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Abstract. Hybrid models, or depth-integrated flow models
that include the effect of both longitudinal stresses and verti-
cal shearing, are becoming more prevalent in dynamical ice
modeling. Under a wide range of conditions they closely ap-
proximate the well-known First Order stress balance, yet are
of computationally lower dimension, and thus require less
intensive resources. Concomitant with the development and
use of these models is the need to perform inversions of ob-
served data. Here, an inverse control method is extended to
use a hybrid flow model as a forward model. We derive an
adjoint of a hybrid model and use it for inversion of ice-
stream basal traction from observed surface velocities. A
novel aspect of the adjoint derivation is a retention of non-
linearities in Glen’s flow law. Experiments show that in some
cases, including those nonlinearities is advantageous in min-
imization of the cost function, yielding a more efficient in-
version procedure.

1 Introduction

Direct observations of many parameters crucial to behav-
ior of glaciers and ice sheets are practically impossible (e.g.
history of ice-sheet-wide surface temperature and precipita-
tion, ice fabric) and those that are feasible are logistically
challenging and usually confined to specific locations (e.g.
basal sediments, subglacial water pressure). Therefore, the
application of inverse methods in glaciology continues to
gain popularity. Although inversion for history of the at-
mospheric temperature (MacAyeal et al., 1991; Dahl-Jensen
et al., 1998), precipitation (Waddington et al., 2007), and
firn thermal properties (Sergienko et al., 2008b) have been
performed, inversions for the ice-stiffness parameter of ice
shelves and ice-stream basal parameters are most common
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(e.g.MacAyeal, 1992; MacAyeal et al., 1995; Rommelaere,
1997; Vieli and Payne, 2003; Larour et al., 2005; Khazendar
et al., 2007; Sergienko et al., 2008a; Joughin et al., 2009).
Traditionally, these inversions are done in the integral least-
square sense, i.e. a total misfit between observed and calcu-
lated quantities is minimized. This approach is known as an
optimal control or control method (MacAyeal, 1992, 1993).
Alternative methods include a probabilistic approach (Chan-
dler et al., 2006; Gudmundsson and Raymond, 2008; Ray-
mond and Gudmundsson, 2009), and various iterative ap-
proaches to solving the inverse problem using higher-order
forward models (Maxwell et al., 2008; Arthern and Gud-
mundsson, 2010).

Any inverse method includes a forward model as a nec-
essary component. In numerous studies inverting either for
rheological properties of ice shelves or basal conditions un-
der ice streams, the so-called Shallow Shelf Approxima-
tion (SSA) (Morland and Shoemaker, 1982; Muszynski and
Birchfield, 1987; MacAyeal, 1989) is used as a forward
model. However, a new trend of using higher-order or full
stress-balance models as forward models in inversions has
started to emerge (Maxwell et al., 2008; Morlighem et al.,
2010a). The SSA balance is of lower computational dimen-
sion than the First Order or Full Stokes balances (Greve and
Blatter, 2009), and therefore easier to solve. It does not ac-
count, though, for the effect of vertical shear, which has an
effect on the nonlinear Glen’s Law viscosity (Glen, 1955)
and the basal velocity used in flow laws, and which can be
nonnegligible where basal traction is high. This is true of
inland areas of the Antarctic Ice Sheet and majority of the
Greenland Ice Sheet. Also, in their study of Pine Island
Glacier,Vieli and Payne(2003) speculate that∼20% of the
observed velocity in the region of high driving stress just up-
stream of the grounding line is due to vertical shear, and that
this contributed to quantitative errors in their analysis using
the SSA balance.
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A class of glaciological models involves a vertically-
integrated stress balance that includes the effect of vertical
shearing stresses, but also includes horizontal stress terms
(the terms present in the SSA). For the purpose of discussion
these models are referred to here as “hybrid” models since
they combine two low-order approximations: the SSA and
the Shallow Ice Approximation (SIA,Hutter, 1983). For ex-
ample,Bueler and Brown(2009) heuristically combine the
results of an SSA solution with an SIA solution, whilePol-
lard and DeConto(2009), Schoof and Hindmarsh(2010), and
Goldberg(2011) use depth-integrated forms of the horizontal
stress terms. While these hybrid models account for all of the
stress terms in the First Order balance, they have a computa-
tional advantage in that the elliptic solve (the most expensive
step) is not resolved in the vertical. Note that, unlike the First
Order balance, these models do not allow depth variations of
horizontal stresses. However, in the approximation to First
Order is shown to be quite good under a wide range of con-
ditions (Pattyn et al., 2008; Goldberg, 2011). Furthermore,
two of these models (Bueler and Brown, 2009; Pollard and
DeConto, 2009) have been used in time-dependent whole-
continent simulations of Antarctica and Greenland. Clearly
it is of value to be able to use the hybrid models as forward
models in inversion procedures in order to find an optimal set
of unknown parameters for these models. However, such an
inversion has not yet been performed. Additionally, as use of
these models becomes more common it will be advantageous
to perform comprehensive and efficient analysis of the model
sensitivities to a wide range of input parameters.

The control method developed byMacAyeal (1992) in-
volves a construction of a model adjoint to the SSA equa-
tions in order to find the gradients of the performance in-
dex (or cost function) with respect to inverted parameters
(basal sliding parameters in studies by e.g.,MacAyeal, 1992;
Joughin et al., 2009, and the ice stiffness parameter in stud-
ies by e.g.,MacAyeal et al., 1995; Larour et al., 2005). The
adjoint model is a powerful tool that allows one, in a single
step, to find derivatives with respect to a large number of pa-
rameters at a point in solution space. However, in deriving
this adjoint model, nonlinearities, such as the dependence of
the Glen’s Law viscosity on strain rates, are ignored. It is
not clear whether the inclusion of this dependence is advan-
tageous to the performance of the method, since without it
the adjoint equation is the same as the linear one solved iter-
atively in the forward model.

In this paper we invert surface velocities for basal trac-
tion fields using the hybrid model fromGoldberg(2011) as a
forward model. Both synthetic and observed surface veloci-
ties are used in the inversions. The paper is organized in the
following manner: in Sect.2 the forward model is briefly in-
troduced. The inversion scheme, which includes the adjoint
model as a central part, is presented and discussed in Sect.3,
with the derivation and some of the lengthier expressions rel-
egated to the Appendix A. Sections4 and 5 present inver-
sions of synthetic velocities, and results of an inversion using

satellite-inferred surface velocities on Pine Island Glacier are
shown in Sect.6. Special attention is paid to the effects of
including the nonlinearities mentioned above in the adjoint
model on the convergence of the inversion scheme.

2 Forward model

The forward model used in this study is the one described in
Goldberg(2011). It can be derived from a variational formu-
lation, using a modified form of the energy functional that
leads to the First Order balance (Reist, 2005; Schoof, 2010).
Using the First Order model results of the ISMIP-HOM ex-
periments as a benchmark (Ice Sheet Model Intercomparison
Project – Higher-Order Models,Pattyn et al., 2008), good
agreement is shown for length scales larger than∼20 km in
basal topography and for all length scales in basal traction.
The equations are given here:

1

H
∂x(Hν(4ux+2vy))+

1

H
∂y(Hν(vx+uy))+∂z(νuz)= ρgsx, (1)

1

H
∂x(Hν(vx+uy))+

1

H
∂y(Hν(4vy+2ux))+∂z(νvz)= ρgsy, (2)

ν=
B

2

(
u2
x+v2

y+uxvy+
1

4
(uy+vx)

2
+

1

4
u2
z+

1

4
v2
z

) 1−n
2n

. (3)

Hereu andv arex- andy-velocities, respectively,s is surface
elevation,H is thickness (s−b, whereb(x,y) is basal eleva-
tion), andn represents the nonlinearity in Glen’s Law and
in this study is equal to 3. The overline operator indicates
vertically averaging, i.e.u=

1
H

∫ s
b
udz, andux indicates the

x-derivative of this quantity (and not the vertical average of
ux). The surface is stress-free. When sliding is present, the
sliding law is in terms of the shear stress and velocity at the
base. In this study, the sliding law is linear:

τ b = −β2u (4)

at z= b.
Note that due to the inclusion of vertical shear, basal, sur-

face, and depth-averaged velocity can all differ, in contrast
to the SSA. This does not prevent a significant problem in
terms of solving Eqs. (1)–(4), however. An iterative scheme
can be developed by depth-integration of Eqs. (1) and (2),
and writinguz andu(z= b) in terms of the current iterates
of depth-averaged velocity, basal stress and viscosity. (The
surface velocity, while not needed in the iterative scheme,
can be similarly diagnosed.) This yields a set of equations
to be solved for the next iterate of depth-averaged velocity.
The equations have the same structure as those solved in an
iterative solution of the SSA balance, so an SSA code can be
easily modified. For details, please seeGoldberg(2011).

3 Adjoint model

Synthetic and observed surface velocities were used to in-
vert for basal traction parameters, in both flowline and plan
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view settings. The approach is essentially the same as in
MacAyeal (1992), and similar to that ofArthern and Gud-
mundsson(2010) – a steepest-descent method. The differ-
ences are (a) the forward model and (b) the fact that nonlin-
earities are accounted for in constructing an adjoint model.
But the same paradigm of finding the search direction as a
functional derivative that is then discretized (rather than by
differentiating the discretized forward equations) is still ad-
hered to. The effect of accounting for nonlinearities is ex-
plored in the subsequent sections.

The cost function

J =

∫
�

1

2
|u∗

s −us|
2dA, (5)

whereus is horizontal velocity at the surface, the asterisk
superscript denotes observed quantities, and� is the model
domain, is minimized over all choices ofβ. The set of pos-
sibleβ depends on the choice of basis forβ: for example,
in MacAyeal (1993) it is Fourier modes and inMacAyeal
et al. (1995) it is the finite element basis for velocity. Be-
ginning with an initial guess forβ, the control method finds
the gradient ofJ with respect to the degrees of freedom of
β (subject to the constraint that Eqs. (1)–(4) are satisfied).
A line search minimization then gives a new guess forβ.
A Fletcher-Reeves conjugate search algorithm is used (Press
et al., 1992).

Typically when this control method is applied to glacio-
logical models, an adjoint model is solved, and the result is
used to find the gradient ofJ with respect to basal traction
parameters (or other field that is being inverted for). The ad-
vantage of using an adjoint model is that the derivative of a
given observable value can be found with respect to a large
array of input parameters for the computational cost of a sin-
gle forward solve. This is in contrast to finding derivatives
by direct finite differencing, which requires a separate for-
ward solve for each input parameter. In this study the adjoint
of the model described in the previous section is constructed
directly from the differential equations, rather than discretiz-
ing and taking the adjoint of the discretized model. The re-
sult is a set of linear partial differential equations that are
then solved in order to find the gradient ofJ . Note that this
procedure does not assume any discretization details, and the
discretization of the adjoint can be independent from that of
the forward model.

We now present the adjoint model. Its derivation is lengthy
and not entirely straightforward, and so it is left to the Ap-
pendix A. Furthermore, the expressions involved in the ad-
joint itself are lengthy, so details are only given for the ad-
joint of the flowline version of the model (i.e., flow in the
x− z plane). The adjoint of the three-dimensional model,
and its derivation, are very similar.

The flowline version of Eqs. (1)–(3) is

∂x(4νHux)−τ−ρgHsx = 0, (6)

τ =mβ2ub, m=

√
1+b2

x, (7)

ν=
B

2
(u2
x+

1

4
u2
z)

1−n
2n . (8)

Here ub = u(z = b). In our flowline inversions, periodic
boundary conditions are considered.

As in MacAyeal(1993), the cost functionJ is modified:
the flowline model appears as a constraint, with lagrange
multiplier λ:

J ′
=

∫ L

0

1

2
(u∗

s−us)
2dx+

∫ L

0
λ[∂x(4νHux)−τ−ρgHsx ]dx, (9)

where[0,L] is the domain. An adjoint model is then derived
that must be solved forλ:

∂x(4νHλx)−
mβ2

1+
mβ2γ
Hτ

λ+F {λ;u,β,x}

= (u∗
s −us)

(
1+

mβ2γs

Hτ+mβ2γ

)
+G{u∗

s −us;u,β} (10)

whereF andG are linear operators on their first arguments
(λ andu∗

s −us, respectively) that also depend onu andβ. γ
andγs are functions that depend on the gradients ofu:

γ =

∫ s

b

∫ z

b

u2
x+

1
4u

2
z

u2
x+

1
4nu

2
z

uzdz
′dz,

γs=

∫ s

b

∫ s

z

u2
x+

1
4u

2
z

u2
x+

1
4nu

2
z

uzdz
′dz, (11)

and F andG are given in the Appendix A. (Note that if
n= 1, thenγ andγs are equal toH(u−ub) andH(us−u),
respectively.) Equation (10) is solved forλ with appro-
priate boundary conditions: if the boundary conditions on
Eq. (6) are Dirichlet, then Eq. (10) has homogeneous Dirich-
let boundaries. If Eq. (6) has periodic boundary conditions,
then Eq. (10) does as well. Note that the form of the adjoint
model Eq. (10) is dependent on the forward model and the
form of the cost functionJ , but would be the same no matter
which input parameter is being investigated. However, in this
study the goal is to find the gradient ofJ ′ with respect toβ,
which is done using the following:

δJ ′
=

∫ L

0
−δβ

 (u∗
s −us)2

γs
H

+2τλ+K{λ;u,β}

β
(
1+

mβ2γ
Hτ

)
, (12)

which gives the response ofJ ′ to a perturbation inβ. Again,
K is a linear operator onλ, the specific form of which is
given in the Appendix A. With a finite-dimensional repre-
sentation ofβ, Eq. (12) can then be discretized to find∂J

′

∂βi
,

whereβi are the degrees of freedom in such a representation,
i.e.

β =

∑
i

βiφi, (13)
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whereφi form the basis of the space of possibleβ. Thusδβ
is written as

δβ =

∑
i

φiδβi . (14)

Equation (10) is written in such a way (i) because the ex-
pressions forF , G, andK are lengthy, and (ii) in order to
emphasize the effect of ignoring the dependence of viscosity
on strain rates, something quite often done in glaciological
inversions using adjoints (MacAyeal, 1993; Vieli and Payne,
2003; Larour et al., 2005; Joughin et al., 2009). Doing so
here is equivalent to neglectingF , G, andK, and addition-
ally lettingn= 1 in Eq. (11). The adjoint model withF and
G left in andn 6= 1 will subsequently be referred to as the
complete adjointand, withF andG ignored andn= 1 as the
incomplete adjoint.

It is interesting to note that in doing this, the operator given
by the left hand side of Eq. (10) is the same as the forward
model when the viscosity is “frozen”, as in a Picard-iterative
solution (MacAyeal and Thomas, 1986). This is not a coin-
cidence; when the strain-rate dependence of viscosity is ig-
nored, the equation system inGoldberg(2011) is linear and
self-adjoint under theL2 inner product. (This is also true
of the three-dimensional model.) Thus using the incomplete
adjoint saves on development time and also ensures that the
adjoint model has the same desirable properties as the for-
ward model (i.e., that the matrix that is solved is symmetric
and positive definite). If the matrix is solved in parallel, the
domain decomposition and parallel memory allocation need
not change. As discussed inGoldberg(2011), the compu-
tationally expensive component of the hybrid model is the
solution of a system of elliptic PDEs with the same structure
as those solved for the SSA balance.

However, the adjoint model is only solved once per iter-
ation of the inverse model, so it is possible that relaxing the
property of self-adjointness will not carry too large a penalty.
In the following sections, flowline and 2-D (plan view) inver-
sions are carried out, and the effects of including such non-
linearities in the adjoint model are examined. An important
point to remember is that, with the same forward model and
cost function, the only way in which these effects can man-
ifest is in the rate of convergence of the inversion. Whether
nonlinearities are included or not, the solution (or set of so-
lutions) of an inversion is the same.

In this study, the forward and adjoint models are solved
using one-dimensional or bilinear finite elements as inGold-
berg(2011) andGoldberg et al.(2009), andφi is equal to 1
on grid celli and zero elsewhere. Still, the discussion above
does not depend on specific details of the discretization.

4 Flowline inversion

A flowline version of the hybrid model was used to invert
synthetic surface velocities for basal traction, assuming a lin-
ear sliding law. The experiments are based on the flowline

experiments with sliding from the ISMIP-HOM intercompar-
ison. The domain is periodic, and ice thickness has a constant
value of 1000 m and a surface at an angle of 0.1◦ with the
horizontal, and the Glen’s Law constant is uniformly equal

to 2.1544×105 Pa (m a−1)−
1
3 . The velocities inverted forβ

are the surface velocities from a First Order flowline solver
(that used inGoldberg, 2011) with the same thickness, sur-
face slope, and Glen’s Law constant, and aβ-profile given
by

β =

√
1000+1000 sin(

2πx

Lx
) Pa

1
2 (m a−1)

−
1
2 (15)

where basal stress is given by

τb =β2u|z=b, (16)

andLx is the length of the domain. As shown inGoldberg
(2011), the hybrid model surface velocities agree well with
First Order surface velocities in this setting. And so while
these inversions are known to be ill-posed, and thus many
different β-profiles could produce surface velocity profiles
close to the “target” one, we still know that Eq. (15) is a valid
solution to the inverse problem, or at least leads to an cost
function value as small as any achieved in this study (Gold-
berg, 2011). Maxwell et al. (2008) state that their method
finds the solution to the inverse problem for which noisy os-
cillations are minimized. And so we can judge our inver-
sion results not only by the agreement of calculated and pre-
scribed surface velocities, but also by the agreement of the
invertedβ with Eq. (15).

For an inversion scheme, both the incomplete adjoint men-
tioned in the previous section and the complete adjoint were
used. In all inversions, the initial guess forβ was set to a uni-
form value. 300 iterations of the inverse model were done,
regardless of the final value ofJ .

Figure 1 shows the results of such an inversion with a
domain length of 40 km. Inversions using both incomplete
(dashed line) and complete (solid line) adjoints are shown.
Values ofJ versus iteration count are shown, as well as the fi-
nal invertedβ2 (which is compared withβ2 given by Eq.15).
Comparison is made usingβ2 rather thanβ since it isβ2 that
appears in Eq. (16). In the left column, the initial guess for

β is 20 Pa
1
2 (m a−1)

−
1
2 (uniformly), and in the right the ini-

tial guess is 40 Pa
1
2 (m a−1)

−
1
2 . With either initial guess, the

complete adjoint reaches a much smaller value ofJ than the
incomplete adjoint (by several orders of magnitude) and finds
a solution very close to Eq. (15), while the incomplete ad-
joint finds a highly oscillatory solution. Using the complete
adjoint,J decreases steadily, while with the incomplete ad-
joint most of the reduction ofJ is in the first few oscillations.

In fact, with the initial guess of 20 Pa
1
2 (m a−1)

−
1
2 for β the

incomplete adjoint initially reaches a smaller value ofJ than
the complete adjoint, but this is only transient. Comparison
between the different initial guesses shows that the solution
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Fig. 1. Results of inversion forβ2, using the flowline model with periodic boundary conditions and uniform thickness and basal slope.
Domain length is 40 km. “Observed” surface velocities are the results of a First Order flowline model calculated using “true”β from (c) and

(d). Initial guess forβ is set uniformly to 20 (Pa a/m)
1
2 in the first column and to 40 (Pa a/m)

1
2 in the second column.

found by the complete adjoint scheme is relatively insensi-
tive to the initial guess forβ.

Figure2 shows the results for a domain length of 20 km,

with an initial guess forβ of 20 Pa
1
2 (m a−1)

−
1
2 . Here the

contrast between the complete and incomplete adjoints are
even more apparent. The complete adjoint steadily reduces
J and finds a solution that is reasonably close to Eq. (15),
while the incomplete adjoint barely adjustsβ from its initial
guess and does not reduceJ after the very first iteration. No
other initial guess was examined for this domain length.

The ability of the adjoint models to represent derivatives,
particularly derivatives of surface velocities, can be exam-
ined. The calculation of such derivatives can be cast in terms
of the adjoint method: using the fact that

Ji ≡ us(xi)=

∫ L

0
usδxi (x)dx, (17)

whereδxi (x) is the Dirac delta function shifted byxi , the
same approach as described above is applied to

J ′

i=

∫ L

0
usδxi (x)dx+

∫ L

0
λ[∂x(4νHux)−τ−ρgHsx ]dx, (18)

and the adjoint model is again derived, but with a different
right hand side than Eq. (10). The expressions are not given
here, but again it is simple to separate out the terms corre-
sponding to the strain-rate dependence of viscosity.

Figure 3a shows the Jacobian of surface velocities with
respect to basal traction values, calculated directly by finite
differencing. (With no analytic expression for the Jacobian,
this is taken as the “true” value.) Basal traction is given by
Eq. (15) and there is no topography. The figure can be seen
as a contour plot of∂u(xi )

∂β(xj )
, wherexi is along the horizon-

tal axis andxj the vertical. Figure3b shows this Jacobian
as calculated using the complete adjoint model, similarly to

www.the-cryosphere.net/5/315/2011/ The Cryosphere, 5, 315–327, 2011
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Fig. 2. Same as Fig.1, with domain length of 20 km. Initial guess forβ2 set uniformly to 20 Pa
1
2 (m a−1)−

1
2 .

the way the gradient ofJ with respect toβ is found. Fig-
ure3c is the equivalent calculation using the incomplete ad-
joint model. Quite a difference between the two can be seen,
especially for the derivatives of the velocities in the “slip-
pery” region with respect to the traction values in the “sticky
spot”. It seems that using the incomplete adjoint model un-
derestimates these sensitivities, and therefore overshoots in
its guess for these traction values, leading to the oscillations
seen in Figs.1cand2b.

It was noted inGoldberg(2011) that in the ISMIP-HOM
tests of nonsliding flow over wavy topography, agreement of
the hybrid model with First Order surface velocities was not
as good as in the tests of sliding flow over periodic traction.
Inversion for basal topography was not done in this study;
however, it is fair to ask whether the presence of basal to-
pography would affect the results presented in this section.
A series of tests was done where there is still sliding at the
base, but the basal elevation varies from the mean slope sinu-
soidally with the same wavelength as the basal traction and
an amplitude of 100 m (compare with 500 m in the ISMIP-
HOM experiments). The results were very similar to those in
Fig. 1, and not shown.

5 Plan view inversion – synthetic data

The ISMIP-HOM intercomparison also includes a set of
three dimensional experiments, one of which involves sliding
over varying basal traction in a doubly periodic domain. Sur-
face velocities from this experiment were inverted for basal
traction, and the results are shown here. Both the complete
and incomplete adjoints were used. The forms and deriva-
tions of these models are very lengthy and not shown, but
they are simple extensions of the flowline adjoint models dis-
cussed in the Appendix A. Since a three-dimensional First
Order solver was not used in this study, a mean was taken

over the publicly available results from the intercomparison
that solved the First Order balance (http://homepages.ulb.ac.
be/∼fpattyn/ismip/tc-2-95-2008-supplement.zip).

In this experiment the Glen’s Law constant and the (uni-
form) thicknessH had the same values as in the flowline
experiments. While not directly used, the basal traction spec-
ified for the ISMIP-HOM experiment is

βih=

√
1000+1000sin(

2πx

Lx
)sin(

2πy

Ly
)Pa

1
2 (m a−1)

−
1
2 ,(19)

whereLx andLy are thex- and y-dimensions of the do-
main. As discussed before, this may not necessarily be the
only possible solution of the inversion, but it is useful for
comparison.

In the plan view inversions, it was found that when the
initial guess forβ was constant, the residualJ did not de-
crease by much even after a large number of iterations, using
either the complete or incomplete adjoint models (see Dis-
cussion and conclusions). Instead, two different spatially-
varying initial guesses forβ were considered:

β1 = 10+20e

(
−(x−Lx)

2
−(y−Ly)

2

( 1
6Lx)

2

)
Pa

1
2 (m a−1)

−
1
2 , (20)

β2 =

√
sin(

3πx

Lx
) Pa

1
2 (m a−1)

−
1
2 . (21)

Note thatβ1 is a Gaussian “bump” in the middle of the do-
main, whileβ2 is sinusoidal inx (but not iny), but its peaks
and troughs do not correspond to those of Eq. (19).

The results of the inversion are shown in Fig.4, for Lx
andLy equal to 40 km. The left column corresponds to us-
ing β1 as an initial guess, and the right toβ2. The top row
shows residual (J ) as a function of iteration count. In the
case ofβ1, the inversion scheme reaches the same value of
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J after 100 iterations with either the complete or incomplete
adjoint. However,J converges more quickly using the com-
plete adjoint. Withβ2 as an initial guess, there is almost no
decrease inJ using the incomplete adjoint, while using the
complete adjoint achieves a decrease inJ comparable with
theβ1 case.

The bottom row of Fig.4 showsβ2
−β2

ih, whereβ here is
found using the complete adjoint. In the case whereβ1 is the
initial guess, the final invertedβ using the complete and in-
complete adjoints are very similar, though this is not true for
theβ2 case. In theβ1 case, traction in the “slippery regions”
(the top left and bottom right) is slightly overestimated and
is slightly underestimated at the centers of the “sticky spots”
(bottom left and top right), but overall the agreement is good.
There is no remnant of the initial guess seen in the misfit. On
the other hand, in theβ2 case the misfit is overwhelmed by
a transverse strip atx =

Lx
2 , whereβ2 should be equal to

∼1000 Pa (m a−1)−1 but is instead close to zero. This is in-
deed a remnant of the initial guess, sinceβ2 is zero along this
line. Since horizontal stresses tend to damp out small scales
in basal traction this does not have a large effect on the cost
function J , but it demonstrates some dependence on initial
guess.

6 Plan view inversion – real data

In addition to synthetic surface velocities, inversions were
done using InSAR- and speckle tracking derived surface ve-
locities (Joughin, 2002) and 5 km gridded ice thickness and
bed elevation data from the Airborne Geophysical Survey
of the Amundsen Sea Embayment, Antarctica (AGASEA)
conducted during the 2004–2005 austral summer (Vaughan
et al., 2006) (these data are available fromhttp://nsidc.org/
data/nsidc-0292.html). An 80×80 km region containing the
grounded portion of Pine Island Glacier (PIG) was selected.
(This region contains the areas referred to as the “ice plain”,
the “steepening”, and the “trunk” byPayne et al., 2004.)
The object of this exercise was not to ask specific glaciolog-
ical questions; many studies have used established inversion
methods to investigate basal properties of PIG (e.g.Payne
et al., 2004; Joughin et al., 2009; Morlighem et al., 2010a).
Rather, the purpose is to assess the convergence properties of
the hybrid model inversion scheme with “real” data.

The boundary conditions of this inversion differ from the
previous plan view inversions in that they are not periodic.
The depth-averaged velocities at the boundary of the domain
are constrained to be the interpolated InSAR surface veloci-
ties. (As discussed inGoldberg(2011), lateral boundary con-
ditions can only influence the solution through their depth
average.)

Figure5c shows the convergence behavior of the incom-
plete and complete adjoints, with an initial, uniform guess for

β of 10 Pa
1
2 (m a−1)−

1
2 . Basal stress|τ | corresponding to the

complete adjoint is shown in Fig.5d. (We show basal stress

rather thanβ2, since in this experiment velocities are not
derived synthetically using an analytical expression forβ.)
Additionally, the relative importance of vertical shear in the
corresponding forward model solution is shown by Fig.5e,
in which

|us−ub|

|us|
(22)

is plotted. For much of the region speed due to vertical shear
is less than 20% of the the surface speed, but there are areas
(ones that coincide with high basal traction) where vertical
shear accounts for up to 80% of the surface speed. Such ar-
eas could not be resolved with the SSA model as the forward
model, due to its assumption of no vertical shear. The cor-
responding fields from the inversion with the incomplete ad-
joint are very similar both in magnitude and spatial pattern,
and are not shown.

The convergence behavior shown in Fig.5c differs from
that seen in the experiments using synthetic observations.
First, the cost functionJ is not lowered by as many orders of
magnitude. This is expected, though, since the synthetic sur-
face velocities were generated using a flow model to which
the forward model is a very close approximant. Second, the
difference in convergence rate between the complete and in-
complete adjoints is not as dramatic. Inversion with both
choices finds similar solutions, and at comparable iteration
counts, the cost function in the incomplete adjoint inversion
is at most twice that of the complete adjoint inversion. Still,
the fact that this is achieved early in the inversion (between
10 and 20 iterations) shows that the complete adjoint could
still have some utility.

In further contrast to the prior experiments, sensitivity to
the initial guess ofβ was observed with the complete ad-
joint. When the initial guess forβ was very high (30–

40 Pa
1
2 (m a−1)−

1
2 ), no convergence was observed for either

choice of adjoint. The observed behavior ofJ was simi-
lar to that seen for the incomplete adjoint in the synthetic
data experiments: almost no decrease inJ was observed.
Despite the results of the synthetic-observation experiments,
this demonstrates a strong sensitivity of the inversion process
to the initial guess of the inverted parameters. The techni-
cal aspects of this issue are beyond the scope of the present
study, and are the subject of further investigations.

An important consideration is whether the result of such
an inversion is appropriate for the forward model. InGold-
berg (2011) solutions of the hybrid model were compared
with First Order solutions. It was found that the models were
in good agreement when the basal slope was smaller than
∼0.07 for flow over a frozen bed, which is close to the maxi-
mum basal slope in the region of PIG considered. It was also
observed that agreement was very good down to very small
length scales in basal traction. And so the basal traction and
slope shown in Fig.5b and5d do not preclude the forward
model solution being a good approximation of a First Order
solution.Joughin et al.(2009), who performed inversions of
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surface velocities of Pine Island and Thwaites Glaciers us-
ing an SSA forward model, note that the forward model bal-
ance is not strictly applicable in strong-bedded regions. It is
possible that inversions with a hybrid model can give more
complete results without using a three-dimensional forward
model.

However, it should be noted that the above statements may
not apply for regions where First Order approximations are
violated (i.e. near the grounding line).Morlighem et al.
(2010a) compared inversions of PIG and its catchment and
tributary region using SSA, First Order, and Full Stokes for-
ward models. Their results showed that nonhydrostatic ef-
fects were of leading-order importance in the grounding zone
(part of which protrudes into the bottom of our domain, be-
tween∼40 and 60 km in thex-direction), where the sharply
rising bed exerts a backpressure on the flow.

7 Discussion and conclusions

Including the nonlinear terms in Eqs. (10) and (12) (i.e., us-
ing the complete adjoint instead of the incomplete adjoint)
does not change the solution of the inversion; it can only af-
fect whether the inversion scheme finds a minimum of Eq. (5)
and the speed of convergence. In this sense the flowline in-
versions demonstrated a clear advantage in including these
terms. Use of the complete adjoint resulted in fast conver-
gence toward a minimum with relative independence on ini-
tial guess, which was not the case for inversions using the
incomplete adjoint.

In the plan view inversions of synthetic data, the rate of
convergence improved with the inclusion of nonlinear terms.
However, there was no convergence when the initial guess
for β was spatially uniform, whether nonlinear terms were
included or not. This is due to specifics of the model set up,
namely the periodic boundary conditions. With such condi-
tions and a uniformβ, the forward model solution is a ve-
locity field that does not vary inx or y, and so has a small
effective strain rate (entirely due to vertical shear) and a high
Glen’s Law viscosity. The result is that the search direction
found by the adjoint model is nearly uniform, even though
the misfit(u∗

s −us) has relatively large variation. This effect
was verified by decreasing the Glen’s Law coefficientB for
the first few iterations (not shown).

In the plan view versions of observational data, the im-
provement of convergence rate was not as dramatic as for of
synthetic data, and also the relative insensitivity of the com-
plete adjoint inversion to initial guess seemed to disappear.
We point out that there are several reasons why performance
of the complete adjoint model does not show a dramatic im-
provement over the incomplete adjoint. First, there are limi-
tations of the forward model associated with small scales in
surface velocity and bed heterogeneity. Second, and perhaps
more important, the data sets used in the inversion – bed ele-
vation, ice thickness, and surface velocities – were obtained

by different techniques during different time periods, and are
incompatible (Morlighem et al., 2010b). Such data incom-
patibility has a strong effect on the inversion process. By
contrast, complete versus incomplete adjoint may give a fine-
tuning effect which is overshadowed by stronger factors. The
effects of data compatibility on the results of inversion with
a hybrid model are a subject of ongoing investigation.

Still, the PIG inversion shows a small but noticeable dif-
ference was seen after a relatively small number of iterations.
Since inversions might involve a cutoff after a target residual
has been reached rather than a fixed number of iterations, this
shows that the complete adjoint may still have some utility in
such inversions, provided it is not too expensive to calculate
relative to the incomplete adjoint.

Using a hybrid model that accounts for vertical shear
within the ice as a forward model has several advantages.
Among them are possibilities to invert (or optimize) for pa-
rameters over regions that cannot be described by a single
zero-order approximation (SIA or SSA) but do not require
treatments of Full Stokes models. Bost fast, streaming and
slow, vertical shear-driven flow regimes can be considered
in the same domain. The hybrid model is computationally
more efficient than First Order models, and produces solu-
tions of the same order of accuracy in a wide range of condi-
tions appropriate to ice modeling. The derived adjoint model
could be used for numerous applications: from inversion for
other model parameters to model sensitivity studies. The ad-
joint is derived directly from the forward model equations
rather than from their discretized equivalents, so the dis-
cretization of the adjont does not depend on that of the for-
ward model. The use of a glacial flow model and its adjoint
to invert for unknown flow parameters is not new; however,
such approaches typically ignore the dependence on strain
rates of the nonlinear viscosity. In this study it is seen that,
for this particular forward model, including this dependence
can have a measured effect on the convergence of the inver-
sion scheme. The model fromGoldberg(2011) was the only
one considered; however, similar flow models are being de-
veloped or are already being used in large-scale ice models
(e.g.,Pollard and DeConto, 2009; Schoof and Hindmarsh,
2010), and the results of this study may indicate that inclu-
sion of this dependence may be necessary for data assimila-
tion using such models.

While flow in slow-moving regions can be represented
more accurately with a hybrid model than an SSA model,
Morlighem et al.(2010a) point out that the cost function (5)
works better in fast-moving regions. Thus minimizing such a
cost function may favor such areas at the cost of a relatively
large misfit in slow-moving areas. They suggest using a dif-
ferent expression which measures the logarithm of the misfit
(their equation 12). Additionally, they add a regularization
term to their equivalent of Eq. (9) that penalizes oscillations
in their inverted basal traction field. No such regularization
was done in this study. It was seen in some of the results (e.g.,
Fig.4d) that very high gradients inβ can occur, depending on
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the initial guess. It is worth investigating whether the modi-
fied cost function or regularization term ofMorlighem et al.
(2010a) changes any of the results of our study.

Inversion of surface velocities for basal traction numbers
was the only application of an adjoint model considered in
this study, but there are others.Heimbach and Bugnion
(2009) examined the sensitivity of the evolution of the Green-
land Ice Sheet to initial conditions by deriving an adjoint
model for the ice sheet model SICOPOLIS (Greve, 1997)
using automatic differentiation tools. While that version of
SICOPOLIS made use of the SIA balance to calculate veloc-
ities, the need for a similar study involving a model that uses
a higher-order stress balance was underlined in their paper.
The availability of continental-scale ice sheet models that do
so, such as PISM (Bueler and Brown, 2009) or that ofPollard
and DeConto(2009) present the possibility for such a study.
In these models, the solution of the stress balance for veloci-
ties is but a single component of a timestep (the others being
evolution of thickness, temperature, and in some cases basal
water and isostasy); however, it is the only component that
requires the iterative solution of a nonlinear elliptic equation.
Solvers of such equations involve indirect matrix solvers,
preconditioners, stopping conditions and indeterminate iter-
ation counts. Applying automatic differentiation techniques
to these solvers could result in lengthy computation in the
derivation of an adjoint. Instead, it may be possible to ana-
lytically derive an adjoint for the elliptic solver and integrate
it with the techniques used by Heimbach and Bugnion. With
such a strategy it is worth considering both complete and in-
complete adjoints. The structure of the incomplete adjoint
would make it somewhat easier to develop a solver. On the
other hand, it was shown in the flowline experiments that
the complete adjoint can, in some cases, give a more faithful
representation of derivatives. With a time-dependent model,
there is potential for accumulation of errors over multiple
timesteps, and using a better representation of model deriva-
tives would help to control these errors.

Appendix A

Deriving the adjoint model is basically the same as is done
in MacAyeal(1993), but due to the complexity added by the
inclusion of vertical shear and depth integration, the steps are
shown and the form is given explicitly. Only the adjoint of
the flowline version of the model is shown here; the form of
the three-dimensional (plan view) adjoint is derived similarly
but is more lengthy.

The flowline version of the hybrid model is stated again
here:

∂x(4νHux)−τ−ρgHsx = 0, (A1)

τ =mβ2ub, m=

√
1+b2

x, (A2)

ν=
B

2
(u2
x+

1

4
u2
z)

1−n
2n . (A3)

Additionally,

νuz =
τ(s−z)

H
. (A4)

Boundary conditions onu are periodic.
As in (MacAyeal, 1993), the adjoint model is derived by

taking a first-order differential ofJ ′ from Eq. (9). While
taking the first variation does not involve any mathematical
complexity, the fact that the viscosity is depth-integrated in
Eq. (A1) anduz and τ seem to depend on each other in a
circular fashion makes things a bit more difficult. For that
reason, it is shown here how perturbations inJ ′ are related
to perturbations inu andβ.

Under a perturbation inu, there is a corresponding pertur-
bation inν, derived from Eq. (A3):

δν=

(
1−n

2n

)
ν(2uxδux+

1
2uzδuz)

u2
x+

1
4u

2
z

. (A5)

Hereδuz is the vertical derivative ofδu, or equivalently the
perturbation inuz, and similarly forδux . Through Eq. (A4),
the perturbation ofuz can be related toδτ andδu:

δuz =
δτ

νH
(s−z)−

τ

ν2H
δν(s−z) (A6)

=
uz

τ
δτ−

(
1−n

2n

)
uz

2uxδux+
1
2uzδuz

u2
x+

1
4u

2
z

(A7)

=
uz

τ
δτ−

(
1−n

2n

)
uz

2uxδux
u2
x+

1
4u

2
z

−

(
1−n

2n

)
uz

1
2uzδuz

u2
x+

1
4u

2
z

, (A8)

which is rearranged to give

δuz

1+

(
1−n
4n

)
u2
z

u2
x+

1
4u

2
z

=

δτ
τ

−

2
(

1−n
2n

)
uxδux

u2
x+

1
4u

2
z

uz, (A9)

or

δuz =
uz

τ

(
u2
x+

1
4u

2
z

u2
x+

1
4nu

2
z

)
δτ−

2
(

1−n
2n

)
uxuz

u2
x+

1
4nu

2
z

δux . (A10)

Since

ub = u−
1

H

∫ s

b

∫ z

b

uz dz
′dz, (A11)

and since the perturbation and integration operators com-
mute, the perturbation ofub is

δub = δu−
δτ

Hτ

∫ s

b

∫ z

b

u2
x+

1
4u

2
z

u2
x+

1
4nu

2
z

uzdz
′dz

+2

(
1−n

2n

)
uxδux

H

∫ s

b

∫ z

b

uz

u2
x+

1
4nu

2
z

dz′dz. (A12)

From the sliding law Eq. (A2), the perturbation inτ is

δτ = 2mβubδβ+mβ2δub, (A13)
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which leads to

δτ =
m3β2

1+
m3β2γ
Hτ

δu+
2τ

β(1+
m3β2γ
Hτ

)
δβ

+

4
(

1−n
2n

)
m3β2ux

H +
m3β2γ
τ

δux

∫ s

b

∫ z

b

1
2uz

u2
x+

1
4nu

2
z

dz′dz. (A14)

The perturbation of the surface velocity can also be stated in
terms of depth-averaged perturbations. This is done using

us= u+
1

H

∫ s

b

∫ s

z

uz dz
′dz, (A15)

along with the expressions forδuz and δτ , resulting in an
expression similar to Eq. (A12).

The pieces are now all in place. It remains to proceed
as inMacAyeal(1993): finding the the first variation ofJ ′

with respect to a perturbationδu and setting it to zero gives
Eq. (10). Then settingδu= 0 and considering a perturbation
δβ leads to Eq. (12). The terms in Eqs. (10) and (12) that
apply only to the complete adjoint are given here:

F {λ;u,β} =

∂x


4

(
1−n

n

)
u2
xα1+

2
(

1−n
n

)2
α2mβ

2uxψ

Hτ+mβ2γ

λx


−


(

1−n
n

)
uxα2mβ

2

τ+
mβ2γ
H

λx−

[
mβ2

1+
mβ2γ
Hτ

]
λ

+∂x

2
(

1−n
n

)
mβ2uxψ

H +
mβ2γ
τ

λ

, (A16)

K{λ;u,β} = 2

(
1−n

n

)
α2uxλx, (A17)

G{u∗
s −us;u,β} =

−∂x

[
(u∗

s −us)

(
1−n

2n

)
4mγsβ

2uxψ

H(Hτ+mβ2γ )

]
, (A18)

where

α1 =

∫ s

b

ν

u2
x+

1
4nu

2
z

dz, α2 =

∫ s

b

νu2
z

u2
x+

1
4nu

2
z

dz, (A19)

ψ =

∫ s

b

∫ z

b

1
2uz

u2
x+

1
4nu

2
z

dz′dz,

ψs=

∫ s

b

∫ s

z

1
2uz

u2
x+

1
4nu

2
z

dz′dz. (A20)

Acknowledgements.D. Goldberg is supported by AOS/GFDL
fellowship, O. Sergienko is supported by NSF grants OPP-0838811
and CMG-0934534.

Edited by: G. H. Gudmundsson

References

Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet
forecasts viewed as an inverse Robin problem, J. Glaciol., 56,
527–533, 2010.

Bueler, E. and Brown, J.: The shallow shelf approximation as
a “sliding law” in a thermomechanically coupled ice sheet
model, J. Geophys. Res.-Earth, 114, F03008, doi:10.1029/
2008JF001179, 2009.

Chandler, D. M., Hubbard, A. L., Hubbard, B. P., and
Nienow, P. W.: A Monte Carlo error analysis for basal slid-
ing velocity calculations, J. Geophys. Res., 111, F04005,
doi:10.1029/2006JF000476, 2006.

Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D.,
Johnsen, S. J., Hansen, A. W., and Balling, N.: Past Tempera-
tures Directly from the Greenland Ice Sheet, Science, 282, 268–
271, 1998.

Glen, J. W.: The creep of polycrystalline ice, Proc. R. Soc. Lon.
Ser.-A, 228, 519–538, 1955.

Goldberg, D. N.: A variationally-derived, depth-integrated approxi-
mation to a higher-order glaciologial flow model, J. Glaciol., 57,
157–170, 2011.

Goldberg, D. N., Holland, D. M., and Schoof, C. G.: Grounding
line movement and ice shelf buttressing in marine ice sheets, J.
Geophys. Res.-Earth, 114, F04026,doi:10.1029/2008JF001227,
2009.

Greve, R.: A continuum-mechanical formulation for shallow poly-
thermal ice sheets, Philos. T. R. Soc. Lond., 355, 921–974, 1997.

Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers,
Springer, Dordrecht, 2009.

Gudmundsson, G. H. and Raymond, M.: On the limit to resolution
and information on basal properties obtainable from surface data
on ice streams, The Cryosphere, 2, 167–178,doi:10.5194/tc-2-
167-2008, 2008.

Heimbach, P. and Bugnion, V.: Greenland ice-sheet volume sen-
sitivity to basal, surface and initial conditions derived from an
adjoint model, Ann. Glaciol., 50, 67–80, 2009.

Hutter, K.: Theoretical Glaciology, Dordrecht, Kluwer Academic
Publishers, 1983.

Joughin, I.: Ice-sheet velocity mapping: A combined interferomet-
ric and speckle-tracking approach, Ann. Glaciol, 34, 195–201,
2002.

Joughin, I., Tulaczyk, S., Bamber, J. L., Blankenship, D., Holt,
J. W., Scambos, T., and Vaughan, D. G.: Basal conditions for
Pine Island and Thwaites Glaciers, West Antarctica, determined
using satellite and airborne data, J. Glaciol., 55, 245–257, 2009.

Khazendar, A., Rignot, E., and Larour, E.: Larsen B ice shelf rhe-
ology preceding its disintegration inferred by a control method,
Geophys. Res. Lett., 34, L19503,doi:10.1029/2007GL030980,
2007.

The Cryosphere, 5, 315–327, 2011 www.the-cryosphere.net/5/315/2011/

http://dx.doi.org/10.1029/2006JF000476
http://dx.doi.org/10.1029/2008JF001227
http://dx.doi.org/10.5194/tc-2-167-2008
http://dx.doi.org/10.5194/tc-2-167-2008
http://dx.doi.org/10.1029/2007GL030980


D. N. Goldberg and O. V. Sergienko: Data assimilation using a hybrid ice flow model 327

Larour, E., Rignot, E., Joughin, I., and Aubry, D.: Rheology of
the Ronne Ice Shelf, Antarctica, inferred from satellite radar
interferometry data using an inverse control method, Geophys.
Res. Lett., 32, L05503,doi:10.1029/2004GL021693, 2005.

MacAyeal, D., Firestone, J., and Waddington, E.: Paleothermome-
try by control methods., J. Glaciol., 37, 326–338, 1991.

MacAyeal, D. R.: Large-scale ice flow over a viscous basal sed-
iment: Theory and application to Ice Stream B, Antarctica, J.
Geophys. Res.-Solid, 94, 4071–4087, 1989.

MacAyeal, D. R.: The basal stress distribution of Ice Stream E,
Antarctica, inferred by control methods, J. Geophys. Res., 97,
595–603, 1992.

MacAyeal, D. R.: A tutorial on the use of control methods in ice-
sheet modeling, J. Glaciol., 39, 91–98, 1993.

MacAyeal, D. R. and Thomas, R. H.: The effects of basal melting
on the present flow of the Ross Ice Shelf, Antarctica, J. Glaciol.,
32, 72–86, 1986.

MacAyeal, D. R., Bindschadler, R. A., and Scambos, T. A.: Basal
friction of ice stream E, West Antarctica, J. Glaciol., 41, 247–
262, 1995.

Maxwell, D., Truffer, M., Avdonin, S., and Stuefer, M.: An itera-
tive scheme for determining glacier velocities and stresses, Ann.
Glaciol., 36, 197–204, 2008.

Morland, L. W. and Shoemaker, E. M.: Ice shelf balance, Cold Reg.
Sci. Technol., 5, 235–251, 1982.

Morlighem, M., Rignot, E., Seroussi, G., Larour, E., Ben Dhia, H.,
and Aubry, D.: Spatial patterns of basal drag inferred using con-
trol methods from a full-Stokes and simpler models for Pine Is-
land Glacier, West Antarctica, Geophys. Res. Lett., 37, L14502,
doi:10.1029/2010GL043853, 2010a.

Morlighem, M., Rignot, E. J., Seroussi, H. L., Larour, E. Y., Dhia,
H. B., and Aubry, D.: Constructing high-resolution, consis-
tent and seamless ice thicknesses using a new data assimilation
technique based on mass conservation, AGU 2010 Fall Meeting
Poster C11A-0521, 2010b.

Muszynski, I. and Birchfield, G. E.: A coupled marine ice-stream
ice-shelf model, J. Glaciol., 33, 3–15, 1987.

Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt,
B., Gagliardini, O., Gudmundsson, G. H., Hindmarsh, R. C. A.,
Hubbard, A., Johnson, J. V., Kleiner, T., Konovalov, Y., Mar-
tin, C., Payne, A. J., Pollard, D., Price, S., Rückamp, M., Saito,
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