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Abstract

The paper offers a novel justification for the non-obviousness patentability requirement.

An innovation involves two stages: research results in a technology blueprint, which de-

velopment transforms into a profitable activity. An innovator, who is either effi cient or

ineffi cient, must rely on outside finance for the development. Only patented technolo-

gies are developed. Strengthening the non-obviousness requirement alleviates adverse

selection by discouraging ineffi cient innovators from doing research, but creates ineffi -

ciencies by excluding marginal innovations. We show that it is socially optimal to raise

the non-obviousness requirement so as to exclude bad innovators; we also provide several

robustness checks and discuss the policy implications.



1 Introduction

To be patentable, an invention should not only be new and useful, but also suffi ciently

different that it would not have been obvious to a “Person Having Ordinary Skill In

The Art” (Witherspoon, 1980). In 2006, the U.S. Supreme Court triggered a heated

debate when, in KSR vs. Teleflex, it rejected the “rigid”use of the Teaching-Suggestion-

Motivation (TSM) test, replacing it with a “realistic”approach that strengthened the non-

obviousness requirement and led the Court to invalidate the petitioner’s patent (Durie

and Lemley, 2008). Following the KSR decision, the federal circuit and regional courts

have strengthened the bar for non-obviousness (Nock and Gadde, 2010). This can be

seen as a response to growing concern that casual inspection of patent applications re-

sults in many trivial patents being granted, leading to costly patent litigation.1 Lemley

(2001) challenged this position, however, justifying such casual inspection as “rational

ignorance.”Observing that the patent value distribution is highly skewed, so that only a

small proportion of patents are finally commercialized, he argued that a careful inspec-

tion of every patent would be a waste of resources, ex post litigation providing a more

cost-effective screening device —pushing this logic further, even casual patent inspection

is unnecessary, and the patent system should act as a registry system, as for copyrights.

This calls into question the merit of the non-obviousness requirement. In a recent

survey, Denicolò (2008) distinguishes four approaches. The error cost approach regards

non-obviousness as strengthening the novelty requirement, so as to reduce the probability

that the Patent and Trademark Offi ce (PTO) commits type II errors, that is, grants a

patent to a technology that is already in the public domain. The option value approach2

starts from the observation that an innovator has an incentive to implement prema-

ture ideas in order to preempt competitors; a non-obviousness requirement then helps

counter-balancing such a bias. The sequential innovation approach3 emphasizes instead

the positive externalities exerted by precedent innovators; insisting on non-obviousness

then helps protecting early innovators against competition from subsequent improve-

ments. The complementary innovation approach (Heller and Eisenberg, 1998) builds on

the “tragedy of the anticommons:”coordination failure among patent holders, as well as

1See, e.g., Gleick (2000), Cohen (1994), and Thomas (2001).
2See, e.g., Erkal and Scotchmer (2007).
3See, e.g., Scotchmer (1996), O’Donoghue (1998), and Hunt (2004).
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the risk of opportunistic behavior (hold-up) may prevent the effi cient use of key resources

when they are subject to multiple rights —a biotech breakthrough may for instance involve

dozens of complementary gene patents held by different right holders, which may pre-

vent its development or delay its diffusion (Shapiro, 2000); denying patentability to some

of the components can alleviate these problems and increase the incentives to innovate

(Ménière, 2008).

Although these are relevant issues, the patent toolbox includes many instruments, such

as patent length, patent breadth (lagging or leading), and so forth,4 which appear better

suited for dealing with the above problems. For example, patent breadth determines

the degree to which an innovation must differ from an already patented one to avoid

infringement, and thus when subsequent innovators must compensate previous ones; it

can thus be tailored to allow for socially desirable improvements whilst protecting the

value of the original innovations (Denicolo and Zanchettin, 2002). By contrast, the non-

obviousness requirement determines whether the subsequent innovations can be patented

or not, and thus constitutes a less direct way of dealing with this issue.5

In this paper, we emphasize instead the role of non-obviousness as a screening device,

mitigating the agency problems that plague innovators’access to finance. As emphasized

by Aghion and Tirole (1994), while the literature often treats an innovator as a “black-

box” representing not only the owner, but also the financier and the developer of an

innovation, in practice access to finance is key to the development of innovation. For

example, in innovative industries where start-ups and SMEs own the technologies6 but

lack the financial resources needed for their development and commercialization, venture

capital activity is significantly and positively associated with patenting rates (Kortum

and Lerner, 2000). A major challenge lies in identifying valuable technologies, and this

information problem, exacerbated by adverse selection, hinders the access to finance for

those innovators who do have valuable patents.7 Similar issues arise within firms and

groups, when deciding which projects to fund.

4For a discussion of the patent toolbox see, e.g., Gilbert and Shapiro (1990), Green and Scotchmer

(1996), van Dijk (1996), O’Donoghue (1998), and Denicolo and Zanchettin (2002).
5See Hunt (1999) for a study of the implications of non-obviousness for sequential innovation.
6According to Graham et al. (2010), holding patents is a common phenomenon among start-ups and

SMEs.
7See, e.g., De Meza and Webb (1987), Boadway and Keen (2006), Takalo and Otto (2010), and Tereza

(2007).
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Another important feature, emphasized by Kitch (1977), is that patented technologies

usually require further improvements in order to become fully operational and, because

of their better knowledge of the technology, the original inventors are often essential

in this process. Consequently, while the investors claim a stake in the technology, the

innovators remain often involved in its development. Thus, investors not only look for

valuable technologies, but also seek to cooperate with more competent innovators. The

interaction between investors and innovators, however, is also often affected by agency

problems, as innovators have private information about their ability.

In this paper, we build on these observations and develop a framework where potential

innovators vary in their productivity, which affects both their ability to innovate, and

to develop the innovation; an innovator must decide whether to undertake research, in

which case he comes up with a technology which may be more or less promising, and

requires outside finance for its development. It is socially desirable to encourage only the

good innovators, and to finance the development of the most promising technologies. The

interaction with outside investors is however affected by adverse selection. In this context,

non-obviousness acts as a screening device: it helps preventing ineffi cient innovators from

engaging ex ante in wasteful research activities, and contributes in this way to alleviate

adverse selection problem at the financing stage. This comes at a cost, however, as ex

post the valuable technologies that fail the requirement are no longer developed, due to

the threat of imitation. We characterize the optimal non-obviousness requirement and

show that, in a simple setting where the innovator is only of two types (effi cient or not),

it is optimal to fully discourage the ineffi cient type from engaging in R&D: as long as

the ineffi cient type engages in research with positive probability, the ex ante benefit from

reducing further this probability dominates the ex post cost of restricting the development

of marginal technologies.

2 The Model

A risk-neutral innovator, who must decide whether to engage in research activities, can

be of two types: good (θg, with probability µ) or bad (θb < θg, with probability 1 − µ);

the type θ is the innovator’s private information, whereas the probability µ is common

knowledge. An innovation involves two stages, research and development. At the research
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stage, by incurring a private cost R the innovator randomly draws a technology x from

the support [0,+∞), according to a cumulative distribution F (x, θ) with continuous,

differentiable density function f(x, θ), satisfying the Monotone Likelihood Ratio Property

(MLRP): for any x > y,

f(x, θg)

f(x, θb)
>
f(y, θg)

f(y, θb)
. (1)

Once a technology has been drawn, its development requires a monetary cost D and, if

successful, yields a profit x. The innovator’s ability θ also determines the probability of

success; the expected profit from development is thus θx. For welfare analysis purposes,

we follow the pioneering work of Loury (1979) and assume that the innovator appropriates

the full value of the innovation; social surplus is thus also equal to θx. To simplify the

exposition, we normalize the interest rate to zero.8

We assume that free-riding concerns are strong enough to prevent unpatented tech-

nologies from being developed, and that every technology x is a genuine improvement of

the state of art, so that there are no novelty or usefulness issues; the only concern for

patentability is non-obviousness which, keeping in line with the literature, is based on

the value of innovation (Denicolò, 2008): a non-obviousness requirement P means that a

technology x is patentable only when x ≥ P .

Finally, to capture agency problems we assume that the innovator is financially con-

strained and protected by limited liability.9 An investor is thus needed to finance the

development stage; there are N ≥ 2 risk-neutral, competitive investors.

3 Analysis

3.1 First-Best Benchmark

We first consider the optimal allocation under complete information (first-best). For

i ∈ {g, b}, let x̃i ≡ D/θi denote the threshold above which the technology is worth being

8Introducing a positive interest rate does not affect the analysis and simply amounts to rescaling the

cost and benefits of developing an innovation.
9While for the sake of exposition the research cost R is assumed to be a private cost, the analysis would

apply as well to situations where the innovator would have enough resources to support the monetary

costs of the research stage, but needs to rely on outside finance for the development stage.
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developed by an innovator of type θi: θix−D > 0 if and only if x > x̃i. If an innovator

of type θi does research, the resulting profit and social welfare is

W i =

+∞∫
x̃i

(
θix−D

)
f(x, θi)dx−R. (2)

An innovator of type θi should do research if and only if W i > 0. Under complete

information, an unregulated market would achieve that:

Proposition 1 Under complete information and in the absence of any non-obviousness

requirement, the market outcome yields the first-best allocation.

Proof. As investors are competitive and risk-neutral, at the development stage the

innovator fully appropriates the expected net profit θix − D; as a result, the innovator

chooses to develop the innovation only if x ≥ x̃i —and as he must reimburse only x̃i =

D/θi, limited liability is not a problem. Therefore, at the research stage, the innovator’s

expected benefit from research coincides with W i, implying that the innovator engages

in research when and only when it is desirable to do so.

Thus, if the innovator’s type were publicly observed, there would be no use for a

non-obviousness requirement. Competition among investors would ensure that profitable

projects (and only those) are developed ex post, and only effi cient innovators would ex

ante decide to engage in research activities.

3.2 Market Outcome Absent any Non-obviousness Requirement

We now consider the more realistic case in which θ is the innovator’s private information,

and first assume here that any innovation is patentable (P = 0).

3.2.1 Development

We first study the development stage, for a given technology x, when investors expect

to face a good type θg with probability v. Given the information available, without loss

of generality we can restrict attention to contracts offering menus of options, where each

option ζ = {T, q, α} stipulates a financing probability q, a transfer T to the innovator,

and a profit sharing rule (α, 1− α) in case of successful development (α representing the

innovator’s share); because of the innovator’s limited liability, the transfers must satisfy

T ≥ 0 (in case development fails) and T + αx ≥ 0 (in case it succeeds).
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We refer to ζ0 = {0, 0, 0} as the default option (which is for instance relevant if the

innovator rejects all offers). Note that any “null”offer {0, 0, α} is equivalent to ζ0. We

will say that in equilibrium an investor is “active”if it offers an option, other than a null

one, that is accepted with positive probability by at least one type of innovator.

Obviously, a technology x < x̃g
(
< x̃b

)
will never be developed, as this would not be

profitable even when the innovator is good. More generally, the following lemma shows

that, at the development stage, the market outcome is effi cient: when the innovator is of

type θi, the innovation is developed with probability qi = qi∗, where

qi∗ =

 1 if x > x̃i,

0 if x > x̃i.
(3)

However, due to adverse selection, when x > x̃g both types of innovator obtain the same

share α̃ (x, v) of the expected profits θx (whether the innovation is actually developed or

not); the share α̃ (x, v) is such that, on average, investors break even:

α̃ (x, v) ≡ πe (x, v)

θe (v)x
, (4)

where πe (x, v) ≡ v(θgx−D) + (1− v) max{θbx−D, 0} denotes the expected profit from

the technology, and θe (v) ≡ vθg + (1− v) θb the expected probability of success.

Lemma 1 At the development stage, when the technology has a value x and the innovator

is good (θ = θg) with probability v, the market equilibrium is effi cient (i.e., qi = qi∗) and

such that:

• If x < x̃g, there is no active investor; the innovator obtains zero profit.

• If instead x > x̃g:

— at least one investor offers a contract of the form
(
ζ i = {T i, αi, qi∗}

)
i=g,b

, where

T g = 0, αg = α̃(x, v), and T b + αbqb∗θbx = α̃(x, v)θbx;

— the expected profit of an innovator of type θ is α̃ (x, v) θx.

Proof. See Appendix A.

Lemma 1 shows that, while the market is effi cient at the development stage, a bad

innovator obtains the same share α̃ of expected profits as a good innovator, even if
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his innovation is not developed. If for instance x̃g < x < x̃b, the innovation is devel-

oped only when the innovator is good
(
qg∗ = 1, qb∗ = 0

)
, and yet a bad innovator gets

T b = α̃(x, v)θbx: investors must “buy”the bad innovator out of the development mar-

ket.10 More generally, whilst a good innovator obtains a higher payoff than a bad one,

in equilibrium the former subsidizes the latter: as the share is designed so that investors

break even on average, we have:

α̃(x, v)θgx < θgx−D,

α̃(x, v)θbx > max
{
θbx−D, 0

}
.

Finally, it is straightforward to check that the share α̃ (x, v) is continuous and increases

in x and v:11 a lower share of the profit needs to be left to investors when the value of

the technology or the average quality of would-be developers increases.

3.2.2 Research

We now turn to the research stage, and consider a perfect Bayesian equilibrium where a

good innovator does research with probability λg whereas a bad innovator does so with

probability λb. A corollary of the previous Lemma is that, as he obtains a higher payoffat

the development stage, a good innovator strictly prefers to undertake research whenever

a bad one is willing to do so:

Corollary 1 λg = 1 whenever λb > 0.

Proof. See Appendix B.

In what follows, we are interested in equilibria in which a bad innovator undertakes

research with probability λb = λ (and thus λg = 1) ; the investors’posterior belief is then

v (x, λ) ≡ Pr(θ = θg | x, λ) =
µf(x, θg)

µf(x, θg) + λ(1− µ)f(x, θb)
,

and the share of profit can be expressed as

α∗ (x, λ) = α̃ (x, v (x, λ)) .

10A similar buyout scheme implements the optimal allocation in the sequential innovation model of

Hopenhayn et al. (2006). Here, however, the investors, rather than subsequent innovators, must buy

bad innovators out of the market, in order to finance good ones.
11See the end of Appendix A for a formal proof.

8



The expected profit of a bad innovator is then equal to

Πb(λ) ≡
+∞∫
x̃g

α∗(x, λ)θbxf(x, θb)dx−R.

As v (x, λ) decreases when λ increases, α∗ (x, λ), and thus Πb (λ), increases in λ. There-

fore, if Πb(0) < 0, a bad innovator would never do research; conversely, if Πb (1) > 0,

both types of innovator would invest in research. To exclude these trivial situations, we

assume:

Assumption 1 Πb(0) > 0 > Πb(1).

It is straightforward to show that Assumption 1 implies that only a good innovator

should do research if the innovator’s type were publicly observed (that is, W g > 0 >

W b). Furthermore, under this Assumption there exists a unique threshold λ̂ such that

Πb
(
λ̂
)

= 0, or
+∞∫
x̃g

α∗(x, λ̂)θbxf(x, θb)dx = R, (5)

which characterizes the perfect Bayesian Equilibrium:

Proposition 2 Under Assumption 1:

• from an effi ciency standpoint, the innovator should undertake research only when

being good;

• however, in the absence of any non-obviousness requirement, there is a unique active

PBE outcome, in which the innovator does research with probability 1 when being

good and with positive probability λ̂ when being bad.

Proof. See Appendix C.

This Proposition shows that, while the market outcome is effi cient ex post, at the

development stage, it need not be so ex ante, at the research stage: due to the limited

information available to investors in the development market, good innovators subsidize

bad ones; as a result, a bad innovator has excessive incentives to undertake research, and

may thus do so even when it is ineffi cient. As we will see, introducing a non-obviousness

requirement helps alleviate this problem.
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3.3 Non-obviousness as a Screening Device

We now study the impact of a non-obviousness requirement P . Clearly, such a require-

ment does not affect a technology x > P ; at the development stage, the continuation

equilibrium then remains as described by Lemma 1. Also, as a technology x < x̃g is never

developed, introducing a patentability requirement P < x̃g does not affect the PBE char-

acterized by Proposition 2, and thus has no impact on the overall outcome. Conversely,

raising the non-obviousness threshold to P > x̃g reduces the return that can be expected

from research, as fewer technologies can be developed, and thus tends to discourage a bad

innovator from undertaking research. The expected profit of a bad innovator becomes

Π̂b(λ, P ) ≡
+∞∫
P

α∗(x, λ)θbxf(x, θb)dx−R,

which decreases as P increases; as it tends towards −R when P becomes infinitely larger,

the innovator will stop undertaking research for P high enough. Indeed, we have:

Proposition 3 Introducing a non-obviousness requirement P leads the bad innovator to

undertake research with probability λ∗ (P ), where:

• λ∗ (P ) = λ̂ as long as P ≤ x̃g;

• λ∗ (P ) = 0 whenever P ≥ xS, where the “screening”threshold xS is such that

Π̂b(0, xS) = 0; (6)

• and, for P ∈
[
x̃g, xS

]
, λ∗(P ) is uniquely defined by Π̂b(λ∗, P ) = 0, and decreases

from λ̂ to 0 as P increases from x̃g to xS.

Proof. See Appendix D.

Raising P above x̃g involves a trade-off: ex post, this prevents the development of

marginal technologies (those in the range [x̃g, P ]), which is ineffi cient and thus reduces

welfare; but ex ante, this discourages the bad innovator from undertaking research, which

enhances welfare. Obviously, it is not optimal to raise P beyond xS: as the bad innovator

no longer undertakes research, raising P further then only worsens welfare, by preventing

the development of additional technologies. Conversely, some screening is optimal: start-

ing from P = x̃g, a slight increase in P involves only a second-order loss of effi ciency (as
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the marginal technologies, for which x is close to x̃g, generate only a negligible welfare),

but yields a first-order benefit by discouraging the bad innovator (as ∂λ∗/∂P < 0 for

P = x̃g). The optimal non-obviousness requirement thus lies in the range (x̃g, xS].

The MLRP property (1) actually ensures that, as long as x < xS, the benefit from

discouraging the bad innovator from undertaking research dominates the cost of prevent-

ing marginal technologies from being developed; hence it is socially optimal to deter fully

the bad innovator from undertaking research:

Proposition 4 The socially optimal non-obviousness requirement is P ∗ = xS.

Proof. See Appendix E.

Proposition 4 shows that it is optimal to raise the non-obviousness requirement so as

to keep the bad innovator entirely out of the market. It is worth noting that the market

cannot achieve this outcome on its own. Suppose for instance that the investors announce

that they will not finance any technology x < xS. If it were credible, such a self-regulation

would suffi ce to keep the bad innovator out the market (i.e., λ = 0). Unfortunately, there

is a dynamic inconsistency problem: at the development stage, the investors would then

have an incentive to finance the development of any technology x > xg; but anticipating

this, a bad innovator would therefore undertake research. Thus, a regulatory intervention

is needed to enforce the threshold P ∗ = xS.

4 Discussion

4.1 Policy Implications

An immediate policy implication of our analysis is that there is a benefit from maintaining

an effective non-obviousness requirement (Meurer and Strandburg, 2008), rather than

downgrading the patent system to a copyright system —to be sure, this benefit should

be compared with the actual cost of enforcing this requirement.

Several empirical studies highlight problems generated by weak patents.12 Indeed, a

substantial proportion of patents granted in the United States are at risk of being invali-

dated or narrowed. Determining the precise percentage of dubious patents is diffi cult, but

an investigation of patent overturn rates sheds some light: Allison and Lemley (1998) find

12See, e.g., Anton, Greene, and Yao, (2006).
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for instance that about 46 percent of the patents challenged on validity grounds between

1989 and 1996 were overturned; and prior to the creation of the Federal Circuit in 1982,

this percentage was closer to 65 percent. This is in line with our analysis, where a weak

non-obviousness requirement leads to excessive entry by bad innovators, and results into

a greater proportion of marginal innovations. Having too many marginal innovations is

moreover a bad signal, associated with lower social welfare. Raising the bar for non-

obviousness can alleviate this problem by discouraging bad innovators from entering the

market. Following KSR vs Teleflex, the federal circuit appears to have taken some steps

into that direction.13

Our analysis also highlights some determinants of the optimal non-obviousness thresh-

old, P ∗ = xS; from (6), we have ∂P ∗

∂µ
= 0 and:

∂P ∗

∂R
= − 1

α∗(xS, 0)θbxSf(xS, θb)
< 0,

∂P ∗

∂D
=

∫ +∞
xS

∂α∗

∂D
(x, 0)θbxf(x, θb)dx

α∗(xS, 0)θbxSf(xS, θb)
< 0,

leading to:

Proposition 5 The socially optimal non-obviousness policy P ∗ decreases as the research

cost R or the development cost D increases; it does not depend on the proportion µ of

good innovators.

As the objective is to discourage bad innovators, there is less of a need for raising the

non-obviousness threshold when research and development costs are important. In the

same vein, application fees, which inflate these costs, can also contribute to deter bad

innovators. This is in line with Mitchell and Zhang (2012) and Schuett (2012). Greater

financial market frictions, which tend to increase the development cost D,14 also lead

to weaken the non-obviousness requirement. Conversely, policies aiming at subsidizing

research activities should lead to a stricter non-obviousness requirement.

4.2 Robustness Checks

In this subsection, we present several extensions to discuss the robustness of our insights.

13See, e.g., Nock and Gadde (2010), Mojibi (2010), and Cotropia (2006).
14For instance, the development cost can be interpreted as D = (1 + f) D̂, where D̂ denotes the actual

cost and f reflects the market frictions.
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4.2.1 Development Managers

We assumed so far that the innovator had to be involved in the development of the tech-

nology. Suppose instead that there is a competitive market of risk-neutral development

managers, who can develop the technology with a (publicly known) success rate θm. Ob-

viously, delegation will never occur if θm < θb. If instead θm > θg, both types of innovator

will delegate the development to a manager; the technology will thus developed whenever

x > x̃m ≡ D
θm
and, the success rate θm being common knowledge, the innovator will ob-

tain the associated profit, θmx−D. As the innovator appropriates the welfare he creates,

there is no need for government intervention: the innovator will undertake research when

it is effi cient to do so, as in the complete information case.

We now focus on the more interesting case where θg > θm > θb. For the sake of

exposition, we moreover suppose here that investors do not observe whether a manager is

hired or not (we discuss the case where delegation is observable in Web Appendix B.2), in

which case a bad innovator will always delegate the development to a manager. Adapting

lemma 1 accordingly, when P ≥ x̃g the expected profit of a bad innovator becomes

Π̃b(λ, P ) =

+∞∫
P

α̃∗(x, λ)θmxf(x, θb)dx−R,

where

α̃∗ (x, λ) =
v(x, λ)(θgx−D) + (1− v(x, λ)) max{θmx−D, 0}

Πm(x, λ)
.

It follows that, if Π̃b (0, x̃g) > 0 > Π̃b (1, x̃g), then in the absence of a non-obviousness

requirement the bad innovator would undertake research with positive probability. Our

analysis carries over, however: it is optimal to introduce a non-obviousness requirement

that is suffi ciently stringent to keep the bad innovator out of the market:

Proposition 6 Suppose that Π̃b (0, x̃g) > 0 > Π̃b (1, x̃g). The socially optimal non-

obviousness requirement is then P ∗ = x̃S, such that Π̃b
(
0, x̃S

)
= 0.

Proof. See Web Appendix B.1.

4.2.2 Collateral

Suppose the innovator has some private asset A < D, so that, at the development stage,

investors can require any collateral C ≤ A. Increasing the collateral level mitigates the
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adverse selection problem, and leads to a reduction in the subsidy to the bad innovator.

Adapting the proof of Lemma 1, we have:

Lemma 2 At the development stage, the investors ask for maximal collateral (i.e., C =

A) and the equilibrium is effi cient (i.e., when the innovator is of type θi, then the tech-

nology is developed if x > x̃i ); in addition:

• if x < x̃g, the innovator obtains zero profit;

• if x̃g < x < x̂ (A), where x̂ (A) < x̃b is such that

θb

θe
v (θgx̂−D) =

(
1− θb

θe

)
A,

the incentive constraints are not binding; a good innovator obtains the full value

from the technology, θgx̂−D, whereas a bad innovator obtains zero profit;15

• if x > x̂ (A), the incentive constraint of a bad innovator is binding; each type θi,

where i = g, b, obtains an expected profit (net of the collateral A) equal to αcθix−A,

where

αc (x, v) ≡ α̃ (x, v) +
A

θe (v)x
=
πe (x, v)

θe (v)x
+

A

θe (v)x
.

This Lemma confirms that the use of a collateral mitigates the adverse selection

problem that affects the financing of development, in line with the established literature

—see, e.g., Martin (2009). When the technology is only marginally profitable (x < x̂), the

bad innovator is no longer subsidized; more generally, the net payoff of a bad innovator

decreases (i.e., the subsidy is reduced) as the collateral A increases: for x > x̂, using

αcθex = πe + A, this payoff can be expressed as

θbαcx− A =
θb

θe
[πe + A]− A =

θb

θe
πe −

(
1− θb

θe

)
A,

15For instance, the following options support an equilibrium, in which the incentive constraints are

not binding: Cg = Cb = A, {qg = 1, αg = 1− (D −A) /θgx, T g = 0}, and
{
qb = 0, T b = A

}
. To see that

x̂ (A) < x̃b, it suffi ces to note that, for x = x̃b (and A < D), a bad innovator obtains a positive payoff by

mimicking a good type:

θbαgx−A = θbx− θb

θg
D −

(
1− θb

θg

)
A > θbx−D = 0.
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which thus decreases as A increases (conversely, the net payoff of a good innovator in-

creases with A).

It remains optimal to keep the bad innovator out of the market. However, as the use

of collateral now limits cross-subsidization at the development stage, this can be achieved

with a less stringent requirement:

Proposition 7 The optimal threshold P ∗, which discourages the bad innovator from un-

dertaking research, decreases as the collateral A increases.

Proof. See Web Appendix C.

4.2.3 Pure Signaling

The analysis also carries over to the case where the “non-obviousness”characteristic x

does not affect the value of the innovation, as long as it provides a signal about the

innovator’s type. Suppose for instance that the expected profit from developing the tech-

nology only depends on the innovator’s type, θ: it is equal to θ −D, with θg > D > θb;

the variable x only represents the degree of non-obviousness, and still satisfies theMRLP

property. The equilibrium share of the innovator is now given by

α∗ (x, λ) ≡ v (x, λ) (θg −D)

θb + v (x, λ)
(
θg − θb

) .
Going through the same steps as in our original framework, it can be shown that it is

still optimal to set P = xS, where the threshold xS, designed to keep the bad innovator

out of the market, is now defined by

θb

θg

+∞∫
xS

(θg −D) f(x, θb)dx = R.

4.2.4 Multiple Types

The analysis can be extended to any number n of types: θ ∈ Θ = {θ1, ..., θn}, where

θ1 < ... < θn; let denote the probability distribution by {µ1, ..., µn} and the viability

thresholds by x̃i = D/θi —that is, it is effi cient to develop the technology (qi∗ = 1) if

x > x̃i, and not to develop it (qi∗ = 0) if x < x̃i.

As before, any type θj > θi undertakes research with probability 1 whenever type

θi is willing to do so; the “active” types thus constitute a subset of the form Θk =
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{θk, θk+1, ..., θn}. If the marginal type θk undertakes research with probability λ, then at

the development stage the probability distribution becomes v =
{
vk, ..., vn

}
, such that:

vi (λ) ≡


λµkf(θk, x)

λµkf(θk, x) + µk+1f(θk+1, x) + ...+ µnf(θn, x)
for i = k,

µif(θi, x)

λµkf(θk, x) + µk+1f(θk+1, x) + ...+ µnf(θn, x)
for i > k.

The expected type, for a given x, is then θe (λ) =
∑n

i=k v
i (λ) θi. Adapting the proof of

Lemma 1 yields:

Lemma 3 The development stage is effi cient (i.e., qi = qi∗ for every type θi that under-

takes research) and such that:

• If x > x̃k, investors offer a pooling contract: T ∗ = 0, α∗ (x, v) = 1− D
θe(v)x

.

• If x < x̃n, no active contract is offered.

• For x̃n < x < x̃k, investors offer:

— for θk, a fixed payment T k∗ = α∗θkx;

— for θi > θk, a sharing contract of the form T i∗ = 0, αi∗qi∗ = α∗,16

where α∗ is designed so that investors break even: α∗ =
∑n
i=k max{θix−D,0}

θe(λ)x
.

The proof is similar to that of Lemma 1. The only difference is the “buy out”equi-

librium when x̃n < x < x̃k. The investors need to give a share α∗ of the expected profit

θx to all types of innovator, even when the technology is not developed. For the innova-

tor with the lowest ability, this can be achieved through a fixed payment. For the other

innovators whose technology should not developed (the innovators i ∈ {k + 1, ...̂ı}, say),

it is not possible to rely on a fixed payment, as this would not be incentive compatible:

all the “bad types” i < ı̂ would pick the larger transfer T ı̂ = α∗θı̂x designed for θı̂. The

solution consists in approximating a fixed payment with a sharing contract that entails

a negligible probability of development, together with a high payoff in case of successful

development (see footnote 16).

16When qi∗ = 1, the share is thus α∗; when instead qi∗ = 0, the contract “qi = 0, αi∗qi∗ = α∗”should

be interpreted as the limit of “qi = 1
N , α

i = Nα∗” for N → +∞. Alternatively, if feasibility reasons

constrain financing probabilities to be multiples of some ε, then there exists an “ε-effi cient”equilibrium

where, for θi and x such that x < x̃i, qi = ε and αi = α∗/ε.
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As in our baseline model, at the development stage “bad innovators”are subsidized

by good ones. As a result, bad innovators have excessive incentives to undertake research,

and it is optimal to introduce a non-obviousness to keep the worst types of innovator out

of the market. It may however be optimal to engage in partial screening. To see this, we

now consider a three-type scenario where Θ = {θ, θ̂, θ̄}, with a probability distribution

µ = {µ, µ̂, µ̄}. Obviously, there is no need for screening when W > 0 or W̄ < 0.

Furthermore, when Ŵ > 0, the only issue is to discourage the worst type, and the

previous analysis shows that it is then optimal to fully keep him out of the market. To

focus on the most novel case, we introduce the following assumption:

Assumption 2 W̄ > 0 > Ŵ > W and Π(0) > 0 > Π(1).

Under Assumption 2, both partial screening and full screening can take place:

Proposition 8 Under assumption 2:

• In the absence of any non-obviousness requirement, the market outcome is such that

the worst type of innovator (θ) does research with probability λ, whereas the other

two (θ̂ and θ̄) do research with probability 1.

• It is optimal to introduce a non-obviousness requirement that keeps the worst type

out of the market; depending on the probability distribution of the other types, it

may be optimal to keep the middle type out or in the market.

Proof. See Web Appendix D.

The Proposition first confirms that it is optimal to raise the non-obviousness threshold

so as to keep the worst type of innovator out of the market. That is, P ≥ P , where the

threshold P is such that the worst type θ does not do research, whereas the other two types

undertake research with probability 1. Consider now raising the threshold beyond P . At

first, this has no impact on the research decisions (both θ̂ and θ̄ still undertake research

with probability 1), and thus reduces welfare, by preventing some technologies from being

developed. It is only when it reaches a certain level P̂ > P that the non-obviousness starts

discouraging the middle type θ̂ —and in this range the previous analysis shows that it is

optimal to set the bar high enough (to some level P̄ > P̂ ) to keep the middle type out of

the market. There are thus two possible candidate for the optimal non-obviousness: full
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screening (i.e., P = P̄ ), which keeps both ineffi cient types (θ and θ̂) out of the market, or

partial screening (i.e., P = P̂ ), which keeps the worst type θ out of the market but lets

the middle type θ̂ undertake research. It is straightforward to check that partial screening

is optimal when the middle type arises with low probability (that is, when µ̂ is small), as

keeping this type out of the market cannot offset in that case the cost of preventing the

development of technologies x ∈
[
P , P̄

]
. Conversely, full screening is optimal when the

best type is unlikely (that is, when µ̄ is small).

4.2.5 Patent Fees

As noted above, introducing a patent fee F provides an alternative way for screening

out the bad innovator as, if a technology cannot be developed in the absence of patent

protection, the research cost then becomes D+F . In the absence of any non-obviousness

requirement, screening out the bad innovator requires a fee F high enough to leave no

profit from research to a bad innovator, even if investors anticipate that only a good

innovator does research:
+∞∫

D+F
θg

(θgx−D − F )
θb

θg
f(x, θb)dx = R.

By contrast, relying on non-obviousness requires a threshold P = xS, such that Π̂b(0, xS) =

0, or
+∞∫
xS

(θgx−D)
θb

θg
xf(x, θb)dx = R.

Comparing these two conditions yields

+∞∫
D+F
θg

(θgx−D − F )f(x, θb)dx =

+∞∫
xs

(θgx−D) f(x, θb)dx.

As the integrand is lower in the LHS than in the RHS, it follows that

D + F

θg
< xs.

That is, fewer marginal innovation are excluded when relying on a patent fee than on

non-obviousness. With non-obviousness, the welfare achieved is

WN =

+∞∫
xS

(θgx−D)f(x, θg)dx,
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whereas with a patent fee it is equal to:

W F =

+∞∫
D+F
θg

(θgx−D − F )f(x, θg)dx+

+∞∫
D+F
θg

(1− τ)Ff(x, θg)dx,

=

+∞∫
D+F
θg

(θgx−D − τF )f(x, θg)dx,

where τ denotes the shadow cost of public funds. As there is less exclusion in the patent

fee regime (i.e., D+F
θg

< xs), W F > WN when τ is small enough: relying on patent fees

is then socially desirable. When instead τ is large, W F < WN —the comparison between

these two instruments should however also account for the cost of enforcing the non-

obviousness requirement. Designing an optimal framework that incorporate both of these

two instruments constitutes an interesting avenue of research.17

5 Concluding Remarks

The rationale of the non-obviousness patentability requirement is controversial and its

role is debated. After all, why should the society preclude trivial but genuine innovations

from being patented? Is it a good idea to add to the burden of PTOs, by imposing an

additional check on patent applications? In this paper, we propose a justification for

such a non-obviousness requirement. If innovators have private information about their

ability to do research, and develop the resulting technologies, the existence of ineffi cient

innovators exert negative externalities on good ones. In such a context, by excluding

trivial patents a non-obviousness requirement acts as an effective screening instrument.

Anticipating that their innovation will be less likely to be patentable, weak innovators will

refrain to engage in R&D, which mitigates adverse selection problems for the development

of good innovators’R&D projects.

In the recent years we have seen a trend towards lower patentability requirements.

For example, software, which used to fall under copyright protection, has become eligible

for patent protection. So are database and business methods, which are now patentable

in some countries, including the U.S., Japan and South Korea. One of the benefits of

17The applications of an innovation can vary in scale as well as in value. If the scale does not depend

on the innovator’s type, and patent fees cannot tailored according to that scale, then non-obviousness

may be more effective in targeting the patents that are more likely to be generated by weak innovators.
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lowering the patentability requirements is to reduce the examination costs, as PTOs can

now examine the applications more casually than before. And while many commentators

contend that this merely transfers the burden onto the judicial system, as suggested by

the recent surge of patenting and litigation, Lemley (2001) points out that this may still

be cost-effective, as only few patents develop a commercial value.

This paper shows however that lowering the patentability requirements may harm

social welfare, by exacerbating adverse selection in the access to finance. For instance,

many start-ups, lacking the financial resources needed to develop their technologies, rely

on the number and quality of their patents for attracting investors. This gives investors

useful information about innovators’abilities, an important element for the successful

development of their inventions. However, when patentability requirements are weakened,

ineffi cient innovators can enter the market and mimic more effi cient ones, making it harder

for investors to identify good projects, and harder for good innovators to get financed.
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Appendix

A Proof of Lemma 1

We characterize here the equilibria described in Lemma 1. For the sake of exposition, we

will restrict attention to equilibria in which the investors adopt pure strategies (each type

of innovator can however randomize over several offers).

Let x̃i denote the break-even threshold for the θi−innovator, defined by θix̃i = D. If

x < x̃g, no active contract can be offered to any type (qb = qg = 0), as at least one party

would get a negative expected profit. From now on, we thus focus on the case x > x̃g.

Since all parties are risk-neutral, they only care about expected revenues; therefore,

there is no scope for stochastic payments or transfers. To facilitate our analysis, we

introduce the following notation: for each investor n ∈ {1, 2, ..., N},

• Jn = {j1, ..., jKn} denotes the set of options offered by investor n.

• δin,jk denotes the probability that a θ
i−innovator accepts the option jk offered by

investor n.

• δin =
∑

jk∈Jn δ
i
n,jk

denotes the probability that a θi−innovator accepts one of the

options offered by investor n.

• Λi
n,jk

denotes the profit that option jk yields for investor n when accepted by a

θi−innovator.

In addition, we introduce the following notation for the equilibrium outcome:

• Ψ̃n denotes the expected profit of investor n.

• ζ̃ i ≡ {T̃ i, q̃i, α̃i} denotes the most profitable option for investors, among those

adopted by a θi−innovator — it can be an option offered by a investor, or the

default option ζ0 = {0, 0, 0}.

• Λ̃i denotes the expected profit that ζ̃
i
yields for investors, when accepted by a

θi−innovator, and Λ̃ ≡ vΛ̃g + (1− v)Λ̃b.

• Υ̃i denotes the expected profit that ζ̃
i
yields for a θi−innovator.
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Lemma 4 In equilibrium, each investor n ∈ {1, 2, ..., N} obtains Ψ̃n = Λ̃.

Proof. By construction, for each investor n ∈ {1, 2, ..., N}:

Ψ̃n = v
∑
jk∈Jn

δgn,jkΛ
g
n,jk

+ (1− v)
∑
jk∈Jn

δbn,jkΛ
b
n,jk

≤ v
∑
jk∈Jn

δgn,jkΛ̃
g + (1− v)

∑
jk∈Jn

δbn,jkΛ̃
b

= vδgnΛ̃g + (1− v)δbnΛ̃b.

Therefore,
N∑
n=1

Ψ̃n ≤ v

N∑
n=1

δgnΛ̃g + (1− v)
N∑
n=1

δbnΛ̃b.

By construction, (1 −
∑N

n=1 δ
i
n)Λ̃i ≥ 0 for i = g, b.18 Therefore, the above inequality

implies
N∑
n=1

Ψ̃n ≤ vΛ̃g + (1− v)Λ̃b = Λ̃. (7)

It follows that, for each n ∈ {1, 2, ..., N}:

Ψ̃n ≤ Λ̃−
N∑
m=1
m 6=n

Ψ̃m ≤ Λ̃,

where the last inequality stems from the fact that, by construction, Ψ̃m ≥ 0 for any

m ∈ {1, 2, ..., N}.

Assume now that Ψ̃n < Λ̃, and suppose that investor n deviates and offers {ζ̂g, ζ̂b},

where ζ̂
i

= {T̃ i + ε, q̃i, α̃i} for ε such that 0 < ε < Λ̃ − Ψ̃n. By construction, {ζ̃
g
, ζ̃

b}

is incentive compatible, and thus so is {ζ̂g, ζ̂b}. Moreover, {ζ̂g, ζ̂b} will be accepted with

probability 1, as it gives both types of innovator a strictly higher profit than all other

offers. Hence, deviating in this way gives investor n a profit Λ̃− ε > Ψ̃n, a contradiction.

Therefore, in equilibrium, all investors obtain an expected profit equal to Λ̃.

Lemma 5 In equilibrium, Λ̃ = 0.

Proof. As Ψ̃n = Λ̃ from Lemma 4, condition (7) implies N Λ̃ =

N∑
n=1

Ψ̃n ≤ Λ̃. As Λ̃ =

Ψ̃n ≥ 0 by construction, it follows that Λ̃ = 0.

18Either
∑N

n=1 δ
i
n = 1 , or

∑N
n=1 δ

i
n < 1, in which case the default option is selected with positive

probability by a type-θi innovator, implying Λ̃i ≥ 0.
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This break-even result for the competitive equilibrium outcome is in line with Roth-

schild and Stiglitz (1976) and Chassagnon and Chiappori (1997). In Web Appendix A,

we show that the equilibrium contracts must satisfy: q̃g = 1, T̃ g = 0, q̃b = qb∗, and

T̃ b + qb∗α̃bθbx = α̃gθbx. The equilibrium share α̃g is then determined by the break-even

condition19 of the investors. More precisely:

• Case 1: x̃g < x < x̃b (buyout). In that case, q̃b = 0; α̃b is thus irrelevant, and

T̃ b = α̃gθbx: the investors “buy”the bad innovator out of the market. The investors’

break-even condition then yields

ν [(1− α̃g) θgx−D]− (1− v)α̃gθbx = 0,

or

α̃g = α̃ (x, v) = ν
θgx−D
θe (v)x

.

• Case 2: x > x̃b (pooling). In that case, both types of innovator are financed:

q̃b = q̃g = 1. The investors’break-even condition then yields

0 = v[(1− α̃g) θgx−D] + (1− v)[(1− α̃b)θbx− T̃ b −D],

which, using T̃ b + α̃bθbx = α̃gθbx, can be rewritten as

0 = (1− α̃g) θe (v)x−D,

or

α̃g = α̃ (x, v) = 1− D

θe (v)x
.

Any ζ̃
b

= {T̃ b, 1, α̃b} satisfying T̃ b + α̃bθbx = α̃ (x, v) θbx and the limited liability

conditions (that is, T̃ b, T̃ b + α̃bx ≥ 0) is a possible candidate equilibrium outcome.

Graphically, in the (α, T ) plane the equilibrium option for the good innovator is

located at the point (α∗, 0), whereas the admissible options for the bad innovator

lies anywhere on the dashed line, which starts from the same point (α∗, 0) and

19See Lemma 5.
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parallels the break-even line for a good innovator.

Note that, in both cases, the good type subsidizes the bad one; this is obvious when

x < x̃b, since a bad innovator then obtains T̃ b > 0 even though his innovation does not

get developed, and still holds when x > x̃b, as θb < θe (v) implies

(1− α̃) θbx < (1− α̃) θe (v)x = D,

or

α̃θbx > θbx−D. (8)

Finally, we conclude the proof of Lemma 1 by showing that there indeed exists an equi-

librium in which all investors offer
{
ζ̃
g
, ζ̃

b
}
, supported by the following strategies:

• if at least one active investor offers
{
ζ̃
g
, ζ̃

b
}
, and no investor offers more than Υ̃i to

a type θi, that type of innovator picks the investor with the lowest n among those

that offer
{
ζ̃
g
, ζ̃

b
}
;

• if an investor offers more than Υ̃i to a type θi, that type of innovator picks randomly

an investor among those that offer the best value for that type.

These continuation strategies for the innovator prevents in particular deviations that

simply consist in dropping the loss-making option ζ̃
b
: in equilibrium, all investors offer{

ζ̃
g
, ζ̃

b
}
and the innovator thus picks the first one; but if the first one were to drop ζ̃

b

(and offer only ζ̃
g
), then the innovator would turn to the second investor.
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To attract an innovator of type θi, a deviating investor must therefore offer more than

Υ̃i to that type. It is straightforward to check that it cannot be profitable to attract only

θb: since the equilibrium contract ζ̃
b
is effi cient

(
q̃b = qb∗

)
, offering more than Υ̃b would

then results in a loss since Λ̃b is already negative. Furthermore, it is impossible to attract

θg without attracting θb:

T̂ g + q̂gα̂gθbx =
θb

θg
[
θg

θb
T̂ g + q̂gα̂gθgx]

≥ θb

θg
(T̂ g + q̂gα̂gθgx)

>
θb

θg
α∗θgx

= α∗θbx = T̃ b + qb∗α̃bθbx.

But then, since the equilibrium options
{
ζ̃
g
, ζ̃

b
}
are effi cient (q̃i = qi∗ for i ∈ {g, b}),

offering more than Υ̃i to at least one type θi will result in a loss, since in equilibrium the

investors barely break even.

We conclude with the properties of α̃. The continuity stems directly from the definition

given by (4). As for the comparative statics:

• If x ≤ x̃b, then θbx−D ≤ 0 and

α̃ (x, v) =
v(θgx−D)

θe (v)x
=

1− D
θgx

1 + 1−v
v

θb

θg

,

where in the last expression, the numerator increases with x and the denominator

decreases as v increases.

• If x > x̃b, then α∗(x, v) = 1− D
θe(v)x

, where θe (v)x increases with x and v.

B Proof of Corollary 1

Suppose that a bad innovator undertakes research with positive probability; then, for

a given technology x, he gets financed with probability qb∗ (x) and, whenever x > x̃g,

receives an expected payment equal to α̃ (x, v) θix; the expected profit from undertaking

research is thus

Πb =

+∞∫
x̃g

α̃ (x, v) θbxf
(
x, θb

)
dx−R =

+∞∫
x̃g

θbt (x) f
(
x, θb

)
dx−R,
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where t (x) ≡ α̃ (x, v)x is positive and increases with x: t′ (x) = α̃ (x, v) + ∂α̃
∂x

(x, v) > 0.

A good innovator would obtain instead an expected profit equal to

Πg =

+∞∫
x̃g

α̃ (x, v) θgxf (x, θg) dx−R =

+∞∫
x̃g

θgt (x) f (x, θg) dx−R.

The difference between these two expected profits can be expressed as:

Πg − Πb =

+∞∫
x̃g

{
θgt (x) f (x, θg)− θbt (x) f

(
x, θb

)}
dx

>

+∞∫
x̃g

{
θbt (x) f (x, θg)− θbt (x) f

(
x, θb

)}
dx

=

+∞∫
x̃g

θbt (x)
{
f (x, θg)− f

(
x, θb

)}
dx

≥ 0,

where the strict inequality stems from θg > θb and t (x) > 0, while the last inequality

follows from t′ (x) > 0 and first-order stochastic dominance.

C Proof of Proposition 2

Assumption 1 implies:

• Πb(0) > 0, or (using α∗ (x, 0) = θgx−D
θgx

)

R <

+∞∫
x̃g

α∗(x, 0)θbxf(x, θb)dx

=
θb

θg

+∞∫
x̃g

(θgx−D) f(x, θb)dx

<

+∞∫
x̃g

(θgx−D) f(x, θg)dx,

where the last inequality stems from θb < θg, θgx−D increasing in x and MLRP .

It follows that a good innovator should undertake research: W g < 0.
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• 0 > Πb(1), or

R >

+∞∫
x̃g

α∗(x, 1)θbxf(x, θb)dx

≥
+∞∫
x̃g

max
{
θbx−D, 0

}
f(x, θb)dx,

where the weak inequality stems from the bad innovator being subsidized by the

good one at the development stage (see (8)). It follows that a bad innovator should

not undertake research: W b < 0.

We now consider the market equilibrium. Let λg (resp., λb) denote the probability

that the innovator undertakes research when being good (resp., being bad).

Suppose first that λg < 1. Corollary 1 implies λb = 0; but then, under Assumption 1 a

bad innovator would have an incentive to deviate and undertake research, a contradiction.

Therefore, λg = 1.

In the same vein, if λb < λ̂ then a bad innovator would have an incentive to undertake

research with probability 1, a contradiction; conversely, if λb > λ̂ then a bad innovator

would have an incentive to undertake research with probability 0, a contradiction. There-

fore, the only candidate equilibrium is such that λb = λ̂; conversely,
(
λg = 1, λb = λ̂

)
constitutes indeed an equilibrium, as the bad innovator is then indifferent between doing

research or not —and thus, from Corollary 1, the good innovator is willing to undertake

research.

D Proof of Proposition 3

As already noted, setting P ≤ x̃g has no impact on the development stage: as in the

baseline scenario (i.e., as for P = 0), only those technologies such that x > x̃g are

developed with positive probability and yield a positive profit to the innovator. For P >

x̃g, the expected profit of a bad innovator becomes

Π̂b (λ, P ) ≡
+∞∫
P

α∗(x, λ)θbxf(x, θb)dx−R,
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where ∂Π̂b

∂P
(λ, P ) = −α∗ (P, λ) θbPf(P, θb) < 0 and, as ∂α∗

∂λ
(x, λ) < 0:

∂Π̂b

∂λ
(λ, P ) =

+∞∫
P

∂α∗

∂λ
(x, λ)θbxf(x, θb)dx < 0.

Under Assumption 1, Π̂b(0, x̃g) = Πb(0) > 0. Since ∂Π̂b

∂P
< 0 and Π̂b(0,+∞) = −R, there

exists a unique threshold xS > x̃g satisfying Π̂b(0, xS) = 0, or (6). Furthermore, in the

range x̃g < P < xS, we have:

• Π̂b(0, P ) > Π̂b(0, xS) = 0;

• Π̂b(λ̂, P ) < Π̂b(λ̂, x̃g) = Πb(λ̂) = 0.

As Π̂b(λ, P ) decreases as λ increases, it follows that there exists a unique λ∗ (P ) such

that Π̂b(λ∗, P ) = 0. Furthermore, by construction we have λ∗(x̃g) = λ̂, λ∗
(
xS
)

= 0, and,

in the range P ∈
[
x̃g, xS

]
, the implicit function theorem yields

dλ∗

dP
= −

∂Π̂b

∂P

∂Π̂b

∂λ

∣∣∣∣∣
λ=λ∗

=
α∗(P, λ∗(P ))Pf(P, θb)∫ +∞

P
∂α∗

∂λ
(x, λ∗(P ))xf(x, θb)dx

< 0. (9)

The end of the proof follows the same step as for Proposition 2: for λ > λ∗, a bad

innovator would rather not undertake research, whereas for λ < λ∗, a bad innovator would

derive a positive expected profit from undertaking research. Conversely, when λ = λ∗,

Π̂b = 0 implies that a bad innovator is indifferent between undertaking research or not,

and a good innovator is thus willing to undertake research.

E Proof of Proposition 4

By construction, in the equilibria characterized by Proposition 3, a bad innovator and

the investors obtain zero profits; therefore, social welfare coincides with the expected net

profit of a good innovator

Ŵ (P ) = µ[

+∞∫
P

α∗(x, λ∗(P ))θgxf(x, θg)dx−R].

For P < xS, differentiating this expression with respect to P leads to

1

µ

dŴ

dP
(P ) = −α∗(P, λ∗(P ))θgPf(P, θg) +

+∞∫
P

∂α∗

∂λ
(x, λ∗(P ))

dλ∗

dP
(P ) θgxf(x, θg)dx.
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Using (9), this can be expressed as:

1

µ

dŴ

dP
(P ) = −θg f(P, θg)

f(P, θb)
α∗(P, λ∗(P ))Pf(P, θb)

+
dλ∗

dP
(P ) θg

+∞∫
P

∂α∗

∂λ
(x, λ∗(P ))xf(x, θg)dx

= −θg f(P, θg)

f(P, θb)

dλ∗

dP
(P )

+∞∫
P

∂α∗

∂λ
(x, λ∗(P ))xf(x, θb)dx

+
dλ∗

dP
(P ) θg

+∞∫
P

∂α∗

∂λ
(x, λ∗(P ))xf(x, θg)dx

=
dλ∗

dP
(P ) θgf (P, θg)

+∞∫
P

∂α∗

∂λ
(x, λ∗ (P ))

[
f(x, θg)

f(P, θg)
− f(x, θb)

f(P, θb)

]
xdx.

From the MLRP property, f(x,θg)
f(P,θg)

> f(x,θb)

f(P,θb)
for any x > P ; as ∂α∗

∂λ
< 0, and dλ∗

dP
< 0 as

long as x̃g < P < xS, it follows that Ŵ (P ) strictly increases with P in that range.

By contrast, for P > xS, λ∗(P ) = 0 and thus

dŴ

dP
(P ) = −µα∗(P, 0)θgPf(x, θg) < 0.

The socially optimal threshold is thus P = xS.
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eral Circuitą́rs Patent Validity Jurisprudence,” Albany Law Journal of Science and

Technology, 20(3), 559—596.

Nock, J., and S. Gadde (2010): “Raising the Bar for Nonobviousness: An Empirical

Study of Federal Circuit Case Law following KRS,”Federal Circuit Bar Journal, 20,

369—430.

O’Donoghue, T. (1998): “A patentability requirement for sequential innovation,”The

RAND Journal of Economics, pp. 654—679.

Rothschild, M., and J. Stiglitz (1976): “Equilibrium in competitive insurance mar-

kets: An essay on the economics of imperfect information,”The Quarterly Journal of

Economics, pp. 629—649.

Schuett, F. (2012): “Inventors and impostors: an analysis of patent exam-

ination with self-selection of firms into R&D,” Working Paper, available at

http://ssrn.com/abstract=2109406.

Scotchmer, S. (1996): “Protecting early innovators: should second-generation prod-

ucts be patentable?,”The Rand Journal of Economics, pp. 322—331.

Shapiro, C. (2000): “Navigating the patent thicket: Cross licenses, patent pools, and

standard-setting,”Innovation Policy and the Economy, 1, 119—150.

Thomas, J. (2001): “Collusion and collective action in the patent system: A proposal

for patent bounties,”University of Illinois Law Review, 2001, 305—353.

32



Toivanen, O., and T. Takalo (2011): “Entrepreneurship, financiership and selection,”

The Scandinavian Journal of Economics, 114(2), 601—628.

Tykvová, T. (2007): “What do economists tell us about venture capital contracts?,”

Journal of Economic Surveys, 21(1), 65—89.

Van Dijk, T. (1996): “Patent height and competition in product improvements,”The

Journal of Industrial Economics, 44(2), 151—167.

Witherspoon, J. (1980): Nonobviousness—the Ultimate Condition of Patentability: Pa-

pers Compiled in Commemoration of the Silver Anniversary of 35 USC 103. Bureau

of National Affairs.

33



Web Appendix: Supplemental Materials

A Characterization of the Equilibrium Contracts

In this section, we provide a characterization of the equilibrium contracts, which is used

in the proof of Lemma 1.

Lemma 6 q̃i = qi∗, defined by (3).

Proof. We first show that the options ζ̃
g
and ζ̃

b
are effi cient (i.e., q̃i = qi∗ for i = g, b);

by construction, they satisfy:

• the limited liability constraints T̃ i ≥ 0 and T̃ i + α̃ix ≥ 0, for i ∈ {g, b};

• the incentive compatibility constraints:

T̃ g + q̃gα̃gθgx ≥ T̃ b + q̃bα̃bθgx, (10)

T̃ b + q̃bα̃bθbx ≥ T̃ g + q̃gα̃gθbx; (11)

• and the participation constraints:

T̃ g + q̃gα̃gθgx ≥ 0, (12)

T̃ b + q̃bα̃bθbx ≥ 0. (13)

Now, suppose q̃i 6= qi∗ for some i ∈ {g, b}, and consider the following deviant offers:

ζ̂
g

=

{
T̂ g = 0, q̂g = qg∗ (= 1) , α̂g =

T̃ g

θgx
+ q̃gα̃g + η

}
,

ζ̂
b

=
{
T̂ b = T̃ b + q̃bα̃bθbx+ ε, q̂b = qb∗, α̂b = 0

}
,

where ε and η satisfy ηθgx > ε > ηθbx > 0.

The options ζ̂
g
and ζ̂

b
are such that:

• They meet the limited liability conditions: T̂ g = α̂b = 0, T̂ b > T̃ b + q̃bα̃bθbx ≥ 0

from (13),and T̂ g + α̂gx = T̃ g

θg
+ q̃gα̃gx+ ηx > T̃ g

θg
+ q̃gα̃gx, where the last expression

is non-negative:

— this is obvious if α̃g ≥ 0, as then all terms are non-negative;

34



— if instead α̃g < 0, then T̃ g

θg
+ q̃gα̃gx ≥ T̃ g + α̃gx ≥ 0, where the first inequality

stems from q̃g ≤ 1, α̃g < 0, T̃ g ≥ 0 and θg ≤ 1, and the second one follows

from the limited liability properties of ζg.

• They moreover strictly satisfy the IC constraints:

T̂ g + q̂gα̂gθgx =

(
T̃ g

θgx
+ q̃gα̃g + η

)
θgx

> T̃ g + q̃gα̃gθgx+ ε

≥ T̃ b + q̃bα̃bθgx+ ε

= T̂ b + q̂bα̂bθgx,

where the first inequality stems from ηθgx > ε and the second one from (10), and:

T̂ b + q̂bα̂bθbx = T̃ b + q̃bα̃bθbx+ ε

> T̃ b + q̃bα̃bθbx+ ηθbx

≥ T̃ g + q̃gα̃gθbx+ ηθbx

≥ θb

θg
T̃ g + q̃gα̃gθbx+ ηθbx

= T̂ g + q̂gα̂gθbx,

where the first inequality stems from ε > ηθbx, the second one from (11), and the

third one from T̃ g ≥ 0 and θb < θg.

• And they attract both types of innovator with probability 1:

Υ̂g ≡ T̂ g + q̂gα̂gθgx = T̃ g + q̃gα̃gθgx+ ηθgx = Υ̃g + ηθgx > Υ̃g, (14)

Υ̂b ≡ T̂ b + q̂bα̂bθbx = T̃ b + q̃bα̃bθbx+ ε = Υ̃b + ε > Υ̃b. (15)

To conclude the argument, it suffi ces to show that these options can bring a positive

expected payoff to the deviant investor. This expected payoff can be expressed as

Λ̂ = vΛ̂g + (1− v) Λ̂b,

or, using Λ̂i + Υ̂i = qi∗
(
θix−D

)
, Λ̃i + Υ̃i = q̃i

(
θix−D

)
and the above expressions:

Λ̂ = Λ̃ + v (qg∗ − q̃g) (θgx−D) + (1− v)
(
qb∗ − q̃b

) (
θbx−D

)
− vηθgx− (1− v) ε.

As Λ̃ = 0 from Lemma 5 and q̃i 6= qi∗ for some i ∈ {g, b}, this expected payoff is positive

for ε, η small enough.
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Lemma 7 There is cross-subsidization:Λ̃g > 0 > Λ̃b.

Proof. As vΛ̃g + (1− v) Λ̃b = 0 from Lemma 5, either Λ̃g > 0 > Λ̃b, or Λ̃g ≤ 0 ≤ Λ̃b. We

now rule out the latter case.

Consider first the case x > x̃b, where q̃g = q̃b = 1 from Lemma 6. Hence, if Λ̃g ≤ 0 ≤

Λ̃b, then

Υ̃g − Υ̃b =
(
θgx−D − Λ̃g

)
−
(
θbx−D − Λ̃b

)
=

(
θg − θb

)
x+

(
Λ̃b − Λ̃g

)
≥

(
θg − θb

)
x.

But the incentive compatibility condition (11) implies (using q̃g = q̃b = 1):

Υ̃b = T̃ b + α̃bθbx ≥ T̃ g + α̃gθbx = Υ̃g − α̃g
(
θg − θb

)
x.

Therefore, we have

α̃g
(
θg − θb

)
x ≥ Υ̃g − Υ̃b ≥

(
θg − θb

)
x,

and thus α̃g ≥ 1. But then, each type of innovator would obtain more than the whole profit

from the innovation, contradicting Lemma 5: we would have: Υ̃i ≥ T̃ g + α̃gθix ≥ θix, as

T̃ g ≥ 0 and α̃g ≥ 1, and thus Λ̃ ≤ −D < 0.

Consider now the case x < x̃b, where q̃g = 1 and q̃b = 0. Hence, if Λ̃g ≤ 0 ≤ Λ̃b, then

Υ̃b = −Λ̃g ≤ 0, in which case the participation constraint (13) implies Υ̃b = 0, and thus

Λ̃g = Λ̃b = Υ̃b = 0, and thus Υ̃g = θgx−D > 0. But then, a bad innovator would obtain

a positive payoff from picking ζ̃
g
, contradicting Υ̃b = 0:

• If α̃g > 0, the limited liability condition T̃ g ≥ 0 implies T̃ g + α̃gθbx > 0;

• If α̃g ≤ 0, then T̃ g + α̃gθbx ≥ T̃ g + α̃gθgx = Υ̃g > 0.

Corollary 2 All offers made and accepted in equilibrium are effi cient (i.e., such that

qi = qi∗); in addition, both types of investors obtain a positive payoff and thus choose an

option with probability 1, and all offers made and accepted by a innovator of type θi are

equivalent to ζ̃
i
, for both the investor and that type of innovator.
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Proof. We first show that each type of innovator θi chooses an option with total prob-

ability 1 (and obtains the same payoff Υ̃i > 0 with all the options selected). To see this,

note first that Υ̃b = qb∗
(
θbx−D

)
− Λ̃b ≥ −Λ̃b > 0; therefore, a bad innovator will indeed

choose an option with probability 1, and obtain the same positive payoff Υ̃b on all options

selected. As for a good innovator, note that the incentive compatibility condition yields

Υ̃g ≥ T̃ b + qb∗α̃bθgx. Therefore:

• If qb∗ = 0 or α̃b = 0, the conclusion follows from T̃ b = Υ̃b > 0.

• If instead qb∗ = 1 and α̃b 6= 0, then:

— If α̃b > 0, the conclusion follows from T̃ b + qb∗α̃bθgx ≥ α̃bθgx > 0;

— If instead α̃b < 0, the conclusion follows from T̃ b + qb∗α̃bθgx > T̃ b + α̃bx ≥ 0,

where the last inequality stems from limited liability.

We thus have
N∑
n=1

∑
jk∈Jn δ

g
n,jk

=
N∑
n=1

∑
jk∈Jn δ

b
n,jk

= 1, and:

0 =
N∑
n=1

Ψ̃n =
N∑
n=1

{
v
∑
jk∈Jn

δgn,jkΛ
g
n,jk

+ (1− v)
∑
jk∈Jn

δbn,jkΛ
b
n,jk

}

= v

{
N∑
n=1

∑
jk∈Jn

δgn,jkq
g
n,jk

(θgx−D)− Υ̃g

}
+ (1− v)

{
N∑
n=1

∑
jk∈Jn

δbn,jkq
b
n,jk

(θgx−D)− Υ̃b

}
.

However, we also have

0 = Λ̃ = v
{
qg∗ (θgx−D)− Υ̃g

}
+ (1− v)

{
qb∗
(
θbx−D

)
− Υ̃b

}
.

Subtracting these two equalities yields

0 = v

(
qg∗ −

N∑
n=1

∑
jk∈Jn

δgn,jkq
g
n,jk

)
(θgx−D)+(1− v)

(
qb∗ −

N∑
n=1

∑
jk∈Jn

δgn,jkq
b
n,jk

)(
θbx−D

)
,

and thus, as
(
qi∗ − qin,jk

) (
θix−D

)
≥ 0, qin,jk = qi∗ for every type i = g, b, every investor

n = 1, ..., N , and any option jn selected with positive probability by θ
i.

To conclude the argument, it suffi ces to note that, by construction, each offer accepted

by θi must give the same payoff Υ̃i to that type of innovator; but as the offer must

moreover be effi cient, if also gives the same payoff Λ̃i = qi∗
(
θix−D

)
−Υ̃i to the investor.
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Lemma 8 T̃ g = 0 and α̃g > 0.

Proof. Suppose that T̃ g > 0, and consider the following deviant offers:

ζ̂
g

=

{
T̂ g = 0, q̂g = q̃g (= qg∗ = 1) , α̂g =

T̃ g

θgx
+ α̃g + η

}
,

ζ̂
b

=
{
T̂ b = α̂gθbx+ ε, q̂b = q̃b

(
= qb∗

)
, α̂b = 0

}
,

where ε and η satisfy 0 < ε < η(θg − θb)q̃gx. These options are such that:

• They meet the limited liability conditions, as T̂ g = α̂b = 0, and:

α̂gx =
T̃ g

θg
+ α̃gx+ ηx > T̃ g + α̃gx ≥ 0,

T̂ b = α̂gθbx+ ε =

(
T̃ g

θgx
+ α̃g + η

)
θbx+ ε > θb

(
T̃ g

θg
+ α̃gx

)
≥ θb

(
T̃ g + α̃gx

)
≥ 0.

• They strictly satisfy the incentive compatibility constraints:

T̂ g + q̂gα̂gθgx =

(
T̃ g

θgx
+ α̃g + η

)
θgx

= T̃ g + α̃gθgx+ ηθgx

>
θb

θg

(
T̃ g + α̃gθgx

)
+ ηθbx+ ε

= T̂ b + q̂bα̂bθgx,

where the inequality stems from η(θg − θb)q̃gx > ε, θg > θb, and T̃ g + α̃gθgx from

(12), and:

T̂ b + q̂bα̂bθbx = α̂gθbx+ ε

= T̂ g + q̂gα̂gθbx+ ε

> T̂ g + q̂gα̂gθbx.

• Finally, we have

Υ̂g − Υ̃g =
(
T̂ g + α̂gθgx

)
−
(
T̃ g + α̃gθgx

)
= ηθgx > 0,

and:

Υ̃b = T̃ b + qb∗α̃bθbx

≥ T̃ g + α̃gθbx

= T̂ g + α̂gθgx+

(
1− θb

θg

)
T̃ g −

(
ηθbx+ ε

)
= Υ̂b +

(
1− θb

θg

)
T̃ g −

(
ηθbx+ ε

)
,
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where the inequality stems from (11). Therefore, the option ζ̂
g
attracts the good

innovator with probability 1 and, using Lemma 7 and Λ̂i + Υ̂i = Λ̃i + Υ̃i =

qi∗
(
θix−D

)
, for ε, η small enough we have:

Λ̂g = Λ̃g − ηθgx > 0,

Λ̂ = vΛ̂g + (1− v) Λ̂b = Λ̃ +

(
1− θb

θg

)
T̃ g − ηθgx−

(
ηθbx+ ε

)
> Λ̃ > 0.

As Υ̂g > Υ̃g, the option ζ̂
g
attracts the good innovator with probability 1; therefore,

if the deviating investor also attracts the bad innovator with probability p, his expected

payoff is

Ψ̂ = vΛ̂g + (1− v) pΛ̂b,

which is positive:

• if Λ̂b ≥ 0, this follows from Ψ̂ ≥ vΛ̂g > 0;

• if instead Λ̂b < 0, this follows from

Ψ̂ = vΛ̂g + (1− v) pΛ̂b > vΛ̂g + (1− v) Λ̂b = Λ̂ > 0.

The deviation is therefore profitable, contradicting the assumption T̃ g > 0. To con-

clude the argument, it suffi ces to note that Υ̃g > 0 (see proof of Corollary 2) then implies

α̃g > 0.

Lemma 9 T̃ b + qb∗α̃bθbx = α̃gθbx.

Proof. From Lemmas 6 and 8, the IC constraints are:

α̃gθgx ≥ T̃ b + qb∗α̃bθgx,

T̃ b + qb∗α̃bθbx ≥ α̃gθbx.

Suppose now that T̃ b + qb∗α̃bθbx
(

= Υ̃b
)
> α̃gθbx, and consider the following deviant

offers:

ζ̂
g

=
{
T̂ g = 0, q̂g = q̃g (= qg∗ = 1) , α̂g = α̃g + η

}
,

ζ̂
b

=
{
T̂ b = α̂gθbx+ ε, q̂b = q̃b

(
= qb∗

)
, α̂b = 0

}
,

where ε and η satisfy 0 < ε < η(θg − θb)x. These options are such that:
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• They meet the limited liability conditions, as T̂ g = α̂b = 0, α̂g > α̃g > 0, and

T̂ b > α̂gθbx > 0.

• They strictly satisfy the incentive compatibility constraints:

T̂ g + q̂gα̂gθgx = α̃gθgx+ ηθgx

> α̃gθbx+ ηθbx+ ε

= T̂ b + q̂bα̂bθgx,

where the inequality stems from η(θg − θb)x > ε and θg > θb, and:

T̂ b + q̂bα̂bθbx = α̂gθbx+ ε

= T̂ g + q̂gα̂gθbx+ ε

> T̂ g + q̂gα̂gθbx.

• Finally, we have

Υ̂g − Υ̃g = (α̂g − α̃g) θgx = ηθgx > 0,

and

Υ̂b − Υ̃b = −
(

Υ̃b − α̃gθbx
)
T̃ b +

(
ηθbx+ ε

)
,

where the first term is positive by assumption. Therefore, using Lemma 7 and

Λ̂i + Υ̂i = Λ̃i + Υ̃i = qi∗
(
θix−D

)
, for ε, η small enough we have:

Λ̂g = Λ̃g − ηθgx > 0,

Λ̂ = vΛ̂g + (1− v) Λ̂b = Λ̃ +

(
1− θb

θg

)
T̃ g − ηθgx−

(
ηθbx+ ε

)
> Λ̃ > 0.

As Υ̂g > Υ̃g, the option ζ̂
g
attracts the good innovator with probability 1; therefore,

if the deviating investor also attracts the bad innovator with probability p, his expected

payoff is

Ψ̂ = vΛ̂g + (1− v) pΛ̂b,

which is positive:

• if Λ̂b ≥ 0, this follows from Ψ̂ ≥ vΛ̂g > 0;

• if instead Λ̂b < 0, this follows from

Ψ̂ = vΛ̂g + (1− v) pΛ̂b > vΛ̂g + (1− v) Λ̂b = Λ̂ > 0.
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The deviation is therefore profitable, contradicting the assumption T̃ b+qb∗α̃bθbx
(

= Υ̃b
)
>

α̃gθbx.

We now complete the characterization of the candidate competitive equilibria. From

Lemmas 6, 8 and 9, the equilibrium contracts must satisfy: q̃g = 1, T̃ g = 0, q̃b = qb∗, and

T̃ b + qb∗α̃bθbx = α̃gθbx. The equilibrium share α̃g is then determined by the break-even

condition20 of the investors.

B Development Managers

In this section, we first prove Proposition , before discussing the case where investors can

observe whether the development is delegated to a manager.

B.1 Proof of Proposition 6

The proof follows the same steps as for Proposition 4. Social welfare coincides again with

the expected net profit of a good innovator:

W̃ (P ) = µ[

+∞∫
P

α̃∗(x, λ̃
∗
(P ))θgxf(x, θg)dx−R],

where λ̃
∗

(P ) is such that

0 = Π̃b(λ̃
∗

(P ) , P ) =

+∞∫
P

α̃∗(x, λ̃
∗

(P ))θmxf(x, θb)dx−R,

so that:
dλ̃
∗

dP
= −

∂Π̃b

∂P

∂Π̃b

∂λ

∣∣∣∣∣
λ=λ̃

∗
=

α̃∗(P, λ̃
∗
(P ))Pf(P, θb)∫ +∞

P
∂α̃∗

∂λ
(x, λ̃

∗
(P ))xf(x, θb)dx

< 0. (16)

Substituting 16 into the first-order condition

1

µ

dW̃

dP
(P ) = −α̃∗(P, λ̃∗(P ))θgPf(P, θg) +

+∞∫
P

∂α̃∗

∂λ
(x, λ̃

∗
(P ))

dλ̃
∗

dP
(P ) θgxf(x, θg)dx,

leads to the same conclusion as before:

• For P < x̃S:

dW̃

dP
(P ) = µ

dλ̃
∗

dP
(P ) θgf (P, θg)

+∞∫
P

∂α̃∗

∂λ

(
x, λ̃

∗
(P )
)[ f(x, θg)

f(P, θg)
− f(x, θb)

f(P, θb)

]
xdx < 0.

20See Lemma 5.
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• For P > xS, λ∗(P ) = 0 and thus

dŴ

dP
(P ) = −µα̃∗(P, 0)θgPf(x, θg) < 0.

It follows that it is still optimal to keep the bad innovator out of the market, by

setting P = x̃S.

B.2 Observable Delegation

We discuss here the case where investors can observe whether the innovator delegates

or not the development to a manager. A bad innovator then faces a trade-off: hiring a

manager generates an effi ciency gain but eliminates the rent from private information.

Preserving the information rent yields α∗ (x, λ) θbx, whereas hiring a manager yields θmx−

D; in addition, in an equilibrium in which a bad innovator delegates with probability 1,

investors offer a share αg (x) = 1− D
θgx
to the innovator if he does not delegate. Therefore:

• If x < x (λ), where x (λ) is such that α∗ (x, λ) θbx = θmx−D, then the bad innovator

never delegates the development.

• If x > x̄, where x̄ is such that αg (x̄) θbx̄ = θmx̄−D, then the bad innovator always

delegates the development.

• If x̄ > x > x, the bad innovator delegates the development with probability p, in

such a way that α̂ (x, λ; p) θbx = θmx−D, where

α̂ (x, λ; p) =
v (x, λ) (θgx−D) + (1− p) (1− v (x, λ)) max

{
θbx−D, 0

}
vθgx+ (1− p) (1− v (x, λ)) θbx

.

Note that x (λ) > x̃m = D
θm
.21 The profit of a bad innovator, for a given non-

obviousness level P , is therefore of the form:

Π̄b(λ, P ) =


∫ x(λ)

P
α∗(x, λ)θbxf(x, θb)dx+

∫ +∞
x(λ)

(θmx−D)f(x, θb)dx−R if P < x (λ) ,∫ +∞
P

(θmx−D)f(x, θb)dx−R if P ≥ x (λ) .

We are interested in the case where the bad innovator should not undertake research:
21We have:

x (λ) =
D

θm − α∗ (x, λ) θb
>

D

θm
.
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Assumption 3
∫ +∞
x̃m

(θmx−D) f
(
x, θb

)
dx−R < 0.

It follows that the optimal non-obviousness requirement never exceeds x, as for P >

x (> x̃m), the expected profit of a bad innovator is negative:

+∞∫
P

(θmx−D) f
(
x, θb

)
dx−R <

+∞∫
x̃m

(θmx−D) f
(
x, θb

)
dx−R < 0.

More generally, it is not optimal to raise P beyond the threshold, x̄S, for which the bad

innovator is discouraged from undertaking research (that is, such that Π̄b
(
λ, x̄S

)
= 0).

Conversely, for P ∈
[
x̃g, x̄S

]
, the bad innovator undertakes research with probability

λ̄ = λ̄ (P ), such that

0 = Π̄b
(
λ̄, P

)
=

x(λ̄)∫
P

α∗(x, λ̄)θbxf(x, θb)dx+

+∞∫
x(λ)

(θmx−D)f(x, θb)dx−R.

Total welfare then coincides again with the profit of a good innovator:22

W̄ (P ) = µ[

x(λ̄(P ))∫
P

α∗
(
x, λ̄ (P )

)
θgxf(x, θg)dx

+

x̄∫
x(λ̄(P ))

θg

θb
(θmx−D) f(x, θg)dx+

+∞∫
x̄

(θgx−D) f(x, θg)dx−R].

The first-order condition thus becomes23

1

µ

dW̄

dP
(P ) = −α∗(P, λ̄ (P ))θgPf(P, θg) +

x(λ)∫
P

∂α∗

∂λ

dλ̄

dP
θgxf(x, θg)dx,

where
dλ

dP
= −

∂Π̄b

∂P
∂Π̄b

∂λ

∣∣∣∣∣
λ=λ̄(P )

=
α∗(P, λ̄ (P ))θbPf(P, θb)∫ x(λ̄(P ))

P
∂α∗

∂λ
(x, λ̄ (P ))θbxf(x, θb)dx

,

leading to

1

µ

dW̄

dP
(P ) = f (P, θg)

dλ̄

dP
(P ) θg

x(λ̄(P ))∫
P

∂α∗

∂λ

(
x, λ̄ (P )

) [ f(x, θg)

f(P, θg)
− f(x, θb)

f(P, θb)

]
xdx > 0.

It it therefore again optimal to keep the bad innovator out of the market.
22For x < x (λ), the innovator obtains as before a share of profit equal to α∗ (x, λ); for x ∈ [x, x̄],

the share α̂ satisfies α̂θbx = θmx − D, and thus a good innovator obtains an expected profit equal to

α̂θgx = (θmx−D) θg/θb.
23The computation uses the fact that the expected profit of a good innovator is continuous at x = x (λ).
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C Proof of Proposition 7

The expected profit of a bad innovator is equal to Π̂C (λ, x̂ (A)) as long as P ≤ x̂ (A),

and to Π̂C (λ, P ) for P > x̂ (A), where

Π̂C (λ, P ) ≡
+∞∫
P

[
α̂C (x, λ) θbx− A

]
f(x, θb)dx−R,

where α̂C (x, λ) ≡ αC (x, v (x, λ)). Assuming that Π̂C(0, x̂ (A)) > 0 > Π̂C(0, x̂ (A)), there

exists xC (A) such that the bad innovator does not do research when P > xC (A), and un-

dertakes instead research with probability λC (P ) as long as x < xc, where λC (P ) is such

that Π̂C
(
λC , P

)
= 0 and decreases with P in the range P ∈

[
x̂ (A) , xC

]
: differentiating

Π̂C
(
λC , P

)
= 0 yields

dλ̂
C

dP
= −

∂Π̂C

∂P

∂Π̂C

∂λ

∣∣∣∣∣
λ=λ̂

C
(P )

=

[
α̂C
(
x, λ̂

C
(P )
)
Pθbx− A

]
f(P, θb)∫ +∞

P
∂α̂C

∂λ
(x, λ̂

C
(P ))xf(x, θb)dx

< 0. (17)

Social welfare coincides with the expected net profit of a good innovator:

ŴC(P ) = µ[

+∞∫
P

[
α̂C
(
x, λC (P )

)
θgx− A

]
f(x, θg)dx−R].

For P < xS, differentiating this expression with respect to P leads to

1

µ

dŴC

dP
(P ) = −

[
α̂C
(
x, λC (P )

)
θgP − A

]
f(P, θg)+

+∞∫
P

∂α̂C

∂λ
(x, λC(P ))

dλC

dP
(P ) θgxf(x, θg)dx,

which, using (17), can be expressed as:

1

µ

dŴC

dP
= −θ

g

θb
f (P, θg)

f
(
P, θb

) [α̂C (x, λC (P )
)
θbP − A

]
f
(
P, θb

)
+

(
1− θg

θb

)
Af (P, θg)

+

+∞∫
P

∂α̂C

∂λ
(x, λC(P ))

dλC

dP
(P ) θgxf(x, θg)dx(P )

> −θ
g

θb
f (P, θg)

f
(
P, θb

) [α̂C (x, λC (P )
)
θbP − A

]
f
(
P, θb

)
+

+∞∫
P

∂α̂C

∂λ
(x, λC(P ))

dλC

dP
(P ) θgxf(x, θg)dx(P )

= θgf (P, θg)
dλ̂

C

dP

+∞∫
P

∂α̂C

∂λ
(x, λ̂

C
(P ))x

[
f(x, θg)

f(P, θg)
− f(x, θb)

f
(
P, θb

)] dx.
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The MLRP property thus implies again that ŴC (P ) strictly increases with P as long

as P < xC (A). If follows that it is optimal to set P = xC (A), so as to keep the bad

innovator out of the market. The socially optimal threshold is thus P = xC (A).

Finally, to show that xC (A) decreases as A increases, it suffi ces to note that xC (A)

is characterized by:

0 = Π̂C
(
0, xC ;A

)
=

+∞∫
xC

[
α̂C (x, 0) θbx− A

]
f(x, θb)dx−R

=

+∞∫
xC

[
θb

θg
(θgx−D)−

(
1− θb

θg

)
A

]
f(x, θb)dx−R.

Differentiating this equality then yields

dxC

dA
= −

∂Π̂C

∂A

∂Π̂C

∂P

∣∣∣∣∣
P=xC(A)

< 0,

where the inequality stems from

∂Π̂C

∂P
= −

[
α̂C (x, 0) θbx− A

]
f(x, θb)dx < 0,

and

∂Π̂C

∂A
= −

+∞∫
xC

(
1− θb

θg

)
f(x, θb)dx < 0.

D Proof of Proposition 8

If the worst type undertakes research with positive probability, then both other types do

research with probability 1. If instead the worst type does not undertake research, and

consider the middle type’s research decision. If he does research, then at the development

stage he will be subsidized by the best type and thus obtain more than max
{
θ̂x−D, 0

}
;

therefore, in the absence of any non-obviousness requirement, he will obtain more than

Ŵ > 0. It follows that the middle type will undertake research with probability 1, and

thus the best type will also do so. Therefore, in the absence of non-obviousness, the worst

type undertakes research with some probability λ and the other two types do research

with probability 1.
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Given λ and x, at the development stage the probability distribution is v (λ ) =

{v (λ ) , v̂ (λ) , v̄ (λ)}, where:

v (λ) =
λµf(x, θ)

λµf(x, θ) + µ̂f(θ̂, x) + µ̄f(θ̄, x)
,

v̂ (λ) =
µ̂f(θ̂, x)

λµf(x, θ) + µ̂f(θ̂, x) + µ̄f(θ̄, x)
,

v̄ (λ) =
µ̄f(θ̄, x)

λµf(x, θ) + µ̂f(θ̂, x) + µ̄f(θ̄, x)
.

When introducing P > x̄ ≡ D
θ̄
, the equilibrium probability λ(P ) is by defined by

Π(λ(P ), P ) = 0, where

Π (λ, P ) =

+∞∫
P

α∗ (x, λ) θxf(x, θ)dx,

and α∗ (x, λ) = α (x, v (λ)), where

α(x, v) =
vmax{θx−D, 0}+ v̂max{θ̂x−D, 0}+ v̄(θ̄x−D)

vθ + v̂θ̂ + v̄θ̄
.

As long as P < P , which is defined by Π(0, P ) = 0, the social welfare can be expressed

as the sum of the expected payoffs of the types θ̂ and θ̄:

W (P ) =

+∞∫
P

α∗ (x, λ (P ))xy (x) dx,

where

y(x) = µ̂θ̂f(θ̂, x) + µ̄θ̄f(θ̄, x).

Hence:

dW (P )

dP
= −α∗(P, λ(P ))Py(P ) +

dλ

dP

+∞∫
P

∂α

∂λ
(x, λ (P ))xy(x)dx

=
dλ

dP
y (P )

+∞∫
P

∂α

∂λ
(x, λ (P ))x

[
y (x)

y (P )
− f (x, θ)

f (P, θ)

]
dx

> 0,

where the inequality stems from MLRP , which implies y(x)
y(P )

> f(x,θ)
f(P,θ)

.

It follows that it is optimal to fully screen out θ, by raising P to at least P . Note

that for P = P , the worst type is still indifferent between doing research or not (and
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in equilibrium, he chooses not to undertake research), implying that the middle type

does research with probability 1. This remains the case as long as P < P̂ , defined by

Π̂(1, P̂ ) = 0, where Π̂
(
λ̂, P

)
denotes the expected profit of the middle type when it

undertakes research with probability λ̂ (and θ does not do research, whereas θ̄ does so

with probability 1) and is equal to

Π̂
(
λ̂, P

)
=

+∞∫
P

α̂∗(x, λ̂)θ̂f(x, θ̂)dx−R,

where α̂∗ (x, λ) = α̂ (x, v (λ)), and

α̂(x, λ̂) =
v̂max{θ̂x−D, 0}+ v̄(θ̄x−D)

v̂θ̂ + v̄θ̄
.

In the range
[
P , P̂

]
, increasing P only leads to prevent the development of technologies

x ∈ [P , P ], and thus reduces welfare. However, raising P beyond P̂ discourages the middle

type. In this range, the analysis is similar as in the two-type case, and it is optimal to

set P = P̄ , defined by Π̂
(
0, P̄

)
= 0.

It follows that the optimal non-obviousness requirement is either P or P̄ . The asso-

ciated welfare levels are:

W (P ) = µ̂[

+∞∫
max{x̄,P}

(θ̂x−D)f(x, θ̂)dx−R] + µ̄[

+∞∫
P

(θ̄x−D)f(x, θ̄)dx−R],

W (P̄ ) = µ̄[

+∞∫
P̄

[(θ̄x−D)f(x, θ̄)dx−R].

Partial screening (i.e., P = P ) is socially optimal when µ̂→ 0, as P̄ > P implies

lim
µ̂→0

W (P ) = µ̄[

+∞∫
P

(θ̄x−D)f(x, θ̄)dx−R] > W (P̄ ).

Conversely, if µ̄→ 0, then

W (P ) ≈ µ̂[

+∞∫
max{x̄,P}

(θ̂x−D)f(x, θ̂)dx−R] < µ̂Ŵ < 0,

whereas W (P̄ ) > 0, as it corresponds to the expected profit of the best type θ̄ (and that

type prefers to do research when the middle type θ̂ is indifferent between doing research

or not); it is therefore optimal to have full screening (i.e., P = P̄ ), asW (P ) < 0 < W (P̄ ).
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