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Abstract

Local interactions between neighbouring SNPs are hypothesized to be able to capture variants missing from genome-wide
association studies (GWAS) via haplotype effects but have not been thoroughly explored. We have used a new high-
throughput analysis tool to probe this underexplored area through full pair-wise genome scans and conventional GWAS in
diastolic and systolic blood pressure and six metabolic traits in the Northern Finland Birth Cohort 1966 (NFBC1966) and the
Atherosclerosis Risk in Communities study cohort (ARIC). Genome-wide significant interactions were detected in ARIC for
systolic blood pressure between PLEKHA7 (a known GWAS locus for blood pressure) and GPR180 (which plays a role in
vascular remodelling), and also for triglycerides as local interactions within the 11q23.3 region (replicated significantly in
NFBC1966), which notably harbours several loci (BUD13, ZNF259 and APOA5) contributing to triglyceride levels. Tests of the
local interactions within the 11q23.3 region conditional on the top GWAS signal suggested the presence of two
independent functional variants, each with supportive evidence for their roles in gene regulation. Local interactions
captured 9 additional GWAS loci identified in this study (3 significantly replicated) and 73 from previous GWAS (24 in the
eight traits and 49 in related traits). We conclude that the detection of local interactions requires adequate SNP coverage of
the genome and that such interactions are only likely to be detectable between SNPs in low linkage disequilibrium.
Analysing local interactions is a potentially valuable complement to GWAS and can provide new insights into the biology
underlying variation in complex traits.
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Introduction

The study of gene-gene interactions (epistasis) in complex

traits has seen rapid advances in recent years. The potential

importance of epistasis in explaining the extent and basis of

heritability has been emphasized in both model organisms [1,2]

and humans [3]. Previously searching for epistasis in genome-

wide association studies (GWAS) was limited by the substantial

demands it placed upon computational resources. The devel-

opment of new methods and tools has greatly reduced the

computational barrier and made the routine analysis of epistasis

in GWAS data achievable [4,5,6,7,8]. Furthermore, progress

has been made in dissecting the molecular mechanisms

underlying epistasis [9,10]. With these advances it is hoped

that future studies will accumulate more evidence of epistasis

and improve our understanding of the role of epistasis in the

genetic regulation of complex traits [11].

New developments such as BiForce support high-throughput

analysis of epistasis in GWAS data allowing full pair-wise

interactions for multiple traits in multiple populations to be

quickly computed [4,12]. The new challenge is to identify reliable

epistatic signals with plausible functional mechanisms from the

high throughput interaction results. Several issues can complicate

this challenge. First, previous studies suggest that most GWAS

populations may have relatively low power for the detection of

epistasis in complex traits [3,12,13,14], i.e. one may in general

have to work with sub-significant interaction results. Second,

detection and subsequent replication of a pair-wise interaction

requires SNPs to be in strong linkage disequilibrium (LD) with the

causal variants at each locus in both discovery and replication

samples, making replication more difficult than in the case of a

single association signal from GWAS [15,16,17]. A high density of

SNPs genotyped would help by providing a good LD coverage but

many GWAS populations were actually genotyped with lower
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density SNP chips (e.g. ,400 000 SNPs). Third, a big proportion

of epistatic SNPs (e.g. .40%) may not be near a gene [15,16] so

bioinformatics methods considering non-coding variants are

needed to assess their functional roles [18,19].

Various approaches may be considered to increase detection

power for epistasis. One reason for the low power issue is the use of

stringent genome-wide significance thresholds derived from

Bonferroni adjustment for often several billions of pair-wise tests

of all SNP combinations. Several knowledge-driven methods select

a subset of SNPs based on prior biological knowledge (e.g. genes

and proteins in particular pathways) and only test pair-wise

interactions between the selected SNPs so that a more relaxed

threshold could be used to claim significance [6,20,21]. Knowl-

edge-driven methods that are restricted to SNPs with functional

annotation will miss interaction signals involving other SNPs, such

as those in pathways not currently implicated, or those lacking

functional annotation altogether (e.g. SNPs in non-coding regions).

Interactions between neighbouring SNPs (local interactions) are

hypothesized to be able to capture variants missing from GWAS

via haplotype effects [22]. Local interactions have been previously

reported (without testing for replication) in several human diseases

and metabolic traits [12], including C-reactive protein (CRP),

diastolic blood pressure (DBP), glucose (GLU), high-density

lipoprotein (HDL), insulin (INS), low-density lipoprotein (LDL),

systolic blood protein (SBP), triglycerides (TRI), but they are not

thoroughly explored. Concentrating only on local interactions

between SNPs on the same chromosome and within a certain

distance such as one million base pairs (Mb) would also mean a

much reduced number of pair-wise tests and consequently a

relaxed significance threshold. On the other hand, it has been

shown that analysing multiple metabolic traits together could

identify pleiotropic effects and common pathways from the shared

single SNP signals (not necessarily genome-wide significant) from

GWAS [23,24]. It is an open question whether sub-significant

epistatic signals shared in multiple metabolic traits could also lead

to new insights into the functional organization of the complex

metabolomes [25].

Here we used the Atherosclerosis Risk in Communities study

cohort (ARIC) and the Northern Finland Birth Cohort

(NFBC1966) to explore the potential values of high throughput

analyses of epistasis in the eight metabolic traits above. ARIC is

one of the largest GWAS populations available and both its sample

size and density of SNPs genotyped nearly double the counterparts

in NFBC1966. After data scrutiny and quality control checks

(Table S1), we performed full pair-wise genome scans using

BiForce and conventional GWAS in all eight metabolic traits in

both cohorts, identified and tested replication of genome-wide

significant epistatic signals. It has been shown that a combined

search algorithm implemented in BiForce can increase the power

of detection of epistasis by applying appropriate thresholds to test

interactions involving SNPs with genome-wide significant mar-

ginal effects (marginal SNPs) while keeping false-positive rates

under control [12]. We then assessed the impact of sample size and

SNP density on power of detection by comparing the computed

interaction profiles in each trait between the two cohorts. Further

we characterised local interactions between SNPs located within

1 Mb and with an interaction P value (Pint) less than a threshold of

1.0E-05 derived from region based permutations (Material and

Methods section). We used the r2 measure of LD throughout this

study which is considered to be the best LD measure in studying

epistasis and robust to the Hardy-Weinberg Equilibrium assump-

tion [26]. Our results suggest that analysing local interactions is an

effective and valuable complement to GWAS and can provide new

insights into the biology underlying variation in complex traits.

Results

Pair-wise genome scans detect significant epistasis
We analyzed 514 662 and 323 697 SNPs in the ARIC and

NFBC1966 cohorts respectively (Table S1). For single SNP based

genome scans (i.e. conventional GWAS) the consensus threshold

(P = 5.0E-08) [27] was applied to identify marginal SNP. For full

pair-wise genome scans Bonferroni adjusted thresholds for the

total number of tests, i.e. 3.8E-13 and 9.5E-13 when no marginal

SNPs were involved and 9.7E-08 and 1.5E-07 when at least one

marginal SNP was involved, were used to identify genome-wide

significant epistatic SNP pairs in ARIC and NFBC1966 respec-

tively (Materials and Methods section). Conventional GWAS

identified numerous genome-wide significant SNPs in five traits

(i.e. CRP, GLU, HDL, LDL and TRI) in both cohorts (Table S2).

These results are in line with the original GWAS of the two

cohorts [28,29,30].

Pair-wise genome scans identified six epistatic pairs of SNPs

carrying strong interaction signals in ARIC only (Table 1). The

first two pairs, i.e. rs409354 - rs1417733 for SBP and rs10892020 -

rs17119975 for TRI, had mainly interactions with negligible

marginal effects and were considered genome-wide significant

based on the Bonferroni adjusted threshold of 3.8E-13 (note the

Pint of the SBP pair did not exceed but was close enough to the

stringent threshold). The remaining four epistatic pairs each

included one marginal SNP (Table S2), of which the two SNP

pairs with Pint,1.9E-09 for TRI were genome-wide significant

and the remaining two (for TRI and HDL respectively) were

suggestive. Interestingly, the four epistatic SNP pairs identified for

TRI were all local interactions between SNPs closely located

(distance ,45 kilobases) in the 11q23.3 region, which contains

multiple genes associated with lipid traits (Table 1). The SNP pair

rs409354 - rs1417733 for SBP was also found in DBP but with Pint

of 3.9E-06. Replication of the six epistatic pairs was tested in the

NFBC1966 cohort but only at the region level (Materials and

Methods section) because none of the listed epistatic SNPs were

genotyped in NFBC1966. All six pairs had some evidence for

replication (Pint,0.05) but only the replication of the 11q23.3 local

interaction pairs for TRI exceeded the significance threshold of

5.6E-04 derived from permutation.

SNP coverage is critical in the detection of local
interactions

The power advantage in ARIC over NFBC1966 was clearly

observed in every trait studied when sub-significant SNP pairs

were considered together (Figure 1, Table S3). For example, the

numbers of SNP pairs with Pint,5.0E-08 (i.e. the GWAS

consensus threshold) in each trait in NFBC1966 were approxi-

mately 40% of the counterparts in ARIC, which is coincident with

the difference of the SNP coverage in the two cohorts, i.e. (323 697

in NFBC1966)2/(514 662 in ARIC)2 = 0.4. The most striking

differences were the numbers of local interaction pairs detected in

each trait between NFBC1966 (,50) and ARIC (800 to 1000),

suggesting that SNP coverage might be particularly important to

detect local interactions.

Using the TRI trait in ARIC as an example, we examined the

impact of sample size and SNP coverage separately. A reduction of

the ARIC sample size by random sampling (with no changes to

SNP coverage) to 4873 – the sample size of NFBC1966 (Table S1)

- did not substantially alter the number of SNP pairs with

Pint,5.0E-08 (from 5684 to 5446) or the number of local

interaction pairs (from 942 to 960), but did reduce the interaction

signals of the top four pairs for TRI listed in Table 1 dramatically

(Pint values reduced to 6.1E-07, 5.2E-06, 5.3E-06 and 1.7E-04

Local Interactions Complement GWAS
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respectively, none remaining significant). However, a reduction by

random sampling of the number of ARIC SNPs (with no changes

to sample size) to 323 697 – the total number of SNPs in

NFBC1966 – dramatically reduced the numbers of SNP pairs with

Pint,5.0E-08 (to 2376) and local interaction pairs (to 332),

including all the four SNP pairs for TRI (Table 1). Clearly, SNP

coverage is disproportionately important for the power of epistasis

detection.

Local interactions capture both known and novel loci via
haplotype effects

Exploring the pairwise interactions with Pint,1.0E-05 but

which do not reach genome-wide significance it is clear that local

interactions comprised only a small proportion (,0.1%) of the

total number of SNP pairs retained per trait in both cohorts (Table

S3). However local interactions covered various regions across the

genome and could be useful in identifying important loci including

those missing from GWAS. To illustrate this point, we created a

cartoon model describing a haplotype tagging a recessive causal

variant can generate an apparent statistical interaction between

two unlinked SNPs each with limited marginal effects under the

assumption of Hardy-Weinberg Equilibrium (i.e. equal allele

frequency of 0.5 for each SNP and equal haplotype frequency of

0.25 for the four possible haplotypes) (Figure 2). Under this model,

only individuals with the aabb genotype (i.e. homozygous for the

ab haplotype carrying the causal variant) show differentiated

phenotypes which leads to an apparent statistical interaction signal

in a contingency table based test whereas conventional GWAS can

not detect the causal variant from the associations with either SNP.

The model resembled the interaction between rs17119975 and

rs10892020 in TRI (Table 1) where both SNPs had limited

marginal effects and their interaction signal mainly came from the

double homozygous genotype (Figure 2). Several GWAS signifi-

cant SNPs were identified between the epistatic pairs of SNPs

(Table S2), indicating that local interactions can capture important

marginal effects.

We computed LD for all the local interaction pairs in the two

cohorts and plotted a histogram of the proportions of local

interaction pairs in different LD bins (Figure 3). Clearly, the vast

majority of local interactions had a low LD (r2,0.2) and only a

few had r2.0.5 each with a generally moderate interaction signal

(i.e. Pint,1.0E-06). Local interactions were distributed rather

evenly across the ranges of distances between two epistatic SNPs

and most Pint values in ARIC were less than 1.0E-06 with only

0.2% with Pint,1.0E-08 (Figure S1).

The LD (r2) values of the four local interaction pairs for TRI in

ARIC (Table 1) were also in the low range: rs17119975 –

rs10892020 (0.44), rs3741298 – rs7396835 (0.05), rs3741298 –

Table 1. Genome-wide significant epistatic pairs identified in the ARIC cohort and their replication in the NFBC199 cohort.*

Trait SNP1 chr1 pos1 gene1 SNP2 chr2 pos2 gene2 Pint rep_SNP1 rep_SNP2 rep_ Pint

SBP rs409354 11 16 876 618 PLEKHA7 rs1417733 13 95 327 273 near GPR180 4.3E-13 rs10832696 rs942149 7.2E-03

TRI rs10892020 11 116 589 652 near BUD13 rs17119975 11 116 634 557 BUD13 6.5E-16 rs7123583 rs2075295 2.1E-04

TRI rs3741298a 11 116 657 561 ZNF259 rs7396835 11 116 684 028 near APOA4 1.0E-09 rs7123583 rs2075295 2.1E-04

TRI rs3741298a 11 116 657 561 ZNF259 rs7396851 11 116 684 164 near APOA4 1.8E-09 rs7123583 rs2075295 2.1E-04

TRI rs12799766a 11 116 558 427 near BUD13 rs10892020 11 116 589 652 near BUD13 6.0E-09b rs7123583 rs2075295 2.1E-04

HDL rs1285884 6 7 143 075 RREB1 rs247617a 16 56 990 716 near CETP 2.8E-08b rs11755724 rs7499892 3.5E-02

*: genome-wide significant thresholds for interactions involving marginal SNPs were 2.1E-09 for TRI and 3.5E-09 for HDL; SNP1 (SNP2), chr1 (chr2), pos1 (pos2), gene1

(gene2) – name, chromosome, position and mapped gene of the first (second) SNP; Pint – P value of the interaction test; rep_SNP1 (rep_SNP2, rep_Pint) – the first (second,
interaction P value) SNP of the best replicated pair;
a: the genome-wide significant single SNP with marginal effects;
b: genome-wide suggestive.
doi:10.1371/journal.pone.0071203.t001

Figure 1. Differences in the numbers of SNP pairs with Pint,5.0E-08 and local interaction pairs (Pint,1.0E-05) detected in each trait
between ARIC and NFBC1966.
doi:10.1371/journal.pone.0071203.g001
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rs7396851 (0.05) and rs12799766 – rs10892020 (0.40). We then

aligned all local interactions within the 11q23.3 region associated

with TRI in ARIC (including the four Table 1 pairs) and found

they did not always overlap with each other (Figure 4A).

Conditional tests of each of these local interactions by fitting the

top marginal SNP rs964184 in the region (P = 2.5E-38, Table S2)

as the background found the interactions in rs17119975 –

rs10892020 and rs12799766 – rs10892020 disappeared

(Pint.0.05, thus the interactions were explained by the marginal

SNP) but the interactions in four SNP pairs remained significant

(Pint,1.0E-02, thus the interactions were statistically indepen-

dent to the marginal SNP): rs3741298 – rs7396835 (or

rs7396851) covering ZNF259 and APOA5, rs17092638 –

rs3741298 and rs12799766 – rs4417316 covering BUD13 and

ZNF259 (Figure 4A). The same conditional tests of each of the

remaining 13 marginal SNPs within the region for TRI (Table

S2) found only rs6589567 with a P value (2.9E-02) less than

0.05, which located near APOA5 and between the epistatic SNPs

of the first two independent pairs (Figure 4A). Further

conditional tests of each of the first two independent pairs by

fitting rs6589567 as the background showed their interactions

were also independent (Pint of 1.5E-07 and 2.4E-07 respectively)

to that SNP. In addition, we found two clusters of ENCODE

regulatory elements [31] aligning to the 59 ends of BUD13 and

ZNF259 (Figure 4B) and captured by the independent pairs

respectively. These results are consistent with the possibility that

local interactions might tag at least two independent functional

variants in the region.

The ANNOVAR [19] region-based annotation found that 63%

of the local interaction SNP pairs in ARIC (61% in NFBC1966)

mapped loci reported in previously published GWAS. These

included nine loci that were genome-wide significant in the GWAS

analyses in this study (Table 2, Table S2), of which only CETP for

HDL and BUD13–ZNF259–APOA5 for TRI (Table 1) were the top

GWAS loci in the individual traits studied, suggesting not all top

GWAS loci (i.e. with the strongest marginal effects) were involved

in local interactions. Interestingly, CETP was captured by local

interactions in both cohorts; LPL and BUD13–ZNF259–APOA5

Figure 2. A cartoon model illustrating a haplotype tagging a recessive causal variant can generate an apparent statistical
interaction between two unlinked SNPs each with limited marginal effects. (I) A recessive causative variant (black star) is associated with
only the ab SNP haplotype, assuming Hardy-Weinberg Equilibrium, i.e. an equal allele frequency of 0.5 for each SNP so there is no LD between the
two SNPs and an equal frequency of 0.25 for each of the four possible haplotypes, and the causal variant with an effect size of 1. (II) Only individuals
homozygous for this haplotype (ab/ab) are genetically differentiated generating apparent epistasis (averaged trait value and joint genotype
frequency in the bracket in each cell). (III) Marginal effects associated with the individual SNPs are limited with only one in four individuals of the aa or
bb SNP genotype being affected with a trait value of 2 so the averaged trait value of the genotype is 0.5 (SNP genotype frequency in brackets), thus
the individual SNPs may not be detected by a conventional GWAS. (IV) This resembles the interaction between rs17119975 and rs10892020 in TRI
(Table 1) where neither SNP had important marginal effects and their interaction signal was mainly because of the differentiated phenotype
associated with the double homozygous aabb genotype.
doi:10.1371/journal.pone.0071203.g002

Figure 3. Proportions of local interactions in different LD
ranges.
doi:10.1371/journal.pone.0071203.g003
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were captured in both HDL and TRI (Table 1) in ARIC. Most of

these local interactions in Table 2 had some evidence of

replication in the counterpart cohort (Pint,0.05) of which the

three pairs tagging LDLR and TOMM40 – APOE for LDL in

ARIC and CETP for HDL in NFBC1966 respectively were

significantly replicated.

Local interactions also pointed to GWAS loci that were missed

in our GWAS analyses, including 24 each associated with one of

the eight traits studied here and 49 each associated with a related

trait (Table S4). These 73 loci, particularly the 49 could be

considered as novel loci for our GWAS analyses of the eight traits.

For example, in the 2q31.1-q24.3 region marked by local

Figure 4. Local interactions (Pint,1.0E-05) within the 11q23.3 region associated with TRI in ARIC and supporting ENCODE
regulatory evidence. (A) black oval: the top marginal SNP rs964184 within the region; each line representing an interaction between two SNPs at
the start and end locations where red and blue lines represent interactions prior to and post conditional tests respectively; red and blue ovals: the
marginal SNP rs6589567 prior to and post conditional test respectively; y axis: association P values in the 2log10 scale; x axis: genomic location in
base pair; arrow bar showing transcription direction and location of the gene (italic) below the bar. (B) a snapshot from UCSC genome browser
showing clustered ENCODE regulatory elements aligning to the 59 ends of BUD13 and ZNF259 respectively.
doi:10.1371/journal.pone.0071203.g004

Local Interactions Complement GWAS
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interactions in TRI, previous GWAS identified G6PC2, ABCB11

and LRP2 associated with various metabolic traits and other

biochemical traits [32,33,34,35]; ERAP1 and a haplotype of

ERAP1 and ERAP2 (5q15) marked by local interactions in CRP

were reported to be associated with Ankylosing Spondylitis where

CRP levels are considered as one of the clinical indicators of

inflammatory activities of patients [36,37,38]; the CPS1 gene

(2q34) marked by local interactions in DBP was previously found

responsible for susceptibility to persistent pulmonary hypertension

function [39,40]. Again, we found a number of local interaction

regions showing pleiotropic effects in correlated traits, e.g. KLKB1

(4q35.2) and ARL15 (5q11.2) in HDL and TRI; CD34 (1q32.2) and

MYO16 (13q33.3) in DBP and SBP; VPS13C – C2CD4B (15q22.2),

ZFAND6 (15q25.1) and WWOX (16q23.2-q23.1) in GLU and INS;

SYCP2L – ELOVL2 (6p24.2-p24.1) in LDL and CRP; CCDC92 –

ZNF664 (12q24.31) in LDL, CRP and DBP. In addition, we found

the PCSK9 - USP24 (1p32.3-p32.2) region was marked by local

interactions in LDL in both the ARIC and NFBC1966 cohorts.

Discussion

Compared to the great success in GWAS, high throughput

analysis of epistasis is both in its infancy and substantially more

challenging in detection as well as interpretation. Indeed, as shown

in this study, conventional GWAS identified genome-wide

significant SNPs in multiple loci in five out of the eight traits

studied in both cohorts that were relatively easy to replicate (Table

S2), whereas significant epistasis signals were detected only in TRI

and SBP in ARIC – one of the biggest GWAS cohorts and

moderately replicated (significantly for the TRI signals) in

NFBC1966. However, high throughput pair-wise genome scans

enabled us to investigate the value of local interactions in

identifying potentially important loci from sub-significant epistatic

results. We showed that local interactions could capture loci with

important marginal effects (e.g. via haplotypes) and were useful to

better understand the genetic structures underlying such loci (i.e.

the 11q23.3 region) as well as to identify 73 loci missing from the

accompanying GWAS. Furthermore, it was possible to generate

promising hypotheses about the regulatory mechanisms underly-

ing independent statistical signals of epistasis, via interrogation

of ENCODE and other genomic sequence annotations. Our

results suggest that studying epistasis is a potentially valuable

complement to GWAS and can provide new insights into the

biology of complex traits, particularly those (i.e. DBP, SBP and

INS) where no significant signals were detected in the

accompanying GWAS.

Low power of detection is the key issue in studying epistasis in

single GWAS populations. We showed that in addition to sample

size, SNP coverage was critical to power as it generates the

detectable levels of LD required for epistasis detection and

replication. The NFBC1966 cohort used a smaller sample size

and a lower SNP coverage and this likely contributed to the many

fewer epistatic SNP pairs than in ARIC based on the same criteria.

Furthermore, in testing replication of the significant signals

(Table 1) in NFBC1966 SNP proxies of the epistatic SNPs had

to be used because the epistatic SNPs were not genotyped in that

cohort, which likely reduced the chance of replication. Imputation

could help improve statistical replication but in this case it would

be recommended to accommodate population specific LD

patterns owing to for example isolation in NFBC1966. Other

factors (e.g. population structure, allele frequency variation and

environmental factors) are also known to influence power [15]. For

example, individuals in the NFBC1966 cohort were much younger

(31 years old) than those in the ARIC cohort (45 to 64 years old)

and thus had quite different metabolic profiles for the traits

studied, which might have posed additional difficulty in detection

and replication. Therefore, it would be worthwhile to further test

replication of at least the significant signals in other cohorts with a

good SNP coverage because they are pleiotropic and biologically

meaningful. For example, the interaction between PLEKHA7 and

GPR180 for SBP (and DBP) may suggest an interesting model of

blood pressure regulation, where PLEKHA7 is a GWAS locus

associated with blood pressure [41] and GPR180 is a G protein-

coupled receptor produced predominantly in vascular smooth

muscle cells and may play an important role in the regulation of

vascular remodelling [42] (Table 1). It has been shown that

PLEKHA7 codes adherens junction proteins binding paracingulin

Table 2. Local interactions captured additional genome-wide significant loci identified in GWAS of the eight traits in ARIC and/or
NFBC1966.*

Region gene Trait SNP1 pos1 SNP2 pos2 Pint LD (r2) rep_SNP1 rep_SNP2 rep_ Pint

2p24.1 APOB LDL rs427021 21451458 rs386397 21451827 9.5E-10 0.26 rs10206521 rs312046 1.9E-03

5q13.3 HMGCR LDL rs2006760 74562029 rs1559203 75449814 7.0E-06 0 rs6866661 rs10072459 1.1E-02

8p21.3 LPL HDL rs1441766 19862788 rs7461115 19871540 9.7E-07 0.22 rs894210 rs2410630 1.1E-02

8p21.3 LPL TRIb rs1441766 19862788 rs7013777 19878356 1.2E-06 0.23 rs10099160 rs10103634 1.0E-03

11q21-q14.3 MTNR1B GLU rs10765558 92493781 rs56247942 92999977 5.7E-06 0 rs505423 rs1374475 3.3E-03

11q23.3 ZNF259,APOA5 HDL rs3741298 116657561 rs7396835 116684028 1.8E-07 0.05 Nil Nil Nil

12q24.31 near HNF1Aa CRP rs2708104 121483949 rs1718161 121627458 1.5E-06 0.00 rs11065408 rs2230912 3.4E-02

16q13 CETP HDL rs9989419c 56985139 rs12708980 57012379 5.6E-06 0.00 rs7499892 rs4784744 1.2E-02

16q13-q21 CETPa HDL rs9989419c 56985139 rs4783999 57651985 6.7E-06 0.03 rs2518054 rs12708990 4.5E-04

19p13.2 LDLR LDL rs12052058c 11159525 rs1799898 11227554 1.8E-06 0.10 rs11668477 rs2228671 2.6E-04

19q13.32 TOMM40, APOE LDL rs4803750c 45247627 rs4803759 45327459 4.4E-06 0.02 rs4803750 rs4803760 3.4E-04

*: SNP1 (SNP2), pos1 (pos2) – name and position the first (second) SNP; Pint – P value of the interaction test; rep_SNP1 (rep_SNP2, rep_Pint) – the first (second, interaction P
value) SNP of the best replicated pair; LD: r2 linkage disequilibrium between two epistatic SNPs.
a: detected in NFBC1966 and test replication in ARIC;
b: region shared in multiple traits;
c: genome-wide significant marginal SNP.
doi:10.1371/journal.pone.0071203.t002
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regulating RhoA and Rac1 activities [43] which may involve

various G protein-coupled receptors including GPR180.

Using a high density SNP chip for GWAS genotyping would

mean even more stringent genome-wide significance thresholds

based on Bonferroni adjustment and thus a further reduction of

the power of detection of epistasis. Such Bonferroni adjusted

thresholds can hardly remain practical as many more SNPs

derived from the increasingly popular sequencing studies are used

as input to future GWAS. There is a clear need for the community

to define consensus genome-wide significance thresholds for future

epistasis studies. A recent effort based on Illumina’s HumanHap

550 bead SNP chip and Monte Carlo simulations has made a good

progress towards this goal and suggests that an adjustment of 44%

of the total number of pair-wise tests is appropriate to avoid using

an overly stringent threshold [44]. To fully achieve the goal further

work is needed to examine the impact of SNP density and other

factors (e.g. sample size) on the correlation structure underlying

billions pair-wise tests in studying epistasis in GWAS.

Our local interaction results provide fresh evidence supporting

the hypothesis that some genetic variations in complex traits may

be captured by epistasis between neighbouring SNPs [22] and

shed light on a new search path for variants missing from GWAS

based on a more relaxed threshold than the genome-wide

thresholds derived by Bonferroni adjustment. We showed clearly

that local interactions were not driven by high LD between a pair

of SNPs (Figure 3) but more likely by haplotypes of SNPs in low

LD or unlinked as we previously predicted [12]. Local interaction

pairs reserve the usual interpretation of haplotypes, i.e. physical

coupling of alleles on the DNA strand inherited from a single

parent [26], but the alleles are unlinked or weakly linked and thus

may be more powerful than single SNPs particularly when the

genotyped SNPs are not in high LD with a causal variant tagged

by haplotypes (Figure 2).

Previously we argued that it was unlikely to be able to

distinguish a marginal signal captured by a haplotype from a

genuine local interaction using statistical approaches alone [12],

i.e. fitting the marginal signal could largely diminish the local

interaction signal. In the 11q23.3 region example (Figure 4), fitting

the top marginal SNP did remove the signal of the top local

interaction pair but not the signals of the four independent pairs

coinciding with ENCODE evidence of regulatory elements

aligning to the 59 ends of BUD13 and ZNF259 respectively. From

a statistical viewpoint one may conclude that the top local

interaction pair probably captured a marginal signal without

interaction but the independent pairs could be real interactions.

However, the mechanisms underlying these local interactions

could be complicated. For example, the marginal signal captured

by the top pair, if true, may also remove the interaction signals of

two independent pairs overlapped the region marked by the top

pair (Figure 4). Follow-up functional studies are needed to find out

whether these local interactions are real or simply capture

functional variants without interactions. In addition, our results

indicating pleiotropic epistatic signals suggest that analysing

multiple related traits together may be a useful approach to

uncover functionally important loci, which also requires further

investigation in the future.

Materials and Methods

Study cohorts and ethics statement
This study was approved by the institutional review board of the

West of Scotland Research Ethics Service of NHS in the UK. The

GWAS data of both the NFBC1966 and ARIC studies were

provided by the NIH Database of Genotype and Phenotype via

specific Data Use Certifications issued by the Data Access

Committee of the National Heart, Lung and Blood Institute.

Both studies have been described in detail elsewhere [29,30].

Briefly, the NFBC1966 study cohort recruited subjects born in two

Northern Finland provinces (i.e. Oulu and Lapland) in 1966 and

was approved by the Ethical Committee of the Northern

Ostrobothnia Hospital District and all participants gave written

informed consent. At the age of 31 each subject provided fasting

blood samples for evaluation of the metabolic measures and was

genotyped with Illumina Infinium 370cnvDuo array and

assessed for blood pressure and other traits [30]. The ARIC

study cohort recruited adults aged 45 to 64 years from four US

communities in 1987–89 each was genotyped with Genome-

Wide Human SNP Array 6.0 and underwent baseline exami-

nation and fasting blood sample tests and follow-up examina-

tions and tests in approximately every three years in four field

centres. The ARIC study was approved by the institutional

review board of each field centre institute and all participants

gave written informed consent in accordance with the Decla-

ration of Helsinki [29], where only subjects of European descent

were considered in this study.

In both cohorts, a standard procedure was used to measure

height, weight, sitting SBP and DBP for each participant; lipid

traits (i.e. HDL, LDL and TRI) were measured using standard

enzymatic methods [29,30]. In NFBC1966, CRP, GLU and INS

were analyzed using immunoenzymometric assay (Medix Bio-

chemica), a glucose dehydrogenase method (Granutest 250,

Diagnostica Merck) and radioimmunoassay (Pharmacia Diagnos-

tics) respectively [30]. In ARIC, serum CRP, GLU and INS were

assessed using the immunoturbidimetric CRP-Latex (II) high-

sensitivity assay from Denka Seiken (Tokyo, Japan) [28], a

hexokinase/glucose-6-phosphate dehydrogenase method on a

Coulter DACOS device (Beckman Coulter, Fullerton, CA) and

radioimmunoassay (125Insulin kit; Cambridge Medical Diagnosis,

Bilerica, MA) [45], respectively.

Subjects were excluded from the analysis of each individual

trait if matching the phenotypic exclusion criteria defined in the

original GWAS of NFBC1966 [30]: had missing values of

phenotypes or covariates detailed below (all traits); used diabetic

medication or gave blood samples without fasting (GLU, HDL,

INS, LDL, TRI); were diabetic or pregnant or phenotypic

values were in excess of three standard deviations from the

mean (GLU, INS). Most of the traits in ARIC used in this study

were measured at the first visit except that CRP was measured

at the fourth visit because the sample sizes in previous visits were

fairly small. Relevant covariates for CRP were all based on the

fourth visit.

A common protocol was used to perform quality control over

both cohorts using the GenABEL package [46] implemented in R

(http://www.r-project.org/): individual call rate at 97%, SNP call

rate at 95%, minor allele frequency at 2%, P value for deviation

from Hardy-Weinberg equilibrium at 1.0E-10, false discovery rate

for unacceptably high individual heterozygosity at 0.01. In

addition, to control population stratification, individuals were

excluded if they were outliers of one of the first three principal

components (false discovery rate of 0.005) calculated (using the R

function cmdscale) from the identity-by-state matrix constructed

using the GenABEL ibs function. We analysed SNPs on the

autosomal chromosomes only. After quality control, 514 662 and

323 697 SNPs were left in the ARIC and NFBC1966 cohorts

respectively with various numbers of individuals in different traits

(Table S1). For each cohort/trait, the identity-by-state matrix was

then reconstructed and the first ten principal components were

calculated and stored for statistical analyses.
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Statistical analysis
In NFBC1966 each trait was adjusted for gender, oral

contraception and pregnancy. In ARIC, each trait was adjusted

for gender, age, oral contraception and field centre; the three lipid

traits (i.e. HDL, LDL and TRI) were also adjusted for two

additional effects: taking of cholesterol-lowering medication

within two weeks of the visit and taking of medications that

secondarily affect cholesterol. After adjustment for covariates,

each trait was normalised using the GenABEL rntransform

function and then adjusted for relatedness and the first ten

principal components using the GenABEL polygenic function,

and the resultant environmental residuals (i.e. pgresidualY) were

used as the actual trait values to test for association [47]. The

polygenic heritability was also calculated for each trait at this

stage and these are shown in Table S1.

Conventional GWAS analyses (i.e. assuming additive effects

only) of each trait in each cohort were conducted using the

GenABEL mmscore function and the consensus threshold (P = 5.0E-

08) [27] was applied to declare a SNP with genome-wide

significant marginal effects. The inflation factors (computed by

regression of observed association P values against the expected) in

each genome scan were all between 1 and 1.03, suggesting

relatedness among individuals and potential population stratifica-

tion in each cohort were well accounted for. BiForce was used to

perform full pair-wise genome scans for each trait in each cohort

and retained SNP pairs with an interaction P value (Pint) less than

1.0E-05. Bonferroni adjusted thresholds as previously defined [12]

were used to identify genome-wide significant epistatic SNP pairs.

Given N to be the total number of SNPs with K (K.0) marginal

SNPs detected in the conventional GWAS, the 5% genome-wide

thresholds were derived as P = 0.05/(N6(N–1)/2-(N–1)6K)) for a

full pair-wise genome scan (i.e. 9.5E-13 and 3.8E-13 in NFBC1966

and ARIC respectively) and P = 0.05/((N–1)6K) for interactions

involving at least one marginal SNP (i.e. 1.5E-07 and 9.7E-08 if K

is 1 in NFBC1966 and ARIC respectively).

Identified epistatic SNP pairs were tested for replication in

independent samples at the SNP and/or region levels following

our previous protocol [15] to accommodate the issues of different

SNP coverage and LD patterns across study cohorts. The SNP

level replication is possible only if both SNPs of an epistatic pair

were genotyped in the independent samples and considered

significant if the P value of the interaction between the two SNPs

exceeded the 5% nominal threshold in independent samples. The

region level replication tested interactions between each of ten

adjacent SNPs (i.e., five upstream and five downstream) of the two

SNPs involved in the epistatic interaction and used the 5%

thresholds derived from permutation (i.e. permute the phenotypes

and test all pair-wise interactions within the region 1000 times) to

declare significance of the best replicate SNP pair, i.e. the pair of

SNPs with the lowest Pint value. If either SNP of an epistatic pair

was not genotyped in the independent samples, the nearest SNP

was chosen as its proxy to perform the region level replication tests

for the pair.

The detection of local interactions may be substantially affected

by LD patterns varying across the genome and thus require a

different threshold to declare significance. We used permutation of

the TRI trait in the ARIC cohort as an example to investigate such

a threshold based on a window of 41 SNPs on the same

chromosome (i.e. 20 upstream and 20 downstream of a SNP

randomly sampled from the genome), which may not necessarily

mark a region in exactly one million base pairs but capture the LD

pattern within the region and with a fixed number of tests. For

each randomly sampled SNP, we iteratively permuted the

phenotypes and tested interactions of every pair-wise combination

of SNPs within the window 100 times and recorded the lowest Pint

value in each iteration to derive the 5% Pint value. We randomly

sampled 200 SNPs from the genome and calculated the average of

the derived 5% Pint values as the threshold as 1.3E-04, which was

indeed less stringent than 6.1E-05 based on the Bonferroni

adjustment (i.e. 0.05/(41*40/2)) or 1.0E-05 used to retain epistatic

SNP pairs during the BiForce scans. The permutation derived

threshold was based on one region at a time that was not adjusted

for the total number of local interaction regions in the genome

which is unknown in advance. For simplicity, we used 1.0E-05 as

the threshold to declare local interactions in this study.

All SNP positions were based on the current human genome

build (UCSC hg19/NCBI 37.3). Local interactions were extracted

from the retained epistatic pairs if both SNPs located on the same

chromosome and within a distance less than 1 Mb (i.e. Pint,1.0E-

05) and their LD values were calculated. The functional

annotation tool ANNOVAR [19] was used to map local

interactions to loci reported in GWAS Catalog [48], where we

identified each GWAS locus located within a genomic region

bounded by the two SNPs of a local interaction SNP pair.

ANNOVAR was also used to map SNPs to genes using a window

of 20 kilobases upstream and 20 kilobases downstream of the SNP.

The RegulomeDB [18,49] and UCSC Genome Browser (http://

genome.ucsc.edu/) were used to search for regulatory elements

published by the ENCODE project [31].

Supporting Information

Figure S1 Distributions of local interactions in different ranges

of interaction P values or distances between a pair of SNPs.

(TIF)

Table S1 Summary of the eight metabolic traits in ARIC and

NFBC1966.

(XLSX)

Table S2 Genome-wide significant single SNPs in ARIC and

NFBC1966.

(XLSX)

Table S3 Profiling epistatic SNP pairs detected in eight

metabolic traits in ARIC and NFBC1966.

(XLSX)

Table S4 Local interactions tag GWAS loci identified from

external studies of the same or highly related traits.

(XLSX)
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25. Snitkin ES, Segrè D (2011) Epistatic Interaction Maps Relative to Multiple

Metabolic Phenotypes. PLoS Genet 7: e1001294.
26. Ueki M, Cordell HJ (2012) Improved Statistics for Genome-Wide Interaction

Analysis. PLoS Genet 8: e1002625.

27. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, et al. (2008)

Genome-wide association studies for complex traits: consensus, uncertainty and

challenges. Nat Rev Genet 9: 356–369.

28. Dehghan A, Dupuis Je, Barbalic M, Bis JC, Eiriksdottir G, et al. (2011) Meta-

Analysis of Genome-Wide Association Studies in .80 000 Subjects Identifies

Multiple Loci for C-Reactive Protein Levels/Clinical Perspective. Circulation

123: 731–738.

29. Dumitrescu L, Carty CL, Taylor K, Schumacher FR, Hindorff LA, et al. (2011)

Genetic Determinants of Lipid Traits in Diverse Populations from the

Population Architecture using Genomics and Epidemiology (PAGE) Study.

PLoS Genet 7: e1002138.

30. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, et al. (2009)

Genome-wide association analysis of metabolic traits in a birth cohort from a

founder population. Nat Genet 41: 35–46.

31. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, et al. (2012)

Architecture of the human regulatory network derived from ENCODE data.

Nature 489: 91–100.

32. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, et al. (2011) Genome-wide

association study identifies loci influencing concentrations of liver enzymes in

plasma. Nat Genet 43: 1131–1138.

33. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, et al. (2010) Genome-

wide association study of hematological and biochemical traits in a Japanese

population. Nat Genet 42: 210–215.

34. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, et al. (2011) A

bivariate genome-wide approach to metabolic syndrome: STAMPEED

consortium. Diabetes 60: 1329–1339.

35. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, et al. (2010) Common

variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and

nonglycemic pathways. Diabetes 59: 3229–3239.

36. Haroon N, Tsui FW, Chiu B, Tsui HW, Inman RD (2010) Serum cytokine

receptors in ankylosing spondylitis: relationship to inflammatory markers and

endoplasmic reticulum aminopeptidase polymorphisms. J Rheumatol 37: 1907–

1910.

37. Tsui FW, Haroon N, Reveille JD, Rahman P, Chiu B, et al. (2010) Association

of an ERAP1 ERAP2 haplotype with familial ankylosing spondylitis. Ann

Rheum Dis 69: 733–736.

38. Wang CM, Ho HH, Chang SW, Wu YJ, Lin JC, et al. (2012) ERAP1 genetic

variations associated with HLA-B27 interaction and disease severity of

syndesmophytes formation in Taiwanese ankylosing spondylitis. Arthritis Res

Ther 14: R125.

39. Pearson DL, Dawling S, Walsh WF, Haines JL, Christman BW, et al. (2001)

Neonatal pulmonary hypertension–urea-cycle intermediates, nitric oxide

production, and carbamoyl-phosphate synthetase function. N Engl J Med 344:

1832–1838.

40. Summar ML, Gainer JV, Pretorius M, Malave H, Harris S, et al. (2004)

Relationship between carbamoyl-phosphate synthetase genotype and systemic

vascular function. Hypertension 43: 186–191.

41. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, et al. (2009) Genome-

wide association study of blood pressure and hypertension. Nat Genet 41: 677–

687.

42. Iida A, Tanaka T, Nakamura Y (2003) High-density SNP map of human ITR, a

gene associated with vascular remodeling. J Hum Genet 48: 170–172.

43. Pulimeno P, Paschoud S, Citi S (2011) A role for ZO-1 and PLEKHA7 in

recruiting paracingulin to tight and adherens junctions of epithelial cells. J Biol

Chem 286: 16743–16750.

44. Becker T, Herold C, Meesters C, Mattheisen M, Baur MP (2011) Significance

levels in genome-wide interaction analysis (GWIA). Ann Hum Genet 75: 29–35.

45. Schroeder EB, Chambless LE, Liao D, Prineas RJ, Evans GW, et al. (2005)

Diabetes, Glucose, Insulin, and Heart Rate Variability: The Atherosclerosis Risk

in Communities (ARIC) study. Diabetes Care 28: 668–674.

46. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library

for genome-wide association analysis. Bioinformatics 23: 1294–1296.

47. Aulchenko YS, de Koning DJ, Haley C (2007) Genomewide rapid association

using mixed model and regression: a fast and simple method for genomewide

pedigree-based quantitative trait loci association analysis. Genetics 177: 577–

585.

48. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)

Potential etiologic and functional implications of genome-wide association loci

for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367.

49. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, et al. (2012)

Annotation of functional variation in personal genomes using RegulomeDB.

Genome Res 22: 1790–1797.

Local Interactions Complement GWAS

PLOS ONE | www.plosone.org 9 August 2013 | Volume 8 | Issue 8 | e71203


