectral, log F0, aperiodicity and
duration features are represented in separate streams and re-combined only
when generating the synthesised speech. Therefore post-adaptation, certain
features of the speech can be substituted with those of the original average
voice and used to reconstruct those features showing impairment. Figure 2
shows the type of substitutions that can be made using information from
the average voice and the dysarthric speaker participant model to create an
output speaker model. Features that capture the speaker characteristics are
taken from the speaker participant model and information from the average
speaker model reconstructs those features affected by the speaker’s condi-
tion. Different feature substitutions depend on the individual’s condition
and stage of deterioration.

Spectral information: Most of the inaccurate articulation that occurs
in the adaptation data is removed during the data selection process. Certain
aspects of dysarthric speech such as nasalisation and distortions caused by
secondary articulations may remain in the data and the extent to which this
remains depends on the human judgement of how much that distortion is
perceived.

The adaptation data that remains is therefore a reasonable characterisa-
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tion of the participant’s speech where the dysarthria is minimally perceived.
Retaining the participant’s spectral information in this way allows the reten-
tion of the individual’s speaker characteristics.

Global variance for spectral features: Articulations of sounds that
are intelligible may be more highly variable in dysarthric data than in typical
speech. This spectral variability is modelled by the global variance parameter
(see section 2.5), which influences the utterance level spectral variance during
the parameter generation process. Where this variance is high, as could be
the case for dysarthric data, constraining this measure could be beneficial
to the output. The average voice model global variance for the spectral
features can therefore be used with the speaker participant spectral features
to constrain the variability and produce a more well-defined spectral output.

Energy: Energy may be highly variable due to the speech disorder. The
zeroth mel cepstral coefficient can be selected from the average voice model
and used in combination with the mel cepstral coefficients from the speaker
participant model in the output speaker model. This smooths the output if
there is much variation in the energy in the original speech and produces a
more appropriate speaker energy if the speaker’s voice has either reduced or
elevated energy levels.

Log F0: The F0 of the speaker should be used in the output speaker
models, if it has not been adversely affected by the condition, as it contains
information specific to the speaker and contributes to the recognition of the
voice as belonging to that particular individual.

Voicing decisions: Where there are phonatory irregularity problems
such as abnormal production of voicing, voicing initiation and reduced control
of the vocal folds, voicing decisions can be isolated from the average voice
log F0 model and used in the output speaker log F0 model.

Global variance for log F0: Where the speaker has either a monopitch
or highly variable prosodic quality due to the condition, the global variance
of the log F0 can be altered to make the pitch range more appropriate. This
can be done either by changing the mean of the global variance to that of
the average voice or altering it to an amount which is appropriate for that
speaker. This parameter can be customised to suit the preference of the
speaker and how this alteration affects the intelligibility and naturalness of
the synthesised speech.

Aperiodicity: The pitch periods of normal speakers are generally highly
regular. However, the individual with dysarthria may have altered voice
quality caused by reduced control of the larynx and weakened or tightened
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vocal folds. This causes an abnormal setting of the vocal folds, either causing
excessive breath through the glottis or having to force the air through the
constricted glottal area, in either case producing unwanted turbulent noise
in the signal. Substitution of the aperiodicity models from the average voice
alters the voice quality effect to match that of the average voice.

Global variance for aperiodicity: Using the average voice global vari-
ance of the aperiodicity may also help to constrain the potentially increased
variability of the aperiodicity in the speaker models caused by the individ-
ual’s condition.

Duration: For dysarthric speakers, the duration of segments is highly
variable and often disordered, causing distortions in the rhythm and intona-
tion of the output. This problem is partly dealt with in the data selection
process for adaptation but this selection process will not remove the variabil-
ity that occurs when the speech is of varying speeds but well-articulated. By
using the average voice model duration probability distributions, a consistent
and reliable estimate of the duration of the segments will be produced.

Speech rate: To make the output synthesis more appropriate and prefer-
able for the user, the speech rate can be altered during synthesis, using the
average voice model relative durations as a starting point.

Table 1 summarises which aspects found in dysarthric speech can be
solved by data selection and substitution of average voice model information
into the speaker participant model to produce an acceptable output speaker
model.

4. Method

To evaluate whether these substitutions make using HMM-based synthesis
viable for building voices for individuals with dysarthric speech, an experi-
ment evaluated voices built using these modifications. This was implemented
for three individuals with different pathologies.

The evaluation posed three questions:

1. Can the individual recognise themselves in the output voices and which
features contribute to this recognition?

2. Which features affect the quality of the voice output for the different
speaker participants?
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Problem Solution

Maximising use of data avail-
able for adaptation Data selection

Articulation problems Data selection

Highly variable articulation
accuracy

Data selection and use aver-
age voice global variance for
spectral features

Highly variable intensity or
intensity decay

Use average voice energy

Laryngeal voice onset prob-
lems

Use average voice voicing de-
cisions

Incorrect voicing in segments Use average voice voicing de-
cisions

Reduced F0 range
Use average voice or altered
global variance for log F0

Altered voice quality
Use average voice aperiodic-
ity

Highly variable or inappropri-
ate segment duration

Use average voice durations

Highly variable or inappropri-
ate speech rate

Use average voice durations
and alter output rate

Table 1: Proposed solutions for reconstructing voices showing dysarthric features.

3. Can features be altered to make the voices more appropriate for that
speaker?

Question 1 aimed to provide information about which features should be
used in the output model to capture the individual’s speaker characteristics.
It also aimed to provide a measure of how well the output model captures
the speaker’s identity in the synthesis. Question 2 aimed to see which of
the possible substitution of features would affect or improve the output voice
synthesis, where quality is associated with its potential practical use in a
communication aid. Question 3 aimed to provide more information on the
flexibility of the system in terms of alteration of the prosodic output.

The target voice in this experiment is not a tangible recording of the
speech pre-deterioration. It is defined as a voice which is recognisable as the
original speaker but reconstructed to provide an intelligible synthesised voice
without the dysarthric features. To evaluate whether the output speech is
appropriate for that speaker for potential use in a communication aid, the
participants should be able to make a judgement without hearing target
speech for comparison. For this reason, the evaluation takes a qualitative
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approach using as participants the speakers themselves (speaker participants)
and people who know the speakers (listener participants).

4.1. Participants

4.1.1. Speaker participants

The speaker participants reported in this study are identified as speakers
1, 2 and 3 and are all British English speakers. Speaker 1 was male, aged 80
years old at the time of recording, two years post cerebrovascular accident
(CVA), with moderate flaccid dysarthria. In his speech overall energy varied,
with imprecise and slow movement of the articulators resulting in a slow rate
of production. Speaker 2 was male, aged 69 years old at the time of recording
and had been diagnosed with Parkinson’s disease six years previously. He
showed symptoms of mild hypokinetic dysarthria. His speech was quiet, with
variable energy. There was little variation in pitch and a high perceived rate
of articulation. Speaker 3 was male, aged 80 years old at the time of recording
with severe primary progressive apraxia of speech and dysphasia, which had
onset six years previously. His dysarthria was classed as moderate at the
time of recording. His speech was telegraphic, it contained many insertions,
with imprecise and slow movement of the articulators resulting in a slow rate
of production.

These speakers show a range of different pathologies and severity of
dysarthria. The speakers were all male due to the lack of availability at
the time of a female average voice model. The degradation of quality of the
synthesised speech output when adapting from incorrectly matching gender-
dependent models rather than gender-appropriate models (Isogai et al., 2005)
would have added further complexity to the evaluation. To fully investigate
the possibilities of using HTS for voice building for speakers with dysarthria
a much wider population and many more speakers would be required to make
quantitative and statistically significant claims.

The evaluation was conducted using speaker participants 1 and 2 evalu-
ating their own voice. Speaker 3 did not participate in the evaluation due to
his condition at the time.

4.1.2. Listener participants

Two listeners who knew speaker 1 and two who knew speaker 2 evalu-
ated their voices and one listener participant evaluated speaker 3’s synthetic
voices. The listener participants were student or staff members of the Uni-
versity of Sheffield. They were speech and language therapists not only par-
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ticipating as listeners familiar with the speakers but also as expert listeners.
The listeners reported no hearing or speech impairment and were not paid
for their participation.

4.2. Data collection

Data was collected for speakers 1 and 2 in a quiet clinic room in the
Department of Human Communication Sciences, University of Sheffield using
a Morantz PMD670 audio recorder with a Shure SM80 microphone. For
practical reasons due his condition, speaker 3’s data was recorded onto a
laptop computer using the internal microphone in his own home.

The recorded material was taken from the Arctic dataset A. The sentences
were presented to speakers 1 and 2 on separate sheets of paper in a folder to
avoid any listing intonation effects in the reading and to maintain consistent
recording conditions. The participants were asked to read the sentences
as naturally as possible. The participants completed the recordings in one
sitting but were encouraged to take breaks with a drink of water at least
every 50 sentences or as often as they felt necessary. In these conditions,
speaker 1 recorded the first 200 sentences of the Arctic set A and speaker 2
recorded the first 150 of the same set.

For speaker 3, the sentence prompts were displayed one at a time on
the computer screen using Prorec 1.01 Speech Prompt and Record system
(Huckvale, 2009). The sentences were recorded in sections of 20 per session
and the aim was to record two recording sessions a day, however, it was left
to the speaker to decide when during the day he felt able and motivated to
do the recordings. Speaker 3 completed the recording of the first 379 of the
set A sentences.

4.3. Building voices

The voices were built using HTS version 2.1 (internal) with 138-dimensional
feature vectors, capturing the static and dynamic components of the signal.
The spectral stream is 120-dimensional, consisting of 40 STRAIGHT mel
cepstra (including energy), their deltas and delta-deltas. The log F0 is rep-
resented in 3 dimensions: log F0, deltas and delta-deltas. The band aperi-
odicity component is 15-dimensional consisting of 5 different frequency band
representations: 0-1, 1-2, 2-4, 4-6 and 6-8 kHz, deltas and delta-deltas. The
feature vectors were extracted from the speech every 5 ms with a window
size of 25 ms.
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The average voice was built from full Arctic data sets (1132 sentences)
as spoken by 6 male speakers: 4 US English speakers, 1 Canadian English
speaker and 1 Scottish English speaker. At the time of the study, this was
the only pre-built average voice available to use with the toolkit and so was
used for expediency.

The adaptation was done using a combination of constrained structural
maximum a posteriori linear regression (CSMAPLR) (Yamagishi et al., 2009)
and maximum a posteriori (MAP) techniques.

For each speaker, two voices were built: one with all the unedited data
the participants had recorded and the other with data manually selected for
intelligibility (see figure 2 for more details on the process). Any sections with
noise, unlabelled pauses or articulations which were unintelligible or did not
match the labels derived from the original prompts were removed from the
adaptation data. The edited voices used were built with segments totalling
the equivalent of 172 sentences for speaker 1, 119 sentences for speaker 2 and
182 sentences for speaker 3. Equivalence is based on the average sentence
length of Arctic set A being 8.9 words (correct to 1 decimal place) (Kominek
and Black, 2003).

4.4. Stimuli

The stimuli presented to the participants were synthesised sentences and
paragraphs taken from SCRIBE (Spoken Corpus Recordings in British En-
glish) (Huckvale, 2004). The SCRIBE paragraphs contain a high frequency
of words which have features attributable to different regional accents of
British English. The passages were chosen to be long enough for the listener
to get a general impression of the features of the voice without focussing on
individual errors and keeping the evaluation to an appropriate length.

4.5. Procedure: speaker participants

The evaluations took place in a quiet room at the University of Sheffield.
The stimuli were presented to the participants individually using a laptop
computer with external speakers.

The research was introduced as building voices for a computer to use to
speak for that individual on days where their own voice was not clear. An
example of the average voice was introduced as a starting point from which
the voice was changed to an approximation of the participant’s voice, based
on the data that they recorded previously. An original recording of two
non-disordered voices built with 500 sentences was played, followed by the
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synthesised version of the same sentence and a sentence for which the listeners
had not heard an original recording. This was to make the participants aware
of the potential of this system. For each voice the participants were asked
to rate the similarity of the synthesised output to the original recordings
on a 1 (sounded like a different person) - 5 (sounded like the same person)
scale. This attempted to gauge their reaction to the synthesised voices whilst
starting to attune their hearing to synthesised speech.

An example of their own speech from the original recording was played
to the participant to make them aware of the sound of their own voice as
played through the speakers, attempting to address the problem of hearing
one’s own speech through a different medium of sound transmission (von
Bekesy, 1949).

4.5.1. Similarity to target

Comparisons were made between the average voice and voices synthesised
with average voice components introducing features that display speaker
characteristics (van Dommelen, 1990) taken from the speaker participant
model. The voices were built using edited data only. Conditions in this
stage of the evaluation were: average voice, average voice with participant
log F0 features, average voice with participant spectral information and av-
erage voice with participant log F0 and spectral information, see figure 2 for
how the voice features were combined. Participants were asked to rate the
difference between the original recording and the synthesis on a 1 (does not
sound like me) - 5 (sounds like me) scale, with only the end-points labelled.

The same paragraph was played for each condition, the content of which
was not part of the set of original recordings used to build the voices.

4.5.2. Output quality

The second evaluation question addressed the overall quality of output,
combining intelligibility and naturalness with similarity of speaker. A choice
was presented between the average voice with participant spectral and log
F0 features (which is the configuration used in figure 2) and the same voice
with one additional feature of the speaker participant’s model substituted.
The question asked was “For each pair, which voice do you think sounds
best?”, allowing the individual to have their own criteria for their definition
of “best”. Conditions evaluated were: use of the participant’s energy, use
of the participant’s durations, use of the participant’s global variance for
spectral features (all using the set of edited data) and the final condition
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used the full set of unedited data with only participant spectral and log F0
features to build the voice. These conditions were chosen for evaluation as
they had a perceived effect on the output for at least one of the participants.
The participant could indicate that they perceived no difference between the
two samples. The pairs were randomly ordered and could be listened to as
many times as was required. One paragraph was used for each condition.

4.5.3. Appropriateness for speaker

The third evaluation question dealt with appropriateness of synthetic
speech output for that participant and their preferences for the customisable
features: speech rate of utterance and global variance for log F0. A pairwise
comparison was made for three different sentences. For rate, the comparison
was between the average voice durations and a slowed down version of the
average voice durations. For global variance for log F0, the two options were
that of the average voice or that calculated from the participant’s adaptation
data. For each pair the question was asked “Can you tell a difference and if
so, which one do you prefer?”.

Follow up questions to access the overall acceptability of the voice were
then posed as follows:

• Do you like the voice? For the one you liked the best, can you give a
rating of 1 (do not like the voice) - 5 (like the voice)?

• On days when you felt your voice was not clear, would you be happy
to use that synthesised voice instead?

• If you could choose between using this voice or an alternative voice
(an example of a commercially available voice from Acapela (Peter)),
which would you prefer?

4.6. Procedure: listener participants

The procedure for the listener participants experiment closely followed
that designed for the speaker participants. For the listeners who knew speak-
ers 1 (listeners 1A and 1B) and 2 (listeners 2A and 2B), the stimuli were
presented to both participants at the same time in each evaluation to allow
for discussion although their responses were recorded separately.

The listeners were presented with only one of the non-disordered speech
voices. They were not presented with original recordings from the speaker’s
data set allowing responses to the stimuli based only on their perception of

19



whether the output could be associated with the speaker themselves rather
than a direct measure of similarity to the initial recordings.

The questions asked during the presentation were for section 1 “Does this
voice sound like the speaker?”, for section 2 “Which of these voices sounds
best for the speaker?” and for section 3 “Can you tell a difference and if so,
which one is most appropriate for that speaker?”. Follow up questions were
not asked to the listener participants.

5. Results

5.1. Preliminary question

The results of the preliminary part of the experiment for speakers and
listeners are displayed in table 2. In this part of the experiment both the
speakers and listeners were asked to rate how similar the synthetic voice
sounded to recordings of the original speaker. The voices were constructed
from recordings of typically-speaking individuals and indicate the listener’s
ability to assess the similarity of the original and synthetic speech.

Voice 1
Speaker 1 5
Listener 1A 4.5
Listener 1B 4.5
Speaker 2 1
Listener 2A 4
Listener 2B 4
Listener 3A 4

Table 2: Ratings from speakers and listeners evaluating a voice built from non-disordered
data on a 1(does not sound like that speaker) - 5(sounds like that speaker) similarity scale.

The results show that the listeners and one of the speakers, rate the
synthetic voice as being similar to the original speech.
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5.2. Similarity to target

The results for the first question in the formal evaluation are shown in
table 3. After exposure to the stimuli, speaker 1’s rating of the average voice
was high, showing that he perceived the average voice as sounding similar to
his own. The rating increased to 5 for all other conditions containing com-
ponents of his model substituted into the output voice. Listeners 1A and 1B
note more discriminating differences between the voices, agreeing that intro-
ducing speaker log F0 alone is insufficient to recognise speaker characteristics
in the output synthesis. The similarity increases as the speaker’s own spec-
tral features are used and further increases when using both speaker spectral
features and log F0.

Speaker 2’s ratings showed that he did not recognise himself in the voice.
The similarity rating was not high from the listeners but there was more
recognition of the speaker when information taken from the speaker’s models
was introduced.

For speaker 3, the listener judged that there was no similarity of the
voices to the speaker until both the speaker spectral features and log F0
were introduced when the rating slightly increased.

Voice Ave Ave+sp logF0 Ave+sp mel cep Ave+sp logF0+mcep
Speaker 1 4 5 5 5
Listener 1A 1 1 2 3
Listener 1B 1 1 1.5 3
Speaker 2 1 1 1 1
Listener 2A 1 1 2 2
Listener 2B 1 1 2 2
Listener 3A 1 1 1 2

Table 3: Ratings from speakers and listeners evaluating voices built from average voice
models with different speaker participant model components introduced. Ratings are on a
1(does not sound like me/him) - 5(sounds like me/him) similarity scale.

5.3. Output quality

The results for this section are summarised in table 4. The results show
that the preferences for different component choices vary between speakers.
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The differences between the voices can be perceived and in some cases, prefer-
ences which show increase in output quality are shown across all participants
listening to the voices.

Participant Energy Durations GV for mel cep Data
Speaker 1 Ave Speaker No diff. No diff.
Listener 1A Ave Ave No diff. No diff.
Listener 1B Speaker Ave No diff. Unedited
Speaker 2 Ave No diff. Speaker Unedited
Listener 2A Ave Ave Ave No diff.
Listener 2B Ave Ave Ave Edited
Listener 3A No diff. Ave Ave Edited

Table 4: Preferences for quality shown by speakers and listeners for output synthesised
in two difference conditions: speaker or average voice energy, duration or spectral global
variance and using unedited or edited data. All other features remained constant.

5.4. Appropriateness for speaker

The results for this question are shown in table 5 for output rate and
global variance for log F0. The results show that differences between the
conditions are discernible and preferences can be made for both rate of ut-
terance and global variance for log F0 for speakers 1 and 2 but not for speaker
3.

5.5. Attitudes

For the rating of acceptability of the voice, from 1 (do not like the voice)
- 5 (like the voice), speaker 1 rated his output voice as 5. He stated that he
would be happy to use that voice on days when his own was not clear and
showed no preference between the choice of using his own reconstructed voice
or the Acapela voice. Speaker 2 rated his output voice as 1. He stated that
he would not want to use that voice on days when his own was not clear and
showed a preference for the Acapela voice over the presented reconstructed
versions of his own voice.
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rates of speech GV for log F0
Participant ave slow none ave sp. none
Speaker 1 0 0 3 0 2 1
Listener 1A 2 1 0 3 0 0
Listener 1B 0 2 1 2 1 0
Total 2 3 4 5 3 1
Speaker 2 2 0 1 2 0 1
Listener 2A 1 1 1 2 1 0
Listener 2B 2 0 1 3 0 0
Total 5 1 3 7 1 1
Listener 3A 0 0 3 1 0 2

Table 5: Number of utterances out of 3 preferred for different prosodic alterations. The
conditions compared average voice durations (ave) and average voice durations slowed down
(slow). The second experiment compared average voice gv-lF0 (ave) and the speaker’s own
gv-lF0 (sp.). None indicates the participants had no preference.

6. Discussion

This study reports on the ratings of synthetic voices created for three
dysarthric speakers. For these speakers, no examples exist of their premorbid
speech so evaluation of the techniques used to create the synthetic voice are
qualitative in nature. The speakers and familiar listeners were asked to rate
different synthetic voices.

6.1. Acceptability of synthetic voices

The evaluation suggests that 150 or 200 sentences is not sufficient to fully
capture the likeness of the speakers’ voices using an average voice model
matched for sex, but not other factors such as accent or age. The synthetic
voice for Speaker 1 was rated more positively in terms of similarity by listen-
ers than the voices for Speakers 2 and 3. It may be that this higher rating
is due to the larger number of sentences used to create the voice for Speaker
1. It is also the case that the quality of the recorded data used for speaker
3’s voice was lower, and his speech was also more severely impaired than the
other two speakers. The manual data selection process used to extract the
most intelligible portion may have introduced more variable quality sections
into the adaptation data.

The perceived presence of “American-sounding” features, which is likely
to be from the US English average voice, was common for all the voice. In-
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deed Speaker 2 suggested this prevented him from recognising himself in the
output voices. Listeners 2A and 2B also made this observation and empha-
sised that the English quality conveyed in speaker 2’s voice was important
to display his character. Listener 3A stated that the voice sounded like an
American version of speaker 3 and then emphasised that this was not his
identity. It may be surmised that an average voice more similar to the target
voice in terms of accent may lead to a synthetic voice more acceptable to the
speaker.

The listeners for speakers 1 and 2 noted that there were sections of the
output with a strong likeness to the voice of the speaker participants, usually
at the syllable level and the US English influence on the voice made it sound
disjointed and less like the speakers. For speaker 1, the listeners agreed that
those sections that did sound like speaker 1 had captured his voice well.
Listener participant 3A noted that the voice with speaker log F0 and mel
cepstra sounded somewhere between a generic speech synthesiser voice and
the speaker’s voice.

6.2. Feature selection

The factors influencing the quality of the voice output were dependent
on the speaker and the effects of dysarthria on their speech. Where there
were apparently large perceptual differences between voices those which were
thought to be of higher quality or higher intelligibility were rated highest.
However, this was not always the case when listeners perceived a voice to
more accurately represent a speaker. For instance, although most listeners
preferred to voices for Speakers 1 and 2 which used average voice energies,
one listener (3A) noted that more accent of the target speaker could be heard
in the examples using their own energies. This suggested that the perception
of identity in speech is complex but also that the cues relating to these will
need to be traded to achieve an acceptable synthetic voice.

Listener 3A heard no difference between the speech with the energy taken
from the average voice and the speech using the speaker’s own energy, this
difference could have been masked by the overall lower quality of the output
for speaker 3.

Speaker 1 preferred the voice where his own durations were used as he
identified his own voice clearly in that example. Listeners 1A and 1B noted
that that example sounded more like speaker 1 but in their judgements noted
that they preferred the example with the average voice durations because it
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was more intelligible and therefore more suitable for use with a communica-
tion aid. This was also true for listener 3A who noted that the speaker’s own
durations contributed to the identity of the speaker but who preferred the av-
erage voice durations because of the perceptual reduction of the impairment
in the voice if it was to be used in a communication aid.

For Speaker 2, the duration information was not very different to his orig-
inal speech and although both listeners preferred the average voice durations,
they did note that the two outputs were very similar. Speaker 2 noted that
although for one particular voice, the global variance for spectral information
from the average voice made the output clearer, he preferred the voice with
his own global variance for spectral information. This output produced a
slightly muffled percept but this preference could be related to the perceived
softness in the voice quality that it introduced, which Speaker 2 noted was
missing in other examples. This was also noted by the listeners but they
chose the average voice example as they recognised the need for the output
to be clear and intelligible. The preferences for the global variance for spec-
tral features across all participants suggests that it positively contributes to
the output synthesis quality for these speakers.

These results suggest that to retain speaker characteristics in the syn-
thetic voice the duration distributions of the target speaker should be re-
tained. However, this is a feature which is likely to be affected by the indi-
vidual’s speech impairment. Although is appears that using speaker’s own
durations did contribute to the identification of the speaker, it is clear that
substitution should be made when the speaker durations vary greatly from
those of the average voice to maintain intelligibility of the synthetic voice. To
reduce the effect of this substitution it is likely that using an average voice
with the same regional accent would be better suited to capture the duration
aspects of the accent of the individual. If a choice of regionally-appropriate
average voices were available, it would offer a more appropriate set of dura-
tion characteristics to more closely replicate the accent of the speaker.

The differences in output rate could be perceived by some of the partic-
ipants, although there is a limited extent to which the rate can be slowed
until it starts to reduce intelligibility, as observed during the informal listen-
ing tests conducted by the author. The rate of output was therefore only
slowed slightly, which may not have been sufficient for all participants to ob-
serve. Where the difference was perceived, this contributed to the individual
preferences along with observing where certain speaker characteristics were
more strongly perceived in certain stimuli.
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The change of global variance for log F0 could also be perceived by some
of the participants. Speaker 2, who had a relatively narrow range of log F0
preferred to have a wider range than his own in the output. Speaker 1’s
range was closer to the average voice and the preference showed it was more
appropriate for him. Where speaker 1 did notice a difference in what he
heard for the global variance for log F0 stimuli, he said that the difference
was that one was easier to understand than the other. This was supported
by the evaluators who also used intelligibility to make their judgements but
were also listening more closely to identify bits of speaker 1’s accent and the
Americanised output. Listener 3A identified a difference in the output of
one stimulus, preferring the average voice global variance for log F0. The
difficulty in recognising a difference between the stimuli for these parameter
changes could be related to the overall quality of the output synthesis for
this speaker, although it is difficult to draw conclusions based on the limited
amount of results for this speaker.

In relation to the pathologies of the speakers, both 1 and 2 had variable
energy in their speech and both preferred voices with normalised energy out-
put. Speaker 2’s monopitch output was reconstructed to have a preferred
wider variability in pitch. This factor could also be altered for speaker 3 to
widen the log F0 variability found in his speech data. Imprecise articula-
tions present in all speakers’ data were handled by using the average voice
model durations and global variance for spectral features. Selecting data for
adaptation also contributed to the reconstruction quality, particularly for the
more severely impaired speech of speaker 3.

In terms of acceptability, this evaluation shows that different people have
different priorities for their VOCA use and this highlights the need to pro-
vide more choice and more customisation for voices that are provided with
communication aids to fit the wants and needs of individuals. The evaluation
also provided insight into the importance of some individuals’ voices to them
as their marker of identity. The reactions within the evaluation suggested
that if a voice is said to be personalised to match that of an individual, then
the point of acceptability of that voice reconstruction is dependent on the
individual. What is also clear is that if the user does not accept the voice
then they do not want it to represent them, again supporting the case that
customisation, choice and adaptation to the individual is important for the
acceptability of such devices.
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7. Conclusion

Using HMM-based synthesis with data selection and imposition of infor-
mation from the average voice model is a promising technique to reconstruct
voices of these individuals with mild to moderate dysarthria. These results
point to more success being achieved and better similarity judged if the
American influence on the voices was removed. Using an average voice that
is more appropriate to the speaker’s own accent would reduce the difference
between the speaker characteristics of the average voice and the adaptation
data. This would reduce the perceptions that were reported of that was ap-
parent in the synthesised output in the evaluation. This led to the percept of
hearing more than one speaker in the voice as noted by all the listener partic-
ipants. Speakers with dysarthria find it more difficult to produce the amount
of data needed to fully adapt all the characteristics contained in the average
voice to their own. It is hypothesised that the use of a more regionally-
appropriate British English average voice model would improve this process
for this amount of data. Since the experiments reported here, ongoing work
with building HTS voices with British English data means that UK average
voice models are now available along with multi-accented English speaking
average voices (Yamagishi et al., 2008b). Further work also points to the use
of starting point voices which are closer to the target produce higher quality
output (Yamagishi et al., 2010).
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