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Grounding line movement and ice shelf buttressing

in marine ice sheets
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[1] Understanding the dynamics of marine ice sheets is integral to studying the evolution of
the Antarctic ice sheet in both the short and long terms. An important component of the
dynamics, grounding line migration, has proved difficult to represent in numerical
models, and most successful attempts have made use of techniques that are only readily
applicable to flow line models. However, to capture the stress transmission involved in
another important component, the buttressing of a marine ice sheet by its ice shelf, the
transverse direction must also be resolved. We introduce a model that solves the
time-dependent shelfy stream equations and makes use of mesh adaption techniques to
overcome the difficulties typically associated with the numerics of grounding line
migration. We compare the model output with a recent benchmark for flow line models
and show that our model yields an accurate solution while using far less resources than
would be required without mesh adaption. We also show that the mesh adapting
techniques extend to two horizontal dimensions. Experiments are carried out to determine
how both ice shelf buttressing and ice rises affect the marine instability predicted for an ice
sheet on a foredeepened bed. We find that buttressing is not always sufficient to
stabilize such a sheet but collapse of the grounded portion is still greatly delayed. We also
find that the effect of an ice rise is similar to that of narrowing the ice shelf.

Citation: Goldberg, D., D. M. Holland, and C. Schoof (2009), Grounding line movement and ice shelf buttressing in marine ice

sheets, J. Geophys. Res., 114, F04026, doi:10.1029/2008JF001227.

1. Introduction

[2] The past decade has seen huge advances in our ability
to observe global and regional mass budgets of the Earth’s
cryosphere, and some concerning trends have arisen from
the data. The West Antarctic Ice Sheet (WAIS), an ice mass
large enough to raise ocean levels by more than 5 m were it
to collapse [Mercer, 1978], lost between 47 and 59 Gt of ice
per year during the 1990s [Shepherd and Wingham, 2007].
A large portion of grounded ice loss was from the Amund-
sen Sea sector of the WAIS, notably Pine Island (PIG) and
Thwaites (TG) glaciers. While glacial mass budget is
subject to variability in both accumulation/ablation and ice
discharge, Shepherd et al. [2002] found that climatic vari-
ability was too small to explain the mass loss, and it was ice
dynamic effects that were responsible. Shepherd et al.
[2004] found that during the same time period, the floating
ice shelves fed by the Amundsen Sector glaciers suffered
enormous mass loss, some shelves losing up to 7% of their
thickness over a 9-year period. It is now thought that there
may be a connection between the ice shelf mass loss and the
loss of inland ice. The connection between the thinning of

an ice shelf or ice tongue and speedup of grounded ice has
also been supported by recent observations in Greenland
[Krabill et al., 2000; Joughin et al., 2004; Holland et al.,
2008].
[3] Such a large mass imbalance in West Antarctica is of

societal significance because it contributes to sea level rise
(SLR). Since ice shelves are almost perfectly buoyed by the
ocean according to Archimedes’ Principle [Van der Veen,
1999], the WAIS contribution to sea level rise is almost
entirely due to changes in the mass of grounded ice [Jenkins
and Holland, 2007]. These changes can result from thick-
ness evolution and from changes in grounded extent asso-
ciated with movement of the grounding line (the boundary
between floating and grounded ice). Both thinning and
grounding line retreat have been observed in West Antarc-
tica in recent years [Rignot et al., 2002].
[4] Inland retreat of the grounding line may be an

indicator of accelerating mass loss in the future. Much of
the West Antarctic ice mass is a marine ice sheet, meaning
its base is below sea level [Mercer, 1978], and more
significantly still, the WAIS rests on an upsloping (or
foredeepened) bed that is deeper below sea level in the
center of the ice sheet than at the grounding line. For several
decades, concerns have been raised over the stability of
such ice sheets: based on a simplified model, Weertman
[1974] predicted that a two-dimensional marine ice sheet
resting on a bed can only be in a stable, steady state if the
bed is downsloping and does not exceed a critical depth. A
similar model was used by Thomas [1977] to argue that a
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grounding line resting in steady state on an foredeepened
bed will retreat unstably if perturbed, and by Thomas and
Bentley [1978] to argue that the WAIS is therefore unstable.
[5] Since then, the dynamics of grounding lines in sheet/

stream shelf systems have been closely examined in a
variety of models that differ in their model geometries,
model resolution, numerical discretization and so forth, with
differing views on how to best represent the physics, and
often yielding mutually inconsistent results. Some of the
inconsistencies between models can be traced to the me-
chanical coupling between ice sheets and ice shelves. Ice
shelves are dominated by longitudinal deviatoric stresses
(i.e., by deviatoric normal stresses), while vertical shear and
basal friction generally dominate force balance in grounded
ice sheets. A crucial issue facing marine ice sheet models is
how to couple these mechanically distinct flows at the
grounding line: what continuity conditions should be ap-
plied at the grounding line?
[6] The early calculations of Weertman [1974], Thomas

[1977], and Thomas and Bentley [1978] applied a ‘‘zero-
order’’ approach in which longitudinal stresses do not play a
role in the force balance of the grounded sheet, and the ice
shelf is coupled to the ice sheet by imposing continuity in
the longitudinal derivative of vertically averaged velocity as
a proxy for the continuity of longitudinal stress. A more
refined approach adopted by the models of Chugunov and
Wilchinsky [1996], Wilchinsky and Chugunov [2000], and
Schoof [2007a] and supported on observational grounds by
Mayer and Huybrechts [1999] is that a transition zone exists
near the grounding line where all stress terms dominant in
either the sheet or the shelf are important. Depending on
various factors, this zone can have a length scale ranging
from one to many ice thicknesses [Chugunov andWilchinsky,
1996; Pattyn et al., 2006; Schoof, 2007a; Nowicki and
Wingham, 2007] and its importance to the large-scale
system dynamics of marine ice sheets has been debated.
Early work by Thomas [1985] and Van der Veen [1985]
included parameterizations of the transition zone of differ-
ing levels of sophistication, with both supporting Weert-
man’s original marine ice sheet instability mechanism.
Hindmarsh [1996], on the other hand, argued that the
narrow transition zone between grounded sheet and floating
shelf should effectively decouple the two, and that stresses
in the ice shelf should have no effect on the flow of the
grounded sheet or the migration of the grounding line.
Based on this, he promoted the concept of ‘‘neutral stabil-
ity’’ for a marine ice sheet, implying that possible steady
state grounding line positions were essentially uncon-
strained, and a perturbation in grounding line position
would not lead to unstable retreat or advance for a fore-
deepened bed, nor to a return to the original grounding line
position for a downsloping bed. Pattyn et al. [2006], using a
higher-order model in which the scale of the transition zone
was imposed through a strong increase in basal friction
away from the grounding line, reproduced Hindmarsh’s
neutrally stable behavior in the special case of a vanishing
transition zone, but found discrete, stable steady states on
downsloping beds as the transition zone widened, and no
stable steady states for an upward-sloping bed.
[7] The discrepancies between these models can partly be

attributed to their different representations of ice flow
mechanics near the grounding line. A second issue that

can obscure the effect of different model physics is the
robustness of numerical models to changes in discretization
schemes, resolution and so on. This was studied in depth by
Vieli and Payne [2005]. They found that both steady states
calculated for a given climate and responses to climatic
perturbations depended heavily on the type of model
physics used, and on numerical details of the model such
as discretization schemes and grid size.
[8] The recent work of Schoof [2007a, 2007b] has tried to

address both the role of the sheet-shelf transition zone in
overall marine ice sheet dynamics and numerical artifacts
associated with grid resolution. Using the technique of
matched asymptotic expansions, Schoof argues that the
transition zone does control grounding line movement, even
if its horizontal extent is very limited and longitudinal
stresses play an insignificant role in most of the ice sheet.
His results provide a subgrid parameterization of ice flow in
the transition zone that confirms Weertman’s argument that
mass flux through the grounding line is an increasing
function of ice thickness at the grounding line, from which
the instability hypothesis for marine ice sheets follows.
Schoof’s results also provide a scaling estimate for the
transition zone length in terms of model parameters, and
show that the subgrid parameterization of transition zone ice
flow is in good agreement with an ultra high-resolution
numerical model that resolves the transition zone. As a
possible explanation for the inconsistent numerical results
obtained by Vieli and Payne [2005], Schoof [2007b] sug-
gests insufficient resolution of the grounding line transition
zone, which may also affect some of the calculations by
Pattyn et al. [2006].
[9] The models reviewed so far are either 1-D or 2-D

planar models: the horizontal direction perpendicular to the
flow direction (the transverse direction) plays no role in the
dynamics of the ice sheet. (For ease of discussion, the reader
is referred to Table 1, which gives the naming convention
used in this text for the physical and mathematical dimen-
sionality of ice models, with examples. Note this list is not
intended to be exhaustive.) Real ice sheets, of course, have
two horizontal directions, and this adds a further set of
complications. Not only do the questions raised above (how
the sheet-shelf transition zone affects the flow, and how to
resolve its effect accurately in numerical models) remain,
but the effect of stresses associated with shearing in the
direction transverse to the main flow (so-called lateral shear
stresses) must also be accounted for.
[10] Weertman’s instability hypothesis is based on the

notion that ice flux through the grounding line increases
with ice thickness there. More subtly, ice flux at the
grounding line in his model is actually an increasing
function of both, ice thickness and longitudinal stress [see
also Schoof, 2007b, section 4.2]. However, for a 1-D ice
shelf (with no lateral shear) it can be shown that longitudi-
nal stress itself is an increasing function of ice thickness in
the shelf and in particular at the grounding line [e.g.,
MacAyeal and Barcilon, 1988]. Consequently, Weertman’s
result of flux as a function of ice thickness does hold, and
the actual shape of the ice shelf (its extent and its profile)
does not affect the dynamics of the grounded sheet.
[11] The same is not true for a three-dimensional marine

ice sheet. Here, longitudinal stress at the grounding line will
generally not be a function of ice thickness, but will be

F04026 GOLDBERG ET AL.: BUTTRESSING AND GROUNDING LINES

2 of 23

F04026



reduced by the action of lateral shear stresses that now
account for some of the driving stress acting on the sheet.
Dupont and Alley [2005] used a quasi 2-D stream shelf
model in which transverse effects were parameterized to
demonstrate this so-called buttressing effect of a confined
ice shelf, and went on to suggest that stable steady states on
foredeepened beds are possible if lateral shearing in the ice
shelf is sufficiently strong.
[12] Shepherd et al. [2004] suggest loss of buttressing as

a mechanism for how erosion of the Amundsen Sea ice
shelves by ocean circulation could cause the heightened
mass discharge observed in the Amundsen Sector of the
WAIS. This mechanism’s viability has been demonstrated
through numerical experiments for Pine Island Glacier
(PIG). Schmeltz et al. [2002], using a 2-D model based on
MacAyeal [1989] with ice geometry and model parameters
appropriate to the PIG, showed that a loss of ice shelf area
results in a sizable increase in ice velocity at the grounding
line, although responses farther inland are smaller. Howev-
er, this study only evaluated instantaneous velocity response
of the ice stream to the removal of the ice sheet, and did not
study the subsequent evolution of the ice stream. Using a
time-dependent 2-D model (forced with parameters that
were inverse modeled using a static 3-D model), Payne et
al. [2004] showed inland transient response to perturbations
at or near the grounding line can explain the observed
variability in thickness evolution. However, their study did
not include dynamic grounding line movement, and was
therefore not able to predict whether the unstable feedback
that underlies Weertman’s instability would occur at PIG,
whose bed is significantly foredeepened.
[13] In this paper we aim to address the three issues

identified above for a three-dimensional ice sheet: the effect
of the transition from sheet to shelf flow, the need for a
numerically robust model that resolves this transition zone,
and the effect of lateral shearing (or buttressing) in a three-
dimensional ice sheet. To this end, we introduce a dynam-
ical model of a three-dimensional marine ice sheet with a
migrating grounding line. The model is based on the depth-
integrated model of MacAyeal [1989] and therefore falls in
the ‘‘2-D flow regime’’ category of Table 1. Our numerical
approach is novel in that it uses higher resolution in
locations where it is needed (such as the transition zone
near the grounding line), and that it dynamically adapts the
computational mesh as these locations change in order to
limit computational expense. The model has two different
modes of mesh adaption, which we term moving mesh and
adaptive refinement. It is shown that, in the special case of a
1-D system, our model overcomes the difficulties discussed

by Vieli and Payne [2005], and that it agrees well with the
quasi-analytic results of Schoof [2007a]. It is further shown
that no numerical difficulties, such as strong dependence on
grid size or initial conditions, present themselves in a 2-D
simulation, even though our computational requirements
remain modest. We then apply our model to a marine ice
sheet shelf system on a foredeepened bed with rigid side-
walls and investigate the conditions under which the but-
tressing provided by sidewalls is sufficient to prevent
Weertman’s unstable collapse. The ability of each mode of
mesh adaption to provide a reliable solution under a variety
of conditions is also evaluated.

2. Shelfy Stream Model

2.1. Model Equations

[14] We consider a marine ice sheet that consists of a
grounded portion sliding over its bed, and an attached ice
shelf. Based on the assumption that slip at the base of the ice
is fast compared with shearing across the ice thickness,
MacAyeal [1989] derived the following model for the
horizontal components u and v of ice velocity:

@x 4hnux þ 2hnvy
� �

þ @y hn uy þ vx
� �� �

� txb ¼ rghsx; ð1Þ

@y 4hnvy þ 2hnux
� �

þ @x hn uy þ vx
� �� �

� tyb ¼ rghsy; ð2Þ

n ¼ A�1=n u2x þ v2y þ uxvy þ
1

4
uy þ vx
� �2����

����
1�n
2n

: ð3Þ

Here, h is vertical thickness, s is its surface elevation, r is
density, u and v are x and y velocities, ~tb is basal stress, and
A and n are the usual coefficients in Glen’s law [Paterson,
2001, chapter 5], where we use n = 3 in all our numerical
computations. The right hand sides of (1) and (2) are
subsequently referred to as the driving stress terms. Noting
that (1) and (2) are invariant under rotations in the (x, y)
plane, the model can be written more compactly as [Schoof,
2006]

r � s �~tb ¼ rghrs; ð4Þ

where the tensor s is defined by

sij ¼ nh
@ui
@xj
þ @uj
@xi
þ 2dij

@uk
@xk

� �
; ð5Þ

Table 1. Naming Convention for Ice Sheet Models, With Respect to Dimensionality, Both in Physical Representation and Resolution of

Velocitiesa

Type Physical Dimension Flow Regime Along-Flow Direction Transverse Direction Vertical Direction Example

1D 2-D plug or shear resolved ignored parameterized Vieli and Payne [2005]
Quasi 2-D 3-D plug resolved parameterized parameterized Dupont [2004]
2-D planar 2-D N/A resolved ignored resolved Pattyn et al. [2006]
Quasi 3-D 3-D N/A resolved parameterized resolved Pattyn [2002]
2-D 3-D plug resolved resolved parameterized MacAyeal [1989]
3-D 3-D N/A resolved resolved resolved Blatter [1995]

aPlug flow means the velocity field does not depend on depth in the flow; shear means only vertical shear stress is modeled; and N/A means all are
considered. The models considered in this study are 1-D (plug) and 2-D.
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where i, j, and k vary over x and y and the summation
convention is applied. In this study, temperature and fabric
effects are not considered, and A remains constant.
[15] At the lateral domain boundaries, the boundary

conditions on the diagnostic equations (1, 2) can either be
on velocity or on stress. The former is the case if, for
instance, that part of the boundary represents a slow-moving
ice ridge or a symmetrical ice divide. If the boundary is an
ice shelf front then the balance between internal stresses and
hydrostatic stresses within the ice and the ocean gives rise to
the following:

sijnj ¼
1

2
1� r

rw

� �
rgh2f ni; ð6Þ

where hf is thickness at the front, rw is ocean density, ~n is
the outward normal vector (in the x,y plane) at the front, s is
as above, and i, j again vary over x, y [Huybrechts, 1990].
(We are ignoring the case where the entire domain is
floating and every lateral boundary is an ice/ocean interface.
In this case the velocity is only determined up to a uniform
translation plus a solid body rotation, and the ice shelf is
essentially a large iceberg.)
[16] In the event that part of the shelf front is grounded

(on an ice rise, say) then (6) is generalized by replacing
1
2
(1 � r

rw
)rghf

2 by

1

2
rg h2f �

rw
r
R2
f

� �
; ð7Þ

where Rf and hf are the depth of the base and the total
thickness at the front, respectively [Schoof, 2007b,
Appendix B]. Note that in this study we consider only a
stationary ice shelf front; that is, we assume that all ice mass
that moves across the front is instantly calved and therefore
no longer plays a role in the dynamics.
[17] The conditions under which MacAyeal’s model is

valid also ensure that normal stress at the base of the ice is
cryostatic, i.e., that the normal stress at the base is equal to
the weight of the ice column above it [MacAyeal, 1989,
Appendix A]. This means that a simple criterion determines
whether ice is floating or grounded:

rhþ rwR x; yð Þ � 0 for floating ice;
> 0 for grounded ice;

�
ð8Þ

where R is bedrock elevation, defined to be negative if
below sea level. This flotation condition simply states that
the ice will float when ocean pressure at the base can
support the weight of the overlying ice column, and that it is
in contact with the bed otherwise. The assumption is made
here that ocean water at hydrostatic pressure is always
available to support a column’s weight when it can do so.
Ice surface elevation is then related to ice thickness through

s ¼ 1� r
rw

� �
h where rhþ rwR � 0

Rþ h where rhþ rwR > 0:

8<
: ð9Þ

Furthermore, there is no basal stress where ice is floating. In
areas where ice is grounded, the form of ~tb depends on

conditions at the base of the ice stream, which are a subject
of debate for many West Antarctic ice streams. Here we
choose a parameterization corresponding to ice sliding over
rigid bedrock [Fowler, 1981], which yields

~tb ¼
0 where rhþ rwR � 0

Cj~ujm�1~u where rhþ rwR > 0;

�
ð10Þ

where m is a positive constant and C is a parameter. In
general C is spatially nonuniform and is dependent upon
factors such as bed roughness and effective pressure
[Paterson, 2001, chapter 7]. To simplify matters, we make
C spatially uniform in our study, but allowing for spatially
and temporally varying C is an avenue of further research.
[18] The thickness field evolves in time according to the

vertically integrated incompressibility condition, taking into
account mass balance terms at the upper and lower surfaces
(e.g., snow accumulation, melting, and accretion), repre-
sented by a:

ht þr � ~uhð Þ ¼ a: ð11Þ

Since temperature and other material properties are not
modeled, h is the only prognostic variable in the system.
[19] When applied to grounded ice, the model above is

often called the shelfy stream model, and the ‘‘shallow
shelf’’ model for floating ice. It has been widely used, at
varying levels of complexity, to model portions of West
Antarctica [e.g., MacAyeal, 1989; Hulbe, 1998; Schmeltz et
al., 2002; Payne et al., 2004].

2.2. Nondimensionalization and Buttressing

[20] For the remainder of the paper we give dimensional
results, but it is instructive to briefly consider the non-
dimensionalized system of equations. Details are found in
the work of Schoof [2007a], but briefly, if variables are
scaled with the assumption that, over most of the grounded
domain, the dominant balance is between driving force and
basal friction, the nondimensionalized equations are

er̂ � ŝ � cgjûjm�1~̂u ¼ ĥr̂ cg 1� rð Þĥþ 1� cg

� �
ðR̂þ ĥÞ

� 	
;

ŝij ¼ n̂
@ûi
@x̂j
þ @ûj
@x̂i
þ 2dij ûx̂ þ v̂ŷ

� �� �
;

ð12Þ

n̂ ¼ û2x̂ þ v̂2ŷ þ ûx̂v̂ŷ þ
1

4
ûŷ þ v̂x̂
� �2����

����
1�n
2n

;

ĥt̂ þ r̂ ûĥ
� 	

¼ â:

ð13Þ

Here cg is equal to 1 where rĥ + R̂ > 0 (i.e., where the
floatation condition is not satisfied), and 0 otherwise. Hats
appear over nondimensionalized variables, which are of
order unity, and r = ri/rw. The dimensionless number e has
the form

e ¼ A�
1
n u½ �= x½ �ð Þ

1
n

2rg h½ � ; ð14Þ
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where [x], [h], and [u] are characteristic scales of length,
thickness, and velocity, respectively. e can be thought of as
the ratio of the scale of the axial deviatoric stress in the
grounded domain to the overburden pressure.
[21] The parameter e is quite small for typical ice stream

conditions in Antarctica, as is shown by considering studies
of two representative West Antarctica ice streams. An
observational study of Rutford Ice Stream by Frolich et
al. [1987] gives representative scales of [u] = 300 ma�1,
[h] = 2 � 103 m, [x] = 2 � 104 m (in the transverse
direction), and the Glen’s law constant A used was equal to
1.6 � 10�17 Pa�3 a�1. This gives e �0.0024. In a modeling
study of Pine Island Glacier [Payne et al., 2004], the
representative scales were [u] = 2 � 103 ma�1, [h] =
1.5 � 103 m, [x] = 2 � 105 m (in the along-flow direction),
and, using a representative Glen’s law constant of 4 � 10�18

Pa�3 a�1 [Dupont and Alley, 2005], this gives e �0.0045.
[22] At the grounding line, ice velocity ûi, ice thickness ĥ

and viscous stresses (eŝijnj) are continuous, where nj is
normal to the grounding line; that is, these stresses must
ensure force balance in the shelf. In a completely unbut-
tressed shelf, the integrated effect of gravity on the shelf
is felt in full at the grounding line, and the average value
of the longitudinal stress normal to the grounding line is
1
2
(1 � r

rw
)ĥ2. This is independent of e, yet when e � 1

lateral viscous stresses are negligible in the interior of the
grounded sheet, and so there is a stress boundary layer near
the grounding line (often called the sheet-shelf transition
zone). Buttressing occurs when stresses at the lateral shelf
boundaries reduce the longitudinal stress required at the
grounding line in closing the ice shelf force balance as
illustrated in Figure 1.

[23] It is also instructive to see the dependence of e in
terms of domain and system parameters. With n = 3, m = 1/3,
it can be shown [Schoof, 2007a]

e / A�:33C�:57 x½ ��:76 a½ �:14; ð15Þ

where [a] is the scale of the accumulation rate. From (15) it
can be seen that weaker ice (larger A) and a stronger base
(larger C) decrease e.

3. Numerics

3.1. Momentum Balance

[24] In the model, the diagnostic equations for velocity
((1) and (2)) are solved using finite elements. The mesh is
composed of quadrilateral cells, and cell-wise bilinear nodal
basis functions are used, which are of sufficient polynomial
order for this problem [Schoof, 2006]. Integration of non-
linear terms such as viscosity and basal traction is done
using Gaussian quadrature.
[25] The nonlinear, elliptic system ((1) and (2)) is solved

iteratively for velocities using Picard-type fixed point
iteration, or ‘‘iteration on viscosity’’ [e.g., MacAyeal and
Thomas, 1986; Reist, 2005]:

@x 4hni�1uix þ 2hni�1viy
� 	

þ @y hni�1 uiy þ vix

� 	� 	
� cgCj~ui�1jm�1ui ¼ rghsx ð16Þ

and a similar equation corresponding to (2). Here the
updated velocity iterates ui, vi are the only unknowns, and
cg = 1 where ice is grounded, and 0 otherwise as before.

Figure 1. Schematic illustration of buttressing. Part of the stress applied by the ocean at the shelf front
(sfront) is taken up by sidewall stress (tsidewall), and so longitudinal stresses within the shelf (sshelf) are
small at the grounding line.
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The stopping condition for this iteration is that the nonlinear
residual is sufficiently small relative to its initial value:

jMn ~Ui
� �

~Ui �~bj < tol � jMn ~U0
� �

~U0 �~bj: ð17Þ

Here Mn is the stiffness matrix resulting from discretiza-
tion, b is the discretized driving stress, ~U is the vector of
nodal values of velocity, and tol is a small number, e.g.,
10�6 or 10�7. The dependence of Mn on ~U reflects the
dependence of viscosity and nonlinear basal stress on the
solution. The linear system at each iteration is solved by
conjugate gradients with either a Jacobi or block Jacobi
preconditioner.
[26] The only additional complications in solving (1, 2)

arise from the difference between the grounded and floating
parts of the domain, which is apparent from the discontin-
uous nature of shear stress gradients in (16) signified by the
factor cg. Our discretization of (16) is, however, based on
the weak form [Evans, 1991] of this equation [Schoof,
2006], which can easily handle such discontinuities. The
weak form of our shelfy stream system of equations in
general can be shown to correspond to the minimization of a
functional of the form [see Schoof, 2006, equation (3.13);
Schoof, 2009, equations (3.10a and 3.10d)]

J u; vð Þ ¼
Z
W

4nA�1=n

nþ 1
h u2x þ v2y þ uxvy þ

1

4
uy þ vx
� �2����

����
nþ1
n

þ
cgC

mþ 1
j~ujmþ1 þ rghrs �~u dW

�
Z
calving front

1

2
1� r

rw

� �
gh2~n �~u dG; ð18Þ

where W is the domain. J(u, v) is clearly well defined even
with the discontinuities in cg and rs. Similarly, the weak
form of (16) corresponds to the minimization of

JP ui; vi
� �

¼
Z
W
2ni�1h u2x þ v2y þ uxvy þ

1

4
uy þ vx
� �2
 �

þ 1

2
cgCj~ui�1jm�1j~uj2 þ rghrs �~u dW

�
Z
calving front

1

2
1� r

rw

� �
gh2~n �~u dG; ð19Þ

which is again well defined even with these discontinuities.

3.2. Mass Balance

[27] The prognostic equation for thickness (11) is solved
by a mass-conserving, finite volume method. For the
prognostic solution the thickness h is represented as piece-
wise constant on each cell, rather than continuous piecewise
bilinear. This inconsistency is resolved before each new
diagnostic solution by interpolation of the piecewise con-
stant solution on to the bilinear finite element space. To
advance a time step, mass fluxes at cell boundaries are
found using velocities corresponding to the old time step.
In some instances, to allow for larger time steps, the
scheme is made semiimplicit: thickness values from the
new time step are used, but the velocities are still from
the old time step.

3.3. Mesh Refinement

[28] We have implemented two different methods of mesh
adaption in order to provide higher resolution where it is
needed. (In any given model run, only one of the methods is
used.) The first is a moving mesh, where the grid points are
moved such that they cluster in regions where high resolu-
tion is required, while the number and connectivity of grid
points is constant (it is sometimes called r refinement). The
second is adaptive refinement (so-called h refinement),
where cells are divided into smaller cells where extra
resolution is required and groups of cells are coarsened into
larger cells in regions where lower resolution suffices.
3.3.1. Moving Mesh
[29] In the moving mesh method, the physical domain,

with coordinates x and y, is treated as the mapping of a
computational domain, with coordinates x and h. The grid
points of the mesh, defined in (x, y) space, are the mappings
of regularly spaced points in (x, h) space. The idea is to
define a mapping at each time step that provides a mesh in
(x, y) space that has closely spaced grid lines where high
resolution is required, and smoothly varying cell size. This
is accomplished by ensuring that the function ~x(x, h)
satisfies the equation

r x;h½ � � wr x;h½ �~x
� �

¼ 0; ð20Þ

where w(h(~x), ~x) is known as the monitor function, and its
functional form has to be chosen such that the mesh has the
properties mentioned above. (20) is not solved to a high
degree of accuracy at each time step, but rather a few
iterations are made using a simple relaxation scheme.
Boundary grid points are moved as follows: a point on a y
boundary remains on that y boundary, and similarly for x
boundaries, and the points are moved along the boundaries
through a one-dimensional version of (20). Care needs to be
taken that the mesh does not become too distorted, i.e., that
x(x, h) is monotone in x for every h and y(x, h) is monotone
in h for every x. A candidate for a monitor function is a
function of nearest distance to the grounding line:

w ~xð Þ ¼ 1þ m1

1þ m2
2 dist ~x;Gg

� �� �2 ; ð21Þ

where Gg is the grounding line [Beckett et al., 2001]. m1 and
m2 must be chosen appropriately (see 4.1). While this works
well for 1-D simulations, finding the distance of all 2-D
mesh points to a given contour is again expensive, and the
fact that the grounding line must be defined discretely leads
to significant distortion in the mesh near the grounding line.
A compromise is to use height above floatation as a proxy
for distance from the grounding line:

w ~x; hð Þ ¼ 1þ m1

1þ m2
2 h*
� 	2 ; ð22Þ

where h* 	 r
rw
h + R(~x). Note that even with identical values

of m1, m2, (22) will give higher-resolution concentration at
the grounding line when h is steeper there.
[30] With each iteration of the relaxation scheme for (20),

the physical grid points in (x, y) space shift, and hence
thickness h needs to be interpolated from the old mesh to
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the new. A (slope-limiting) higher-order, mass conservative
interpolative scheme is used. Our experience shows that
the accuracy of this scheme is important to the results of the
model, and that a low-order interpolation can make the
solution excessively diffusive. The mesh moving scheme is
similar to Tan [2007], although the form of the monitor
function differs.
[31] Defining the mesh as a continuous mapping of the

computational domain allows us to talk about uniformly
increasing resolution even though resolution is not uniform.
The mapping does not depend explicitly on the spacing of
the computational mesh (the grid points in (x, h) coordi-
nates); and if the solution h is not strongly dependent on this
spacing, then increasing resolution uniformly on the com-
putational mesh translates roughly to increasing resolution
uniformly on the physical mesh.
[32] Note also that in our moving mesh scheme the grid

points are not material points; they are not advected with
velocity. Lastly, the equations (1, 2, 11) are solved on the
physical mesh, not the computational one, and there is no
change of variables involved. See Figure 2 for a visualiza-
tion of the moving mesh scheme.
3.3.2. Adaptive Refinement
[33] Adaptive refinement, or h refinement, involves sub-

dividing cells in regions where numerical error is high to
improve accuracy, and merging cells in regions where error
is low in order to save resources. How this error is assessed,
however, depends highly on the equations being solved.
Since in this problem stress gradients are expected to be
highly localized, we use the jumps in strain rate at cell
boundaries of the finite element solution to the diagnostic
equations as a proxy for error. That is, for cell K,

h2K ¼
Z
@K

@u

@n


 �2
þ @v

@n


 �2 !
dl; ð23Þ

where
@ �ð Þ
@n is differentiation in the direction normal to the cell

boundary. Cells with the highest values of h are refined,
while those with the lowest values are coarsened, with an
overall constraint on the total number of cells. The
algorithm by which cells are coarsened or refined, provided
by the deal.ii library, ensures that a cell is bordered by cells
that are neither more than one refinement level higher or
lower than the cell. How many cells are refined and
coarsened, as well as the maximum cell count, are user
specified. In all adaptive refinement model runs, the cells
contributing to the top 25% of the error are refined, and the
cells contributing to the bottom 10% are coarsened. The
refinement and coarsening takes place every 20–40 time
steps, after which the thickness solution is interpolated to
the new mesh.
[34] The form of h (up to a constant) was developed by

Kelly et al. [1983] and is a generic estimator, i.e., it is not a
true a posteriori error estimate of a finite element solution to
(1, 2), but it has been found to be useful for adaptive
refinement in a wide range of problems.

3.4. Grounding Line Movement

[35] The only way grounding line position feeds back in
our model is in calculating basal shear stress and surface
slope in (1, 2), so in general the grounding line is diagnosed
from the floatation condition (8) just before solving for
velocity. We can then represent the grounding line as lying
along cell boundaries (i.e., every cell is either entirely
grounded or entirely floating, depending on the average
thickness and bed elevation in the cell), or interpolate the
floatation condition between grid lines and allow cells to be
partially grounded. In the latter case the integral arising
from the ~tb term in the weak form of (4) can be evaluated
over partial cells by iterated quadrature. For our interpola-
tion of the grounding line, we borrow from Pattyn et al.
[2006] by taking the location of the grounding line to be
given implicitly by

� rwR
rih
¼ 1: ð24Þ

where the left-hand side is defined bilinearly in each cell. It
should be noted that this is just an interpolation of basal
stress, not subgrid stress resolution: no additional degrees
of freedom are used in the numerical representations of
thickness and velocity. If there are scales in velocity or
thickness that cannot be resolved by the mesh, subgrid
grounding line interpolation will not remedy this. An
advantage of interpolating the grounding line is that sudden
changes in basal stress over large areas (relative to length
scales of relevant quantities) are avoided. We use grounding
line interpolation when using adaptive refinement but not
when using a moving mesh (although experience with 1-D
models suggests that grounding line interpolation would not
affect the results of the moving mesh model). Both modes of
grounding line movement allow for various topologies and
topological changes of the grounding line, such as multiple
grounded regions forming or becoming connected.
[36] Since the moving mesh scheme adapts the mesh

based on thickness h while adaptive refinement depends
on velocity u and v, the algorithms differ slightly between
the modes of mesh adaption. Still, they are presented here

Figure 2. Visualization of moving mesh. (top) A hypothe-
tical mesh at time tn. (bottom) Mesh at the next time step. In
both meshes the shaded cells comprise the grounded
domain. Note that the circled node is the same node in
both meshes, and it does not remain on the grounding line.
Note also that the grounding line can easily change
topology; at tn it is not connected, but at tn+1 it is.
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together, where steps specific to mesh adaption are indicat-
ed. Note that the step labeled ‘‘adaptive refinement’’ is not
necessarily executed every time step.
[37] 1. Piecewise constant thickness interpolated to con-

tinuous, piecewise bilinear function in order to force diag-
nostic equations.
[38] 2. Diagnostic equations solved for velocity with

h held unchanged.
[39] 3. Mesh is refined and h interpolated to new mesh,

then velocity found again (adaptive refinement).
[40] 4. Thickness evolved through continuity equation.
[41] 5. Mesh is moved and h interpolated to new mesh

(moving mesh).
[42] 6. Floating domain found from floatation condition.
[43] 7. Repeat.
[44] Note there are three kinds of ‘‘interpolation’’ referred

to in this chapter, and they are not to be confused with one
another. One is the interpolation of the piecewise constant
thickness to a continuous, piecewise bilinear function in
order to solve for velocities. The second is the interpolation
of the piecewise constant thickness on one mesh to a
piecewise constant thickness on another mesh associated
with mesh adaption. The third is the interpolation of the
grounding line. The model code is written in C++ and uses
the deal.ii adaptive finite element library (http://dealii.org).

4. 1-D Dynamics and Experiments

4.1. Steady States and Stability: MISMIP Experiments

[45] As described in section 1, Weertman [1974] predicts
that two-dimensional marine ice sheets (i.e., with a single
horizontal dimension and therefore described by a one-
dimensional version of our depth-integrated model) should
have well-defined, discrete equilibria whose stability is dictat-
ed by the slope of the ice sheet bed at the grounding line: steady
grounding line positions on downward-sloping beds should be
stable according to Weertman, and the grounding line should
return to its original position after a perturbation to the ice sheet
geometry, while steady grounding lines on upward-sloping
beds are unstable and will irreversibly evolve away from their
original position if perturbed.
[46] Weertman’s argument hinges on the idea that

grounding line mass flux increases with bed depth at the

grounding line, since such a relationship is necessary for a
slight grounding line advance to yield a negative mass
balance for the grounded sheet on a downsloping bed, and
a positive mass balance for a sheet on a foredeepened bed
(and vice versa for a slight retreat). However, his theory is
based on a relatively crude way of coupling sheet and
shelf flows, and has been called into question as a result
[Hindmarsh, 1996]. However, the recent results of Schoof
[2007a, 2007b] have not only confirmed Weertman’s qual-
itative results, but also put them on a much more quantita-
tive footing. (It is worth mentioning that the quasi-analytical
results of Schoof [2007a] are for an unbuttressed system.
Schoof’s boundary layer theory is not a suitable substitute
for resolving the grounding line in the presence of
buttressing.)
[47] These results form the basis of the Marine Ice Sheet

Model Intercomparison Project (MISMIP; http://homepages.
ulb.ac.be/
fpattyn/mismip/), which we use to test a 1-D
version of our model. We discuss only Experiment 3a of
the MISMIP series of experiments here, because it involves a
bed with both upsloping and downsloping portions and
provides a test not only of model agreement with Schoof’s
asymptotic results, but also lets us test whether stable steady
states are indeed observed only on downsloping beds.
[48] In this experiment, an ice sheet is grown from zero

thickness over a bedrock with a sill, as in Figure 3. All
material parameters are spatially uniform, and are further-
more held constant over time with the exception of the
fluidity parameter A in Glen’s law. At prescribed intervals of
15–30 ka, A is changed from one constant value to another.
Initially, A is decreased in several steps, and then increased
again back to its original value, corresponding to first
cooling and then warming of the ice. As A changes, the
ice sheet successively adopts bigger steady state configu-
rations during cooling, and subsequently retreats to small
equilibrium shapes during warming. The objective of the
experiment is threefold. First, Schoof’s theory predicts the
positions of steady states, and the experiment tests whether
these are reproduced by the model. Secondly, some of the
values of A in the experimental sequence correspond to
more than one equilibrium shape, some of which are
unstable, and the experiment tests whether the model
captures these multiple equilibria, and whether it relaxes
only to those predicted to be stable. Lastly, for those values
of A for which Schoof’s theory predicts only a single
equilibrium, the experiment test whether the model repro-
duces this equilibrium in both advance and retreat, i.e.,
whether the grounding line shape returns to the original
shape when A has first been decreased and then increased
again to its original value.
[49] The MISMIP experiments are designed for ice sheet

models with a single horizontal dimension, but a numerical
model that solves the shelfy stream equations (1, 2, 11) can
be reduced to this case by requiring that all data functions
and dependent variables depend only on one of the spatial
variables in these equations (in our case, x).
[50] The values of m1 and m2 in (21) and (22) were chosen

as follows. An approximate measure of the nondimensional
transition zone width is given by [Schoof, 2007a]

lbl ¼ e
n mþ2ð Þ
nþmþ3

Figure 3. MISMIP experiment 3a: 1-D marine ice sheet
over bedrock with sill.
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where e is the same as in (12). (Note e changes with A.) It
was found that the choices m1 = .05lbl, m2 = 10m1 gave a
mesh with minimum spacing 
 0.2lbl when using a mesh
with the smallest number of grid points considered. When
using (22), the values m1 = 500, m2 = 250 seemed to give
comparable resolution. All 2-D moving mesh simulations
used (22) with these parameter values.
[51] Figure 4 shows results of MISMIP experiment 3a in

the form of grounding line position over time. Adaptive
mesh results are given in Figure 4a. Two sets of moving
mesh results are shown, one where the distance-based
monitor function given by (21) was used (solid line) and
one where the thickness-based monitor function given by
(22) was used (triangles). Adaptive refinement results with
grounding line interpolation (dashed line) are shown as
well. The steady states predicted by Schoof’s asymptotic
matching theory are shown too, for comparison. Relative
magnitudes of A are indicated by vertical bars. The adaptive
refinement with interpolation and moving mesh with mon-
itor function (21) agree with each other and with the
asymptotic matching theory to within a few kilometers.
The moving mesh with monitor function (22) is somewhat
worse; it seems that the asymmetry of h around the
grounding line leads to a mesh that is not ideal for the
problem. Still, the performance is much better than that of a
uniform mesh with many more grid points (see discussion
of Figure 4b).
[52] In Figure 4a we also show results for the adaptive

refinement method without grounding line interpolation
(dotted line). These do not agree as well with the other
results of adaptive refinement with grounding line interpo-
lation, or with the moving mesh or asymptotic matching
results. Importantly, the degree of refinement in these runs
without grounding line interpolation was the same as in the
runs with grounding line interpolation. This suggests that
numerical inconsistencies cannot be attributed to under-
resolution of stress gradients in the grounding line transition
zone alone, which were suggested by Schoof [2007b] as the

cause of the inconsistent results obtained in previous work
[e.g., Vieli and Payne, 2005]. There may also be a ‘‘kine-
matic’’ problem: velocity field, while known accurately,
does not lead to the correct switching of cells between
grounded and floating because such switching requires an
average thinning or thickening over a spread-out area (the
area of the cell). This may be attributable to the large
thickness gradients that prevail near the grounding line,
which can lead to one end of a grid cell being significantly
above flotation while the other is significantly below. A
method that does not interpolate the grounding line then has
to treat such a cell as being either completely afloat or
completely grounded, with yields a discontinuous switch in
basal friction that feeds back into the velocity field.
[53] In Figure 4b results of MISMIP experiment 3a are

also shown for fixed, uniform meshes with approximately
1.2, 0.6 and 0.3 km resolution, respectively. As in the
adaptive refinement simulation, grounding line interpolation
(see 3.4 above) was used. Their agreement with each other
and with the boundary layer theory is worse than that of the
mesh adaptive results. For comparison, the adaptive mesh
method developed meshes with less than 100 m resolution
near the grounding line, while using the same number of
grid points as a fixed mesh simulation with 
4 km
resolution.
[54] Several important results can be inferred from our

1-D experiments. First, the model seems to be numerically
convergent. In the fixed grid simulations the agreement with
the boundary layer theory improved as resolution increased.
(In the instances when the fixed grid models did not find
steady state solutions on the seaward side of the sill in
Figure 3, it was because the grounding line was too close to
the back of the sill, although this too improved with
resolution.) We see that our model, which is inherently
designed to be applicable to two horizontal dimensions,
simulates grounding line movement in one horizontal di-
mension in good agreement with theory. Second, this good
agreement with the asymptotic matching theory and of our

Figure 4. MISMIP experiment 3a: grounding line versus time. Squares represent the steady states
predicted by the boundary layer theory. Bars show relative magnitude of Glen’s Law constant A for time
interval. (a) Moving mesh model and the adaptive refinement model. Solid line and triangles correspond
to choices (21) and (22) of the monitor function w, respectively. (b) Results without mesh adaption.
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different mesh refinement methods with each other show
that convergence can be achieved with relatively low
computational cost. This is perhaps not crucial for the 1-D
simulations above, where very high-resolution runs can be
done on laptop computers, but for a comparable 2-D domain
it would be very difficult to achieve resolution below a
kilometer with uniform meshes. Third, the adaptive refine-
ment simulations show an improvement when grounding
line interpolation is utilized, even though all other numerical
parameters are held constant. The above fixed mesh simu-
lations were also run without making use of grounding line
interpolation, and the results were far worse: while the
initial grounding line advance up to 150 ka was similar to
that shown in Figure 4b, there was almost no subsequent
retreat (not shown). This implies that the difficulties with
grounding line migration are not solely because of failure to
resolve the stress transition.

4.2. Comparison With Previous Numerical Solution
Attempts: Eulerian Versus ALE Methods

[55] In previous attempts to simulate ice sheets with one
horizontal dimension, significant discrepancies were found
between models using different methods of treating ground-
ing line migration. Vieli and Payne [2005] examined two
such methods, which they termed ‘‘fixed grid’’ and
‘‘stretched grid’’ (the latter is not to be confused with our
term moving mesh). In their fixed grid model the grounding
line was found from the floatation condition after evolving
thickness, and it was constrained to lie on cell boundaries.
By contrast, their stretched grid method mapped the
grounded portion of the physical domain onto the unit
interval in their computational domain, and employed an
evolution equation grounding line position based on differ-
entiating the flotation condition r h = �rwR as in the work
of Hindmarsh [1996]. In standard nomenclature, the
stretched grid method can be considered Arbitrary Lagrang-
ian-Eulerian (ALE) type, as opposed to their fixed grid,
which is purely Eulerian.
[56] Vieli and Payne [2005] found that their stretched grid

model predicts grounding line advance as well as retreat in
response to perturbations and that the response to small
perturbations was reversible (although the effect of larger
perturbations was not completely reversible). In the fixed
grid method, on the other hand, the grounding line would
not retreat in response to perturbations, and perturbations
that caused it to advance were irreversible. Also, response to
perturbations depended quantitatively on grid spacing in the
fixed grid method.
[57] These results suggest that Vieli and Payne’s [2005]

fixed grid method cannot capture grounding line dynamics
accurately, and raises two questions. First, what aspect of
the fixed grid method prevents grounding line retreat, and
secondly, is there a generic problem with applying Eulerian
methods to track grounding line motion? The small length
scales predicted by Schoof’s analysis suggest insufficient
resolution as a possible reason for the inconsistencies in
Vieli and Payne’s experiments. In addition, the superior
performance of the ALE method also suggests that the
inability of the fixed grid method to track grounding line
motion on distance below the grid scale could play a role,
and this is relevant to Eulerian methods in general.

[58] However, even accepting that ALE methods may be
preferable in 1-D cases, they do not generalize easily to 2-D
simulations. They involve changes of coordinates that have
the potential to become very poorly conditioned and have
difficulties with changing grounding line topologies. They
also require prognostic equations for grounding line migra-
tion that would be difficult to evaluate. They also have
difficulties with changing grounding line topologies. In two
horizontal dimensions, a Eulerian approach is therefore the
realistic choice, and is adopted here: although our mesh
points may change physical location, the diagnostic and
continuity equations are always solved in a Eulerian frame.
One of the important results of our 1-D experiments above
has therefore been that our method, which is inherently
Eulerian regardless of the mesh refinement method (moving
mesh or adaptive refinement), does not have the short-
comings of Vieli and Payne’s [2005] fixed grid method.
By increasing resolution near the grounding line, and by
including the grounding line interpolation of Pattyn et al.
[2006] in our adaptive refinement runs to allow for subgrid
grounding line movement, we have obtained results that are
both internally consistent between runs with different grid
spacings and with different mesh refinement methods, and
that are in agreement with the quasi-analytical results of
Schoof [2007b].
[59] It should be noted at this point that our goal in

demonstrating the robustness of our model is to bolster
confidence that our numerical model is solving the PDEs we
have charged it so solve. We cannot prove convergence of
our discretized solution to the (or a) weak solution of our
PDE system, since we cannot use the Lax equivalence
theorem [Lax and Richtmeyer, 1956] (our system is nonlin-
ear) or the Lax-Wendroff theorem (which applies to pure
conservation laws), although the convergence of our solver
for the diagnostic equations (1, 2) can be shown using the
methods of Reist [2005] and Schoof [2009]. However, the
fact that our model agrees with the quasi-analytical steady
state solution in the MISMIP experiment, and that our
results are robust to changes in numerical details, gives us
confidence that our model is performing correctly.

5. 2-D Experiments

[60] As described in the introduction, the presence of
lateral shear in ice shelves may have a significant effect on
the dynamics of marine ice sheets with ice shelves that are
confined to embayments, or which contain grounded ice
rises. To address this, we test our model in 2-D settings,
with variations in velocity and thickness in both horizontal
coordinates. First, we test model performance to ensure that
the positive results obtained above translate to the 2-D case.
Subsequently, we investigate how buttressing in an ice shelf
affects the qualitative dynamics of a marine ice sheets (in
terms of the location and stability of its steady states) and
attempt to identify the controlling physical parameters in
buttressing.

5.1. Downsloping Bed Experiments

5.1.1. Steady States
[61] By contrast with the 1-D case, there is no quasi-

analytical steady state solution or other benchmark to
compare our results with. To test model performance, we
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therefore check our results for internal consistency: do runs
with different mesh refinements and number of grid points
agree with one another? Moreover, in the case of a wide ice
shelf in which little lateral shearing occurs, we expect to
recover at least the qualitative dynamics of the 1-D case,
which provides a further check on our model.
[62] Our first set of experiments was carried out for a

downsloping bed of the form

R x; yð Þ ¼ 720 m� 1:038� 10�3 x; ð25Þ

with the end of the shelf fixed at x = 1.8 � 106 m. The
lateral boundaries of the domain are at y = 0 m and y = 0.72
� 106 m, where we prescribe no-slip boundary conditions.
We assume an ice divide at x = 0 m, and thus velocities are
zero at this boundary. As material parameters, we used r =
900 kg, rw = 1000 kg, C = 7.6 � 106 Pa (m�1s)1/3, m = 1/3,
and A = 0.8 � 10�25 Pa�3s�1 which, through the thermal
dependence of A [Paterson, 2001], corresponds to an ice
temperature of �25�C. We started our runs with two
different sets of initial conditions, one with a grounding line
close to the ice shelf front, and one with a grounding line far
from the front. These will be referred to as the ‘‘long-
stream’’ and ‘‘short-stream’’ initial condition, respectively.
The initial profiles are y-independent and differ only in the

choice of initial grounding line position xg. They are defined
as follows (see also Figure 5):

h x; yð Þjt¼0 ¼

hmþ2g þ mþ 2

mþ 1

Cam

rg
xmþ1g � xmþ1
� 	
 � 1

mþ2

x < xg
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�

unþ1g
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hnþ1g � 1

� 	
a x� xg
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Here

cA ¼
rg rw � rð Þ

4rw

� �
A

hg ¼
rw
r
jR xg
� �
j; ug ¼ axg;

and a is the spatially uniform accumulation rate (equal to
0.3 ma�1). hg can be interpreted as the floatation thickness
at xg corresponding to (25), and ug as the velocity required
for the sheet to be in equilibrium for a given xg. The x < xg
case of (26) is the equilibrium profile of the grounded

Figure 5. Downsloping bed experiments with moving mesh: differing initial conditions. (a) Short-
stream initial condition: side view of marine ice sheet. Gap below ice shelf is ocean cavity. (b) Long-
stream initial condition. Note difference in grounding line position and divide thickness. (c) Top-down
view of short-stream initial condition (dark portion is floating ice). (d) Top-down view of long-stream
initial condition.
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portion of a 1-D sheet with uniform accumulation and
grounding line xg, ignoring longitudinal stresses [Schoof,
2007a]. The x � xg case (floating case) is the equilibrium
profile of a 1-D ice shelf with uniform accumulation and
grounding line xg [Van der Veen, 1999].
[63] Figure 6 shows the results of the experiment for a

moving mesh simulation with 30 � 60 resolution, which
would give grid spacing of about 30 km for a uniformly
spaced fixed grid. Figures 6a and 6c correspond to the short-
stream initial condition, and Figures 6b and 6d correspond
to the long-stream initial condition. As can be seen the two
initial conditions evolve to nearly identical steady states,
suggesting that there is a unique steady state.
[64] It is fairly straightforward to evaluate numerical

convergence with our moving mesh model. Figure 7 shows
such an evaluation for the short-stream experiment. Figure 7a
is the same steady state as in Figures 6c and 7b is the
corresponding mesh. Compare these with Figures 7c and
7d, the equivalents for a mesh with 50� 100 grid points. The
steady states are very similar in appearance, and the finer
mesh looks like a uniformly resolved version of the coarser
mesh, as predicted. The shortest distance between grid lines
in the coarser mesh is about 700 m.
[65] The experiments were repeated with the adaptive

refinement method, with a maximum cell constraint of 8000
cells, and the steady state results are shown in Figure 8. The
steady state found by integrating from the short-stream
initial condition was similar to that found by the moving

mesh counterpart. However, the sheet beginning from the
long-stream initial condition retreated to an apparent steady
state that did not agree with the short-stream steady state as
well. While the grounding line did retreat significantly from
its initial condition (about 150 km), it still ended up about
50 km seaward of that in the moving mesh simulations.
Also, examination shows that grounding line shape differs
as well: in the moving mesh results, the grounding line
flattens out near the sidewalls, while for adaptive refinement
the grounding line has more of a parabolic shape.
[66] In the adaptive refinement runs, the most highly

resolved cells in the transition zone had a diameter of
2.25 km, on the same order as but still larger than in the
moving mesh simulations. By contrast, in the MISMIP
experiments above, the most highly resolved cells in the
moving mesh and adaptive refinement simulations had
nearly the same diameters, suggesting that adaptive refine-
ment may still have underresolved the transition zone in the
2-D downsloping bed experiments. Lower resolution in
the transition zone was likely a result of the details of
the adaptive refinement scheme, which refines against a
constraint on the maximum number of cells. Because of the
no-slip condition at the shear margins, those regions
demanded higher resolution (and more cells) at the cost of
resolution in the transition zone.
[67] Resolution near the shear margins may also explain

the differences in grounding line shape. Figures 7b and 7d
both show that when the moving mesh is used, the cross-

Figure 6. Downsloping bed experiments with moving mesh: steady states. (a) Steady state evolved to
from short-stream initial condition, 12.5 ka. (b) Steady state evolved to from long-stream initial
condition. (c) Top-down view of Figure 6a (dark portion is floating ice). (d) Top-down view of Figure 6b.
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flow diameter of grid cells differs greatly across the ground-
ing line, with the cells on the grounded side being much
wider. Therefore, the no-slip condition is felt further from
the wall on the grounded side, and velocities are lower. The
flux difference leads to increased thinning near the margin,
and as a result the grounding line is slightly more recessed
in that region than it should be. It is likely, though, that with
the moderate channel width in these experiments, the
margins play a smaller dynamic role than longitudinal
stresses, and therefore their underresolution, despite local-
ized error, did not affect the overall ice sheet evolution.
Therefore, the moving mesh, which focused resolution in
the transition zone, produced better results for these
experiments.
[68] Performance of the adaptive refinement method

without grounding line interpolation was even worse (echo-
ing the results of the 1-D experiments). The short-stream
initial condition still evolved to the same steady state, but in
the long-stream simulation the grounding line retreated less
than 50 km. Again, this is remarkable because the resolution
of the runs without grounding line interpolation yield the

same cell size near the grounding line as the corresponding
runs with interpolation. By contrast with the 1-D experi-
ments above, our 2-D runs were restricted to lower reso-
lutions due to computational cost, and the effect of having
to treat the now much larger grid cells as being either
completely afloat or completely grounded is even more
noticeable.
[69] We give some idea of the cost of a uniform mesh

with comparative along-flow resolution, focusing on the
linear solve in the iterative solution for velocity, which is the
most resource-intensive part of the simulation (although for
meshes with less than 
5,000 cells the assembly of the
linear system takes an amount of time comparable with that
of its solution). Results are given for moving mesh and
adaptive refinement simulations, as well as fixed (uniform)
meshes, and are summarized in Table 2. In each case the
physical domain dimensions were 1800 � 720 km, and each
nonlinear velocity solve began with an initial guess of~u 	 0
and took 42 iterations (with a single linear solve each
iteration) to reach desired tolerance. Dimensions of the
fixed mesh were chosen so that along- and cross-flow

Figure 7. Downsloping bed experiments with moving mesh: sensitivity to mesh size. (a) Steady state
evolved to from short-stream initial condition, 30 � 60 grid. (b) Mesh corresponding to steady state from
short-stream initial condition, 30� 60 grid., (c) Steady state evolved to from short-stream initial condition,
50 � 100 grid. (d) Mesh corresponding to steady state from short-stream initial condition, 50 � 100 grid.
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resolution near the grounding line was comparable with the
moving mesh and adaptive refinement simulations, respec-
tively. In the former case (see Table 2), poor performance
could be because the PETSc conjugate gradient iteration
failed with a block Jacobi preconditioner, whereupon a
Jacobi preconditioner was used.
5.1.2. Response to Perturbations
[70] Our results above have already suggested that, for a

given set of physical parameters and a fixed ice shelf front
position, the ice sheet with a downsloping bed settles to a
unique equilibrium regardless of initial conditions. In 1-D,
this is one of Weertman’s [1974] original predictions for a
downsloping bed, and is confirmed by Schoof [2007a] and
by our MISMIP runs above. However, as shown by Vieli
and Payne [2005], numerical models in 1-D may or may not

reproduce this behavior depending on the method of track-
ing the grounding line that they employ, and crucially,
depending on resolution near the grounding line.
[71] In two horizontal dimensions, we have no equivalent

to Weertman’s or Schoof’s results, but our numerical results
above suggest that both observations translate from 1-D to
2-D: There is apparently a unique equilibrium shape even in
two dimensions, but that not all numerical solutions will
reproduce this behavior (notably the adaptive meshing
results without grounding line interpolation above). Here,
we investigate this basic question further: does a marine ice
sheet have well-defined, discrete equilibria for a given set of
material and geometrical parameters and physical forcings?
[72] However, instead of starting simulations from differ-

ent initial conditions, we follow Vieli and Payne [2005] and

Figure 8. Downsloping bed experiments with adaptive refinement: steady states. (a) Steady state evolved
to from short-stream initial condition, 12.5 ka. (b) Steady state evolved to from long-stream initial
condition. (c) Top-down view Figure 8a (dark portion is floating ice). (d) Top-down view of Figure 8b.

Table 2. Comparison of Computational Cost of Mesh Adaption Schemes With Uniform Meshesa

Mesh Adaption Scheme Grid Size Minimum Along-Flow Resolution (km) Average Linear Solve Time (s)

Moving mesh 30 � 60 cells 1 0.03
None 30 � 1000 cells 1.8 3
Adaptive refinement 10,000 cells (maximum) 2.5 0.07
None 144 � 360 cells 5 2.5
aIn the rows corresponding to a uniform mesh (denoted by ‘‘none’’), mesh dimensions were chosen to have comparable resolution with that of the

preceding row near the grounding line.
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subject an ice sheet that is already in an equilibrium shape to
a step change in accumulation rate, and subsequently
reverse this step change. In Figure 9 we show the response
of our model to such an accumulation step change: accu-
mulation (a) is decreased from 0.3 ma�1 to 0.06 ma�1 and
the model is integrated until retreat has slowed appreciably.
Then a is increased back to its initial value and the system is
again allowed to reach a steady state. Figure 9a shows the
position of the leftmost point of the grounding line (the
point on the grounding line with the smallest x coordinate)
as a function of time. Figure 9b shows the evolution of a
different metric, volume above floatation (VAF), with is
useful because it looks at the whole sheet instead of a single
part and its evolution is smoother than that of grounding
line position. Both curves show that the marine ice sheet
returns back to its original steady state after the perturbation
is removed. (The criterion for ending the simulation was
assessment of a steady state by inspection, but results show
that VAF varied by 
7 km3 over the final 5 ka, less than 1%
of the total variation of the simulation.)
[73] We offer a heuristic explanation for why there is a

single equilibrium shape for a given set of physical param-
eters. In the absence of buttressing, the grounding line has a
unique stable steady configuration because mass flux
through the grounding line can be computed as a function
of ice thickness there, and the equilibrium balance between
inland accumulation and flow through the grounding line
leads to a unique steady state [Weertman, 1974; Schoof,
2007a]. In the presence of buttressing, this simple argument
no longer holds because grounding line flux is no longer
determined by ice thickness alone, but also by longitudinal
stress at the grounding line (which is itself a function of ice
thickness in the unbuttressed case).
[74] However, other effects being equal, the total lateral

shear stress on the shelf increases with the length of the
shelf, and leads to a corresponding decrease in longitudinal
stress at the grounding line. If the introduction of lateral
shearing leads to an altered equilibrium shape, we argue that
it should again be stable. This is because a slight advance in
the grounding line will lead to a shorter shelf and less
buttressing, so the longitudinal stress at the grounding line

should increase by at least as much as in the unbuttressed
case. There are other effects associated with an advance of
the grounding line, such as change in the velocity field and
a slight increase in the thickness of the shelf near the
grounding line (which leads to slightly increased buttress-
ing) but we do not expect them to dominate. So in the
regime of modest buttressing (i.e., shelf width comparable
to shelf length) we expect a unique stable steady state over a
downsloping bed. This is by no means a formal argument,
but is supported by our numerical results above.

5.2. Buttressing Experiments

[75] A much more complicated scenario is that of a
foredeepened bedrock. In 1-D, this admits no stable steady
states [Weertman, 1974]: if there were an equilibrium
configuration with its grounding line on the upward-sloping
bed, then a retreat from that grounding line position would
lead to greater mass flux through the grounding line, and
hence accelerated retreat. However, the effect of lateral
shearing in two dimensions could conceivably change the
qualitative behavior of the system. With lateral shearing,
longitudinal stress and hence ice flux at the grounding line
are affected by changes in ice shelf geometry. Suppose that
there is an equilibrium position with the grounding line
positioned on the foredeepened bed in the presence of
buttressing. A retreat in the grounding line will still lead
to greater ice thickness at the grounding line, which tends to
increase mass flux there. However, with a fixed ice shelf
front it also corresponds to a longer ice shelf in which lateral
shearing plays a stronger role, and this will tend to lower
longitudinal stresses and hence mass flux. Which of these
two competing effects will dominate is unclear; if the
former, then Weertman’s marine ice sheet instability will
persist, while grounding lines on foredeepened slopes
would be stabilized if the latter effect is more important.
[76] To test whether buttressing could lead to stabilization

and to identify the controlling parameters, we ran our model
with a foredeepened bedrock of the form

R x; y;að Þ ¼ �600 mþ a x� :96Lxð Þ x < :96Lx
�600 m� 0:02 x� :96Lxð Þ x � 0:96Lx;

�
ð27Þ

Figure 9. Response to step changes in accumulation. (a) Evolution of minimum grounding line
position. (b) Evolution of volume above floatation (VAF).
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where Lx is the length of the domain (equal to 1500 km
unless otherwise specified) and a is the bottom slope. The
sharp slope past x = .96Lx signifies a continental shelf break.
Similarly to the Downsloping bed experiments, y = 0 and y
= W were no-slip boundaries, where W, the channel width,
was varied between simulations. Material parameters and
accumulation rates were spatially uniform, and unless
otherwise specified the accumulation rate a was equal to
0.3 ma�1. It can be show by scaling as in section 2.1 that the
behavior of such a system depends four dimensionless
groups. In order to identify how the stabilizing effect of
buttressing is controlled, we therefore vary four model
parameters, namely, domain width (W), bedrock slope (a),
Glen’s law constant (A), and basal friction coefficient (C).
Each model run was begun with an initial condition of the
form (26), with xg = 700 km.
[77] Rather than performing a full search of a section of

four-dimensional parameter space, we first varied W and a
while holding A and C constant at A = 1.5 � 10�25Pa�3s�1

(corresponding to a temperature of �20�C), C = 7.6 � 106

Pa (m�1s)1/3. Subsequently, we fixedW = 600 km, a = 0.5�
10�3 and varied A and C instead.
[78] With A and C fixed, bed slope was varied between

10�3 and 0.25 � 10�3, values slightly lower those found in
the WAIS, and W was varied between 0.1Lx and 0.67Lx.
Figure 10 plots VAF against time for several (W,a) pairs.
The left plot shows results for decreasing values of W over a
steep bed while the right shows the same over a bed with
gentle slope. In all but one case, collapse of the ice sheet is
observed from the prescribed initial configuration. Note that
for a wide channel (triangles) the collapse occurs relatively
quickly while for a narrower channel (circles) it is slower.
For the narrowest domain, we instead see an advance,
which is eventually halted by the continental shelf at the
edge of the domain. Comparing the left and right plots, we
see that collapse tends to happen more quickly for a steeper
bed and that the collapse time scale seems to be more
sensitive to changes in width for the steeper slope.

[79] Importantly, the results Figure 10 do not show a
reversal of stability: no stable steady states appear on the
foredeepened bed, and Weertman’s instability appears to
persist. Both the unstable collapse observed in most of the
simulations and the advance predicted for the simulations
with the narrowest domain are consistent with this, and the
fixed initial conditions dictate for each set of parameter
values whether advance or retreat is observed. This was also
confirmed by redoing several of the simulations in Figure
10b with different initial conditions, which confirmed that
the ice sheet would always collapse or advance to the edge
of the domain, with small initial grounded domains favoring
collapse and larger ones favoring advance.
[80] The results of the (W,a) parameter search are sum-

marized in Figure 11. This is a contour plot in (W,a) space

Figure 10. VAF over time for selected runs from the buttressing experiments. Width is increasing from
top to bottom curves in both plots. (VAF is normalized due to differing channel widths.) VAF for different
values of W/L over an (a) steep (a = 10�3) and (b) gentle (a = .25 � 10�3) foredeepened bed.

Figure 11. Results of buttressing experiments. Time from
start to collapse (the time at which VAF = 0.1 � VAF0)
denoted by contours. Actual data points are denoted by
crosses. The leftmost filled contour indicates very slow
retreat or unstable advance.
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of the time that it took for the sheet to go from our initial
condition to collapse, defined as VAF reaching 10% of its
original value. The leftmost filled contour is where the sheet
either took over 6ka to collapse (a long time, even on glacial
time scales) or advanced to the continental shelf, and the
right hand border shows the extreme case of an infinitely
wide channel (the 1-D case). Again we see that collapse is
much faster on a steeper bed, and that on such a bed the
transients are much more sensitive to the width of the
channel. If we interpret the change in time to collapse (or
the transition from collapse to advance) as a change in
position of an unstable steady point, this change is appar-
ently more sensitive to channel width on a steeper slope.
[81] After exploring the effect of width and slope, we

fixed W and a and allowed C and A to vary. The basal stress
coefficient C was varied between 5 � 106 and 14 � 106 Pa
(m�1s)1/3, and the Glen’s Law constant was varied be-
tween.6 � 10�25 and 3.6 � 10�25Pa�3s�1, corresponding
to temperatures between �28�C and �12�C. The results
were qualitatively the same as for the case of varying W and
a, with either collapse or advance to the edge of the domain
occurring in each case. Briefly, collapse tended to happen
faster with a smaller basal stress coefficient, which is to be
expected because this increases flow velocities. A larger
value of A (i.e., a higher temperature) also leads to a faster
collapse, while at the largest values of A, the ice sheet with
the prescribed initial condition advanced to the edge of the
domain instead of collapsing. Again, this was expected
because higher A leads to higher strain rates and velocities
in the shelf and transition zone, and thus greater flux at the
grounding line, and has the effect of weakening the but-
tressing, with the opposite occurring for low A.
[82] While we did not find that buttressing effects are

enough to overcome the inherent instability of a marine ice
sheet in the parameter space described above, other authors
have reported stabilization of marine ice sheets by buttress-
ing in similar models. Using a quasi 2-D model, Dupont and
Alley [2005] reported stabilization of a marine ice sheet on a
foredeepened bed. To determine whether our model repro-
duced this behavior, we performed an experiment using
parameters similar to their study.
[83] In the model of Dupont and Alley, the bed slope was

steeper, the domain smaller, and the basal traction weaker
than in our Buttressing experiments detailed above, and so
we adopted these new parameters. Our simulation differed
in two other ways: our boundary conditions at the x = 0
boundary were different, and we resolved the transverse
direction and buttressing effects, while in the Dupont and
Alley study buttressing was parameterized.
[84] In the Dupont and Alley model, the x = 0 boundary

condition(s) consisted of velocity and thickness being held
constant at u0 and h0, respectively, which was different than
our assertion of an ice divide (zero velocity, unconstrained
thickness) at the x = 0 boundary. Instead of adopting
different boundary conditions, we extended the x = 0
boundary farther away from the ice shelf front and chose
a uniform accumulation. The Dupont and Alley model
asserted a flux of q0 = h0u0 at a certain distance inland
from the ice shelf front. We chose our accumulation rate
such that, in a steady state, the marine ice sheet would have
a mass flux q0 at the same physical location. And again, in

our simulation the boundaries at y = 0, y = W were no-slip
boundaries.
[85] In our simulation we chose Lx = 500 km, W = 40 km,

A = 1.25 � 10�25 Pa�3s�1, and accumulation rate a =
0.3 ma�1. Density of ice and seawater were, r = 917 kg m�3

and r = 1028 kg m�3, respectively. The bed profile was

R x; yð Þ ¼ � r
rw

1000 m� 0:3 Lx � xð Þ: ð28Þ

Notice that the bottom slope (0.3) is greater than those in the
Buttressing experiments detailed above, and also that there
is no continental shelf break. The Dupont and Alley model
also differed in that they used a linear basal friction
parameterization, so we did the same by setting m = 1 in
(10). The initial profile was of the form (26), with xg = 380 km.
[86] Figure 12 shows the results of our simulation. After

about 1000 years the model converged to a steady state,
shown in Figures 12a (profile) and 12a (top-down view).
The length of the shelf is about 12 km, which is roughly like
the configurations found in the Dupont and Alley. (The fact
that agreement is not better is not serious; we did not seek to
reproduce their results, but rather explore a sector of
parameter space different than that examined in our But-
tressing experiments above to investigate stabilization
through buttressing.) Figure 12c simply shows evolution
of VAF to demonstrate that a steady state was reached.
[87] Note that the lateral corners of the ice shelf have

become grounded, affecting the thickness at those corners.
We believe these features are robust; the no-slip sidewalls
imply that mass will build up more at the sides of the shelf
front than at the center, and the shelf is already very thick
compared to the ocean depth as seen from Figure 12a. The
fact that the shelf front is partially grounded does not affect
the boundary condition there, because the correction (7) to
(6) accounts for this.
[88] Note also that the patches of grounded ice at the

corners of the shelf have the effect of introducing additional
frictional stress, as well as decreasing the lateral shelf area
available for buttressing. However, taking into account the
small areas of the patches and the relatively weak frictional
properties of the bed, we estimate these quantities to be
much smaller than the total buttressing force exerted by the
shelf [Dupont, 2004], and so we do not believe that they
play a dynamic role.

5.3. Ice Rise

[89] All the experiments discussed so far involve bedrock
profiles that are homogeneous in y, but our methods allow
for inhomogeneities in the transverse direction and multiple
grounding line topologies. We investigate the effect of a
localized area of grounding on the dynamics of a marine ice
sheet. Such ice rises are thought to play a dynamic role in
marine ice sheets along with sidewall buttressing [Thomas,
1979].
[90] In this experiment we force the ice shelf to become

grounded at a point by introducing a localized seamount on
a foredeepened bed such that the peak of the seamount is
below sea level. The domain is 1500 km long as before with
width W = 550 km. The bed is given by R(x, y) = R0(x, y) +
Rmount(x, y), where R0(x, y) is given by (28) with slope 0.5 �
10�3. Rmount is nonzero only in the subdomain 1.2 � 106 m
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� x � 1.4 � 106 m, W/2 � 105 m � y � W/2 + 105 m, and
has the form

Rmount x; yð Þ ¼ hmountcos
p

105m
x� 1:3� 106m
� �� 	

� cos p
105m

y�W=2ð Þ
� 	

: ð29Þ

This amounts to a tensor-defined cosine hill 200 km wide,
centered 200 km from the ice shelf front. hmount, the height
of the seamount, is 490 m, chosen so that it just touches the
base of the shelf in the initial condition, defined by (26)
with xg = 1000 km. Glen’s Law constant, basal friction
coefficient, and accumulation are 1.5 � 10�25Pa�3s�1,
7.6 � 106 Pa (m�1s)1/3, and 0.3 ma�1, respectively. From
Figure 11 we see that with an initial condition as in the
previous conditions, such a sheet will collapse in about 3 ka
with a y-homogeneous bed. Figure 13a shows a profile of
the sheet. Half of the sheet is cut away so the seamount can
be seen. We found that, rather than collapse, the sheet
advanced until the grounding line was past the seamount,

although this process was very slow, much slower than
collapse in an equivalent ice rise–free simulation.
[91] Figure 13b is a map of the domain showing the

grounded portion of the domain (light grey) after 1 ka.
Figure 13c shows x velocity at the same time and illustrates
the dynamic effect of the rise. The shelf directly upstream of
the rise appears shielded from the calving front and velocity
is lower there than to either side. Ultimately the region
between the seamount and the ‘‘main’’ grounding line (the
one that intersects the sides in Figure 13b) became grounded
and the 2 branches of the grounding line coalesce. Figure 13d
shows the grounded domain after 15 ka, just after this has
happened.
[92] Eventually, the grounding line moves all the way to

shelf front and the sheet is completely grounded, similar to
unstable advance over a foredeepened bed. It is curious that
adding the seamount has the same long-term effect as
halving the domain width, that is, to turn unstable retreat
into slow but unstable advance. This suggests that such bed
topography effectively decreases shelf width, with the rise
acting as a rigid sidewall to each half width and increasing
the level of buttressing. Figure 13c supports this idea, as the

Figure 12. Ice rise experiment. (a) Profile of marine ice sheet once it has reached steady state. Note that
the entire sheet is not displayed, only the portion up to 100 km inland from the shelf front, which
represents the domain considered by Dupont and Alley [2005]. (b) Top-down view of Figure 12a. Light
grey indicates grounded ice, and floating regions are dark. (c) Evolution of VAF over time, indicating
steady state.
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velocity field on either side of the rise is similar to that in a
shelf without an ice rise.

6. Discussion of 2-D Results

6.1. Performance of Mesh Adaption

[93] Our experiments allowed us to observe the effective-
ness of each of our mesh adaption schemes over a wide
range of parameters. This was important because the mov-
ing mesh scheme was initially developed to handle the
stress regime transition across the grounding line in a 1-D
flow line model, and the adaptive refinement scheme was
also developed in anticipation of localized stress gradients.
There is no doubt that in most cases some level of
refinement is needed near the grounding line to resolve
stresses accurately, but our results lead us to make a
distinction between calculating grounding line flux, which
arises from a balance of forces, and grounding line move-
ment, which is kinematic: the floatation condition, from the
point of view of the shelfy stream equations, does not
depend on rheology or internal stresses. Both issues con-
tribute to difficulties with Eulerian grounding line represen-
tation, while only the former affects ALE models, which do
not generalize easily to two dimensions.
[94] We have shown that grounding line interpolation

similar to Pattyn et al. [2006], while not resolving addi-
tional physics, allows the grounding line to move more
freely and to better represent what we believe to be the true
solution. When there are sharp thickness gradients at the
grounding line, as occurs when there is low to moderate

buttressing, our moving mesh is effective at facilitating
grounding line movement, as it can provide very high
resolution at the grounding line ensured by including
distance from the grounding line or height above flotation
in the monitor function. Our adaptive refinement model, on
the other hand, did not perform as well as the moving mesh
model in the downsloping bed experiments. This may be
due to insufficient resolution for grounding line movement:
the scheme uses a constraint on the total number of cells,
and high resolution elsewhere, such as the shelf margin near
calving front, leaves fewer cells available for the transition
zone. This was not an issue in the 1-D adaptive refinement
simulations, as there was no shelf margin demanding high
resolution at the expense of the grounding line region.
[95] On the other hand, there is mesh distortion in the

moving mesh scheme, which can degrade the numerical
solution. In Figures 7b and 7d some distortion can be seen
where the grounding line intersects the sidewalls. With
buttressing playing a small role inaccuracies in this region
are probably not detrimental to the overall solution, but for
very narrow domains we found that the mesh becomes very
badly distorted across the entire transverse width of the
domain. This may be because lateral shearing is poorly
resolved, which could result in spurious thickness evolution
and degrade the numerical solution even further due to the
dependence of the mesh-moving scheme on the thickness
field. By contrast, in narrow domains the adaptive refine-
ment scheme focused resolution along the margins of the
sheet and the shelf and at the calving front, not at the
grounding line. For these domains, the adaptive refinement

Figure 13. Ice rise experiment. (a) Marine ice sheet with partly grounded shelf (ice rise). The sheet is
cut away to reveal the seamount. (b) Domain after 1 ka. Light grey indicates grounded ice, and floating
regions are dark. (c) The x-velocity (ma�1) at 1 ka. (d) Domain after 15 ka. The two grounded areas have
merged.
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results were used for the data in Figure 11. (For a specific
set of parameter values for which this was done, agreement
of the solution with a very high-resolution uniform mesh
simulation was found to be satisfactory.)
[96] Figure 14 illustrates the difference between the low-

buttressing (wide domain) and high-buttressing (narrow
domain) case with respect to thickness profile and longitu-
dinal stress. Figure 14a compares the center line thicknesses
from two representative simulations. In the low-buttressed
profile there is a sharp thickness gradient at the grounding
line. Figure 14b shows center line longitudinal stress. The
key point of the stress profiles is that in the low-buttressed
case, the only part of the domain that contains high stress
gradients is near the grounding line, and so a mesh adaption
scheme which seeks to capture steep stress gradients can do
so by adding resolution near the grounding line. While shear
stress is not shown, its presence in the high-buttressing case
can be inferred from the drop in longitudinal stress upstream
of the grounding line. Clearly a mesh adaption scheme
which only resolves highly around the grounding line will
miss some of the features in the stress field.
[97] This highlights the main difference between the

moving mesh scheme and the adaptive refinement scheme:
in the former we tell the model where we think resolution is
needed, albeit in an indirect way, while in the latter the
model decides where to resolve based on the solution itself,
allowing for more flexibility. This flexibility makes adaptive
refinement a more potentially attractive form of mesh
adaption, since there may be features aside from the
grounding line that require higher resolution than the
majority of the domain. Also, adaptive refinement, with
its regularly shaped cells, would probably be more amena-
ble to interpolation of data to and from the grid, for the
purposes of forcing and maybe coupling with other models.
Still, our adaptive refinement model did not perform as well
as our moving mesh model in terms of grounding line
movement because of the sharp change in thickness near the

grounding line, which leads to difficulties in making the
grounding line move, especially if it is restricted numeri-
cally to lie along cell boundaries. However, it may be
possible to solve this issue by augmenting the error estima-
tor (23) with a cost function based on thickness gradient.
Further development of the adaptive refinement scheme is
planned.

6.2. Marine Ice Sheet Stability

[98] Buttressing is the effect of tangential stress on the
sidewalls. In the context of our nondimensionalized system
(12), and ignoring along-flow gradients in transverse veloc-
ities, this tangential stress at a point on the sidewalls will be
approximately [Dupont and Alley, 2005]

ttangent 	 e
Z xc

xg

ĥû
1
n

Ŵ
2

� 	1þ1
n

dx̂; ð30Þ

where Ŵ is the width of the channel divided by the length
scale, and the integral is from the grounding line to the
calving front. The integrand is actually very similar to the
basal stress term ûm when m = 1

3
, although the coefficient of

û
1
n is usually smaller than 1. In general ttangent increases with
grounding line retreat, although the specifics depend on
shelf geometry. ttangent, along with longitudinal stress

tlong 	 n̂ĥ 4ûx̂ þ 2ûŷ
� �

; ð31Þ

balances the integrated driving force of the shelf,

tdriving 	
1

2
1� r

rw

� �
ĥ2g; ð32Þ

where ĥg is thickness at the grounding line. (Note ttangent
has been divided by Ŵ to compare with tdriving and tlong.)

Figure 14. Regime comparison of high and low buttressing. Low buttressing (marine ice sheet in a wide
channel) is characterized by high gradients in thickness and longitudinal stress at the grounding line and
high buttressing (narrow channel) by a smaller grounding line thickness gradient, thicker ice shelf, and
less localized longitudinal stress profile. (a) Thickness along the center-line. (b) Longitudinal stress along
the center-line.
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[99] In the case of an unbuttressed marine ice sheet on a
foredeepened bed, instability arises because grounding line
flux increases with depth. According to the analysis of
Schoof [2007a], the strong dependence of flux on grounding
line depth is actually related to a strong dependence of flux
on longitudinal stress (tlong). Therefore it might be possible
in some cases that in a buttressed shelf, ttangent balances
tdriving enough to lessen tlong, and perhaps for tlong to
decrease as the grounding line retreats, at least locally. Were
this to happen it would be when Ŵ is very small and e is
relatively large (for instance, in the case of a weak bed).
[100] This stability reversal did not seem to occur for most

of our experiments over a foredeepened bed, although it was
observed in one experiment, in which model parameters
were very different from the rest of the experiments and
similar to those used by Dupont and Alley [2005]. The main
parameter differences were a narrower channel and a basal
friction coefficient that yielded much lower basal stress, as
well as a much steeper bed. This behavioral difference may
be indicative of a regime change between control by
longitudinal stresses and control by tangential stresses. It

can be shown [Schoof, 2007a] that the factor e/ Ŵ
2

� 	1þ1
n

in

(30) is at least an order of magnitude larger in the experi-
ments using parameters from Dupont and Alley than in the
other experiments. With ttangent playing a larger role in the
force balance and increasing with the length of the ice shelf,
this could explain the stability found in the former. Cer-
tainly further investigation is warranted.
[101] If we consider the implications of our simulations

on a foredeepened bed for real Antarctic stream shelf
systems, we may draw the conclusion that sheets in narrow
embayments with relatively weak beds, such as Pine Island
or Thwaites glaciers, are stabilized by buttressing. Mean-
while larger embayments with higher basal friction coef-
ficients, such as the Filchner-Ronne embayment [Frolich et
al., 1987; Frolich and Doake, 1988], are controlled by
longitudinal stresses in the transition zone. These shelf
stream systems, therefore, are either unstable (or metastable)
on time scales much longer than our current observations
have been able to detect, or are stabilized by means not
considered in this study. Regardless of stability, though,
both types of stream shelf systems would be subject to
relatively rapid change were their shelves to disintegrate or
thin dramatically.

7. Conclusions

[102] In numerical solutions of marine ice sheet dynamics,
insufficient resolution near the grounding line frequently
gives rise to numerical artifacts and may give results that are
not only quantitatively incorrect, but also qualitatively
misleading [e.g., Vieli and Payne, 2005].
[103] Using a flow line model that solves the shelfy

stream equations for a marine ice sheet with a moving
grounding line, we have shown that two different mesh
adaption techniques, moving mesh (r refinement) and adap-
tive refinement (h refinement), provide an accurate solution
while using far less computational resources than would be
required using a uniformly spaced grid. Both mesh adaption
schemes evolve the grid in time; the moving mesh accord-
ing to grounding line position and adaptive refinement

according to gradients in the strain rate field. Both extend
to two horizontal dimensions and allow for grounding lines
of changing topology, such as formation and elimination of
ice rises.
[104] These advances in model numerics have allowed us

to investigate the effect of ice shelf buttressing on marine
ice sheet dynamics in detail. For downsloping beds, our
model generates equilibrium profiles that are unique for a
given set of model parameters (including geometrical
parameters controlling buttressing, such as ice shelf width),
and the model also shows that these equilibrium shapes are
reached eventually regardless of initial conditions. This is
essentially an extension of the corresponding result for
unbuttressed one-dimensional sheet shelf systems [e.g.,
Weertman, 1974; Schoof, 2007a].
[105] In experiments with a 2-D marine ice sheet in a

channel over a foredeepened (upward-sloping) bed, we
generally found that the sheet was unstable and that its
behavior was dependent on the initial condition, which is
again qualitatively like the unbuttressed case. This instabil-
ity was seen even when the channel width was small (about
10% of its length) and buttressing was high. However, the
eventual collapse of the sheet was greatly delayed. Still, we
were also able to find a parameter regime in which the shelf
was able to stabilize the marine ice sheet with its grounding
line on a foredeepened bed; in line with previous results
from a simpler model in which the lateral direction was
parameterized [Dupont and Alley, 2005], this occurred in a
narrow channel with a steep bottom slope and a relatively
weak bed. From our experiments we draw the conclusions
that narrower, lower-traction marine streams like Pine Island
Glacier are likely stabilized by ice shelves, but streams in
larger embayments, like those feeding the Filchner-Ronne
shelf, are possibly unstable, albeit on very long time scales.
[106] Finally, we ran a simulation with a generally fore-

deepened bed profile that also contained a seamount trans-
verse to the flow. It was seen that contact of the shelf with
the seamount was enough to prevent collapse of the sheet,
and to switch its behavior to grounding line advance
instead, underlining the potentially significant role of ice
rises (such as Berkner Island in the Filchner-Ronne ice
shelf) in marine ice sheet dynamics. The response was in
fact similar to that of a much narrower sheet, suggesting that
ice rises effectively narrow the flow channel. However,
further work is needed to investigate the effects of irregular
bed topographies.
[107] Our model runs have also allowed us to assess the

performance of our mesh refinement methods in more
detail, which provides some insight into possible avenues
for future improvement. In our 2-D simulations of a marine
ice sheet (i.e., with two horizontal dimensions) in a channel
with rigid walls, our moving mesh scheme worked well
when the width of the channel was larger than roughly 30%
of its length. On a downsloping bed, a unique, stable steady
state was exhibited, in qualitative agreement with the
dynamics of an unbuttressed sheet. It was shown that this
steady state was robust under a uniform increase in grid
resolution. However, for narrow channel widths the moving
mesh scheme tended to distort the mesh, and this affected
the simulation. Conversely, the adaptive refinement scheme
did not perform as well as the moving mesh for wide-
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channel simulations, but its performance improved when the
channel was narrowed, and buttressing reduced longitudinal
stresses at the grounding line.
[108] The differences in performance can be attributed to

differences in stress regimes. In the case of moderate
channel width, there is low buttressing and the stress profile
is similar to that of the unbuttressed case, with a high
longitudinal stress gradient at the grounding line along with
a large thickness gradient. In this regime the shear margins
are probably not that important to resolve and a scheme that
puts the highest resolution at the grounding line, such as the
moving mesh, performs well. However, in a narrow channel
the shear margins are important, and a reduction of longi-
tudinal stress at the grounding line is accompanied by a
reduced thickness gradient. In this case an adaption scheme
based on strain rate gradients is more effective.
[109] We would like an adaption scheme that handles both

regimes. Adaptive refinement is the better candidate for
improvement because it does not make a priori assumptions
about where resolution is needed, and because it would be
more amenable to interpolation in a coupling or forcing
scheme. As a possible way ahead, we propose that the
adaptive refinement scheme be augmented with a cost
associated with either thickness gradients or grounding line
proximity.
[110] We point out that, in addition to the aforementioned

advantages, adaptive refinement is potentially very benefi-
cial to the modeling of ice streams (and ice sheets as well).
Transient features requiring resolution than cannot be
allowed for globally must be accounted for by glaciological
models, and are not limited to grounding line transition
zones. Ice stream shear margins can migrate and basal
conditions can change, possibly requiring changes in hori-
zontal resolution (and, in higher-order models, changes in
vertical resolution accompanying the transition between
from sheet to stream flow).
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