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Abstract
In ordinal regression, a score function and threshold values are sought to classify a set of objects

into a set of ranked classes.
Classifying an individual in a class with higher (respectively lower) rank than its actual rank is

called an upgrading (respectively downgrading) error. Since upgrading and downgrading errors may
not have the same importance, they should be considered as two different criteria to be taken into
account when measuring the quality of a classifier.

In Support Vector Machines, margin maximization is used as an effective and computationally
tractable surrogate of the minimization of misclassification errors. As an extension, we consider in this
paper the maximization of upgrading and downgrading margins as a surrogate of the minimization
of upgrading and downgrading errors, and we address the biobjective problem of finding a classifier
maximizing simultaneously the two margins.

The whole set of Pareto-optimal solutions of such biobjective problem is described as translations
of the optimal solutions of a scalar optimization problem. For the most popular case in which the
Euclidean norm is considered, the scalar problem has a unique solution, yielding that all the Pareto-
optimal solutions of the biobjective problem are translations of each other. Hence, the Pareto-optimal
solutions can easily be provided to the analyst, who, after inspection of the misclassification errors
caused, should choose in a later stage the most convenient classifier.

The consequence of this analysis is that it provides a theoretical foundation for a popular strategy
among practitioners, based on the so-called ROC curve, which is shown here to equal the set of
Pareto-optimal solutions of maximizing simultaneously the downgrading and upgrading margins.

Keywords: Multiobjective optimization, Support Vector Machines, Ordinal Regression.

1 Introduction

In many real-life situations one is interested in predicting, from a vector of variables, a variable which takes
a finite number of ordered values. Examples of these situations appear in fields as diverse as Medicine

∗This research was partially supported by project MTM2009-14039, ECO2008-05080 of Ministerio de Educación y Ciencia
(Spain), FQM-329 of Plan Andaluz de Investigación (Andalućıa, Spain) and CCG07-UC3M/ESP-3389 of the Comunidad
de Madrid (Spain).
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(diseases are usually ranked from less severe to most severe), Education (students are sometimes graded
on ordinal scales) or Collaborative Filtering (people are asked for their preferences, tastes or opinions
categorized as excellent, good, . . . , horrible), see [3, 6, 18, 28] and the references therein.

These prediction problems are usually called ordinal regression problems, and can be seen as multi-
class classification problems, where classes have a natural order, i.e., the variable representing the class is
an ordinal variable instead of a categorical variable. In this sense, we use the term rank instead of class,
to highlight that classes are ranked.

Classification (and, in particular, ordinal regression) problems can be solved by means of a good
number of different procedures. We propose the use of Support Vector Machines (SVM), [43], which have
shown to be a very powerful classification tool. See Section 2 for a revision on the literature of SVM
models for ordinal regression.

The basic SVM deals with a binary classification problem. The prediction is based on the value of a
score function,

f(x) = ω>x, (1)

being below or above certain threshold β. Nonlinear score functions are also taken into account via
a kernel that embeds the data into a higher dimensional space by replacing the coordinates x by the
coordinates φ(x) in the embedded space. Mercer’s theorem [33] allows the representation of a kernel
by the inner product in the embedded space, k(x, y) =< φ(x), φ(y) > . The analysis developed in this
paper analogously follows for the embedded space, just considering the embedded data φ(x) instead of
the original x. Hence, under the Euclidean norm, the so-called kernel trick is as applicable in this analysis
as in classical SVM. For simplicity in notation the analysis is derived in the original space.

For the multiclass SVM, several approaches have been proposed as in [2, 5, 19, 37, 45]. The most
popular techniques are the one-against-one (o-a-o) [12] and the one-against-all (o-a-a) techniques [21],
where several two-class SVM problems are combined. Note that o-a-o and o-a-a approaches yield classifiers
based on more than one score function. This has several disadvantages when applied to an ordinal
regression problem. First, there is an instability concern, in the sense that similar objects might be
predicted as belonging to very different ranks. Secondly, ordinal regression is often used to obtain,
not only the prediction of the rank, but also an ordering of the objects. A typical example of this is
collaborative filtering. In this kind of applications, a single score function can be directly applied to sort
the objects. Finally, when interpretability is an issue, the contribution of every predictor variable to the
rank is more simple if a single score function is used.

Two types of misclassification errors have especial relevance in ordinal regression: misclassifying an
individual in a class with higher rank, called here upgrading error, and misclassifying an individual in
a lower-ranked class, referred here to as downgrading error. These two types of misclassification errors
may not have the same impact. For instance, misclassifying a patient with a severe disease as having an
almost-harmless one is not as important as the other way round. Evidently, such difference of impact
should be reflected somehow in the model. One might, for instance, introduce a cost matrix containing
the different costs associated to the different types of misclassification errors, and seek a classification
rule minimizing some aggregate cost measure (e.g. the expected misclassification cost). For instance, [29]
propose to transform an ordinal regression model with known costs into a binary classification problem
with weighted samples. This transformation is used to derive generalization bounds based on the margin
for the SVM-based ordinal regression. [30] also uses this transformation to derive generalization bounds
for boosting in ordinal regression. In [31], the reverse reduction is applied to design a boosting algorithm.
In this latter method, the cost might be different for every object, but they are known for the objects in
the training set.

The cost-sensitive approach for ordinal classification, see e.g. [29], can be used in a wider range of
situations, where not only upgrading and downgrading errors have different levels of importance, but
also in situations where the cost of misclassification errors depends on the rank an object belongs to.
Such misclassification costs are assumed to be known and the objective is to minimize the total cost.
How to introduce these costs in the SVM framework is not so direct. SVM is mainly based on margin
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maximization, but the optimization problem also considers a loss term that penalized misclassifications.
The costs can be taken into account in this loss term, as proposed by [29], but how the margin takes into
account these costs is not so simple.

Giving precise values to such costs might not be an easy task in many practical applications (e.g.
in Medicine, where costs measure how misclassifications damage the patient and relatives), [1, 4]. Mul-
tiobjective optimization is then a useful approach to deal with this kind of imprecision or fuzziness
affecting costs, as done for instance in [9, 17]. The use of multiobjective optimization techniques in
Machine Learning problems is not new, since much effort has been made in the last decade. See [26]
for a recent overview of existing multiobjective Machine Learning approaches. For example, in [17], a
multiclass ROC analysis is proposed, where the ROC surface is defined by the Pareto-optimal solutions
of a multiobjective optimization problem. [24] considers a multiobjective optimization problem where
model complexity and training accuracy of an SVM are the two conflicting objectives. A multiobjective
approach for the multi-class problem can be found in [41]. In [34] a Goal-Programming SVM model is
proposed, and [10] addresses the biobjective problem of minimization of errors and measurement costs in
an SVM. Approaches based on multicriteria decision making have also been proposed, as in [25], where
SVM is combined with a multicriteria decision tool.

In this paper, we focus only on two types of errors: upgrading and downgrading errors. A model is
proposed where the margin term takes into account the different cost/importance of these two types of
errors. As we consider a biobjective problem, our model accommodates well the case in which these costs
are fuzzy or unknown in advance.

The concept of margin, basic on SVM, needs to be extended to take into account the upgrading
and downgrading errors. Hence, we define the upgrading margin and downgrading margin, first for the
separable case, in which a solution correctly ranking all the objects exists, and we later extend the result
obtained to the non-separable case. Our main result states that the set of all Pareto-optimal solutions is
described as a set of solutions that are all translations of one of the solutions of the same optimization
problem. In this way, this paper extends our previous result [9] addressing a binary classification problem.
In addition, the result obtained here is valid for any norm used to measure distances. When such norm
is the Euclidean, the solutions are all translated of each others and the problem to solve is a convex
quadratic problem with linear constraints.

The paper is organized as follows: In Section 2, the literature on SVM models for ordinal regression
is reviewed. After this revision, in Section 3 we consider the separable case, where objects in the training
set are not allowed to be misclassified. Since our aim is to take into account separately upgrading and
downgrading errors, we extend the definition of margin given in [13] for the binary classification problem
to the notion of upgrading margin and downgrading margin in ordinal regression. Then, following the
SVM ideas, the simultaneous maximization of both the upgrading margin and the downgrading margin
proceeds. We characterize the Pareto-optimal solutions of such biobjective problem. In Section 5, it is
shown that a similar result is obtained for the non-separable case. Section 6 contains several illustrative
examples that help to understand the main results of the paper and their applicability to real-world data.
We finish with some conclusions and remarks for future lines of research.

2 SVM for ordinal regression. Review of the literature

Different proposals, briefly reviewed below, have been made to tackle ordinal regression with SVM-based
tools. A training set I of objects is available. For every object u ∈ I, its predictor vector xu ∈ IRp and its
rank cu ∈ {1, 2, . . . , R} are known. The classes are ranked, thus the numbers associated with them are
meaningful: class 1 is below class 2 and so on. The class set induces a partition in the training sample. In
what follows, for c ∈ {1, 2, . . . , R}, Ic denotes the set of objects having rank c, i.e., Ic = {u ∈ I : cu = c},
and we assume throughout the paper that Ic 6= ∅, ∀c ∈ {1, 2, . . . , R}.

Classification of future entries is made from the predictor vector as follows. First, a non-zero ω ∈ IRp
and R−1 thresholds β1 ≤ β2 ≤ . . . ≤ βR−1 are determined. Then, an incoming individual with predictor
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vector x will be associated with rank r(x),

r(x) =


1, if ω>x < β1

2, if β1 ≤ ω>x < β2

...
...

R, if βR−1 ≤ ω>x.

(2)

This way, given ω 6= 0 and β = (β1, . . . , βR−1), R− 1 parallel hyperplanes are obtained, splitting the
space into R regions, associated with the R values of the rank.

Example 1 An example is shown in Figure 1. A data set with 30 objects in dimension 2 and three ranks
is generated. Objects in rank 1,2 and 3, represented respectively by stars, circles and squares, are generated
following a gaussian distribution with mean (0, 0), (2, 1), (4, 5) and covariance matrix 1

16I,
1
9I, 1.2I, where

I is the identity matrix.
Every threshold β1, β2 defines a hyperplane {x : ω>x = βc.}, represented as a solid line in the figure.

Such hyperplanes split the space into three regions, associated with the three posible ranks: 1 (stars), 2
(circles) and 3 (squares).

Figure 1: Score function and thresholds

The fact that the hyperplanes in Figure 1 are parallel comes from the fact that only one score function
(1) is used in the classifier. Other approaches are possible, as the ones existing for multi-class classification
problems. We focus on a single score function because then the classifier is more stable, easier to interpret
and provides an automatic ordering of all the objects.

As mentioned in the Introduction, we may perform a preprocessing step, transforming the predictor
variables x via a nonlinear mapping φ, and use (2) with φ(x) instead of x. This strategy, common in the
standard SVM, [13, 40], is illustrated in Example 2.

Example 2 In Figure 2 a different example with three ranks (1,2 and 3, represented as stars, circles
and squares) is shown. No set of parallel hyperplanes exists correctly ranking the three classes. Figure 3
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represents the same data after the mapping φ(x1, x2) = (x2
1 + x2

2, x1), where it is obvious that such set of
hyperplanes exists.

Figure 2: Original data Figure 3: Mapped data

Several authors have proposed different SVM-based models for ordinal regression. Shashua and Levin
introduce in [39] the so-called fix-margin model, where the parameters ω, β are obtained as optimal
solution of the problem

min ‖ω‖22 + C
(∑

u∈I\IR ξ
u +

∑
u∈I\I1 ξ̃

u
)

s.t.:
(
ω>xu − βc

)
≤ −1 + ξu ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1(

ω>xu − βc−1
)
≥ 1− ξ̃u ∀u ∈ Ic, ∀c = 2, . . . , R

ξu ≥ 0 ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1

ξ̃u ≥ 0 ∀u ∈ Ic, ∀c = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1.

(3)

Note that nothing prevents in (3) the thresholds from being ordered inconsistently with the ordering
in the ranks. To avoid this undesirable effect, Chu and Keerthi, [11], propose two different approaches.
One way is to add the constraints βc ≤ βc+1 for all c = 1, 2, . . . , R− 2. We refer to such modification as
(3)c.

Whereas problem (3) uses two slack variables ξu and ξ̃u for every object, the second variant proposed
in [11] uses more slacks: one of the form ξuj for every j with cu ≤ j < R, u ∈ I \ IR, and another of the

form ξ̃uj for every 1 < j ≤ cu, u ∈ I \ I1. This yields the following formulation:

min ‖ω‖22 + C
(∑R−1

j=1

∑j
c=1

∑
u∈Ic ξ

u
j +

∑R
j=2

∑R
c=j

∑
u∈Ic ξ̃

u
j

)
s.t.:

(
ω>xu − βj

)
≤ −1 + ξuj ∀u ∈ Ic, ∀c = 1, 2, . . . , j, ∀j = 1, 2, . . . , R− 1(

ω>xu − βj−1
)
≥ 1− ξ̃uj ∀u ∈ Ic, ∀c = j, j + 1, . . . , R, ∀j = 2, . . . , R

ξuj ≥ 0 ∀u ∈ Ic, ∀c = 1, 2, . . . , j, ∀j = 1, 2, . . . , R− 1

ξ̃uj ≥ 0 ∀u ∈ Ic, ∀c = j, j + 1, . . . , R, ∀j = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1.
(4)
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Note that, for an object belonging to rank c, if it is upgraded to rank k > c, then the error with
respect to rank j, with c ≤ j < k would be ξuj = ω>xu − βj + 1. Similarly, when downgrading it into

rank k < c, the error with respect to rank j, with k < j ≤ c is ξ̃uj = βj−1 + 1− ω>xu. This means that,
when an object is misclassified, the errors are computed as the sum of the errors with respect to all the
ranks between the rank it has been allocated to and the rank it actually belongs to. Therefore, error
is considered higher when an object is misranked several ranks away from its true rank, in other words,
when multiple thresholds are crossed. Thus, solutions are encouraged to minimize the number of crossed
thresholds [38].

This model has been recently generalized in [6], by fixing a parameter s (in practice to be chosen by
cross-validation), and considering only the s slacks ξuj (respectively ξ̃uj ) for rank j among the s closest
ranks above cu (respectively below cu). This is written in [6] as the optimization problem

min ‖ω‖22 + C
(∑R−1

c=1

∑min{c+s−1,R−1}
j=c

∑
u∈Ic ξ

u
j +

∑R
c=2

∑R
max{2,c−s+1}

∑
u∈Ic ξ̃

u
j

)
s.t.:

(
ω>xu − βj

)
≤ −1 + ξuj ∀j = c, . . . ,min{c+ s− 1, R− 1}, ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1(

ω>xu − βj−1
)
≥ 1− ξ̃uj ∀j = max{2, c− s+ 1}, . . . , c, ∀u ∈ Ic, ∀c = 2, 3, . . . , R

ξuj ≥ 0 ∀j = c, . . . ,min{c+ s− 1, R− 1}, ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1

ξ̃uj ≥ 0 ∀j = max{2, c− s+ 1}, . . . , c, ∀u ∈ Ic, ∀c = 2, 3, . . . , R

ω ∈ IRp, β ∈ IRR−1.
(5)

A related approach, called sum-of-margins model, can be found in Shashua and Levin [39].

The notion of inversions has been used in [7, 23] to address ordinal regression using SVM. An inversion
occurs when, given two objects u ∈ Ic and v ∈ Id, with c < d, object u is allocated to a rank greater
than or equal to the rank where v is allocated. From the set I we generate the set of pairs P = {(u, v) ∈
I× I : cu 6= cv}. A pair (u, v) ∈ P is considered to be misclassified if it yields an inversion. We have then
a 2-class classification problem, with P as training set and class labels z(u,v),

z(u,v) =

{
1, if cu > cv

−1, otherwise.
(6)

The classifier proposed is obtained from the SVM classifier on P : ω is the optimal solution of the
problem

min ‖ω‖22 + C
∑

(u,v)∈P ξ
(u,v)

s.t.: z(u,v)
(
ω>xu − ω>xv

)
≥ 1− ξ(u,v) ∀(u, v) ∈ P

ξ(u,v) ≥ 0 ∀(u, v) ∈ P
ω ∈ IRp.

(7)

In this case, thresholds βc are considered as the midpoint of the pair xu and xv, having closest score
values ω>xu and ω>xv among all u ∈ Ic and v ∈ Ic+1.

We finish this section with a final remark on the choice of the norm. In all models mentioned above
(an exception being [7]), the norm affecting ω is chosen to be the Euclidean norm, ‖ · ‖2. Using ‖ · ‖2 has
two convenient properties: the resulting optimization problems are linearly-constrained convex quadratic
optimization problems, solvable by a number of numerical procedures and packages, and they may allow
the use of the so-called kernel trick, [13]. However, other authors [8, 32, 35] have proposed in SVM the
use of other norms, such as the L1 norm or L∞, which yield Linear Programs, usually much easier to
solve than quadratic problems. In [35], empirical results show that ‘in terms of separation performance,
L1, L∞ and Euclidean norm-based SVMs tend to be quite similar’. The theoretical results that will be
shown in this paper are true for any choice of this norm, hence they include the particular case of the
Euclidean norm which allows us to use of kernels.
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3 Margins for separable classes

A key concept in the SVM is the margin. This section is devoted to extend the concept of margin,
e.g., [13], to upgrading and downgrading margins. In Section 2 different models for ordinal regression
with SVM found in the literature have been written as optimization problems. However, it is not direct
to see how margin maximization is related to these models. The geometrical margin is much easier to
understand when classes are separable, i.e., (ω, β) exists such that the classification rule (2) correctly
ranks all objects in the training set I. The SVM approach that assumes that classes are separable is
known in the literature as the hard-margin approach, e.g., [42]. Note that although separability is a
rather restrictive condition, it is usually fulfilled in practice after mapping the data into a vector space
of higher dimension, in such a way that the classes become separable. See e.g., [13, 22].

The model for the separable case can be extended to the general case, known as soft-margin approach,
in which (ω, β) is not forced to classify correctly all objects in I and misclassification is penalized via a
loss term in the objective function of the corresponding optimization problem. Such case will be discussed
in Section 5.

Under the assumption that the classes are separable, the search of a classifier is thus restricted to
those (ω, β) satisfying the constraints

ω>xu < β1, ∀u ∈ I1

βc−1 < ω>xu < βc, ∀c = 2, . . . , R− 1, ∀u ∈ Ic
βR−1 < ω>xu, ∀u ∈ IR.

(8)

Since, by assumption, Ic 6= ∅, ∀c ∈ {1, 2, . . . , R}, one has, for any (ω, β) satisfying (8), that the
threshold values βc, with c ∈ {1, 2, . . . , R− 1}, are sorted, i.e.

β1 < β2 < . . . < βR−1. (9)

Given (ω, β) satisfying (8) and c ∈ {1, 2, . . . , R − 1} (respectively c ∈ {2, . . . , R}), an object u ∈ Ic
satisfies ω>xu ≤ βc (respectively ω>xu ≥ βc−1). Hence, the distance from xu to the halfspace {x :
ω>x ≥ βc} (respectively {x : ω>x ≤ βc−1}) measures how far u is from being upgraded (respectively
downgraded). This distance is basic for the concept of margin.

We recall that, given a norm ν in IRp and x∗ such that ω>x∗ ≤ β (respectively ω>x∗ ≥ β), the

ν-distance from x∗ to the halfspace {x : ω>x ≥ β} (respectively {x : ω>x ≤ β}) is given by −ω
>x∗+β
ν◦(ω)

(respectively ω>x∗−β
ν◦(ω) ), where ν◦ stands for the norm dual to ν. See [36] for further details.

Definition 3 Given an arbitrary norm ‖ · ‖ in IRp and a classifier (ω, β) satisfying (8), the upgrading
margin of (ω, β), is defined as

ρ+(ω, β) = min
c=1,2,...,R−1

min
u∈Ic

(−ω>xu + βc)

‖ω‖
. (10)

Analogously, the downgrading margin of (ω, β) is defined as

ρ−(ω, β) = min
c=2,...,R

min
u∈Ic

(ω>xu − βc−1)

‖ω‖
. (11)

Moreover, the margin ρ(ω, β) is defined as the smallest of the two margins above,

ρ(ω, β) = min {ρ+(ω, β), ρ−(ω, β)} . (12)

Note that Definition 3 provides us with a new notion of margin for an ordinal regression problem.
Although this notion of margin is not explicitly mentioned in any of the different models proposed in the
literature, it turns out that it provides a general framework for all such models, in the sense that for the
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separable case, maximizing (12) is shown to be equivalent to any of such models already proposed. In
order to prove this equivalence, let us first rephrase the problem of finding (ω, β) satisfying (8) yielding
the largest margin ρ.

min ‖ω‖
s.t.: ω>xu − βc ≤ −1 ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1

ω>xu − βc−1 ≥ 1 ∀u ∈ Ic, ∀c = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1.

(13)

Under the assumption that the classes are separable, we can force all slack variables ξ, ξ̃ in all problems
in Section 2 to be equal to 0. For any such a problem (P), let (P)

S
denote the optimization problem (P)

without slacks ξ, ξ̃. All such problems (P)
S

turn out to be equivalent to Problem (13), as stated in the
following result.

Proposition 4 Let ‖ · ‖ be the Euclidean norm. Problems (3)
S

, (3)
S
c , (4)

S
and (5)

S
are identical to

Problem (13), and they all are equivalent to Problem (7)
S

in the sense that

i if ω∗ is an optimal solution of Problem (7)
S

, then an optimal solution of Problem (13) is given by

(ω̂, β̂), with ω̂ = 2ω∗ and β̂c = maxv∈Ic ω
∗>xv + minv∈Ic+1 ω∗>xv, ∀c = 1, 2, . . . , R− 1,

ii if (ω̂, β̂), is an optimal solution of Problem (13), then ω∗ = 1
2 ω̂ is optimal for Problem (7)

S
.

For the proof, see the Appendix A.

This result links the SVM-based models available in the literature, revised in Section 2, with the
margin maximization problem.

The different models proposed in the literature only differ in the soft-margin case, in the way they
penalize the deviations. We can see two parts in every SVM-based model for ordinal regression: the
margin part and the loss part. Different losses yield the different models proposed in the literature. For
instance, as pointed out in [14, 15], the loss in Problem (3) is tailored for minimization of 0/1 errors,
whereas the loss in Problem (4) is for absolute deviations. In this sense, it can be seen that the loss used
in Problem (5) is tailored for the minimization of the truncated absolute deviations, where the penalty is
equal to the deviation when this deviation is not greater than s, and it is constant elsewhere.

Thanks to Proposition 4, we have a framework to extend the concept of margin to downgrading and
upgrading margins.

4 Simultaneous maximization of both margins. The separable
case.

Problem (13), and thus also (3)
S

, (3)
S
c , (4)

S
, (5)

S
and (7)

S
, maximize the margin ρ giving equal weight

to upgrading and downgrading errors. In order to take into account the possible different importance of
such errors, now we consider the biobjective optimization problem of simultaneously maximizing both
margins ρ+ and ρ− under the constraint that (ω, β) separates the classes, i.e. satisfies (8):

max {ρ+(ω, β), ρ−(ω, β)}
s.t.: ω>xu − βc < 0 ∀u ∈ Ic, c = 1, 2, . . . , R− 1

ω>xu − βc−1 > 0 ∀u ∈ Ic, c = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1, ω 6= 0.

(14)
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Generalizing the results in [9], we seek the set of Pareto-optimal solutions to (14), i.e., the set of
feasible (ω, β) such that no feasible (ω′, β′) exists satisfying

ρ+(ω′, β′) ≥ ρ+(ω, β),
ρ−(ω′, β′) ≥ ρ−(ω, β),

(15)

with at least one of those inequalities strict.
To characterize such a set, we first characterize the set of weakly efficient solutions, i.e., the set of

feasible solutions that cannot be improved at the same time in both objectives ρ+(ω, β) and ρ−(ω, β).
The reader is referred to [16] for further details on multiobjective optimization.

Since all feasible solutions (ω, β) satisfy that ρ−(ω, β) > 0 and ρ+(ω, β) > 0, one can generate all
weakly efficient solutions by solving max-min type scalarizations problems, [16], as stated below for the
sake of completeness.

Lemma 5 The set of weakly efficient solutions of Problem (14) is obtained as the set of optimal solutions
of problems of the form

max min {ρ+(ω, β), θρ−(ω, β)}
s.t.:

(
ω>xu − βc

)
< 0 ∀u ∈ Ic, c = 1, 2, . . . , R− 1(

ω>xu − βc−1
)
> 0 ∀u ∈ Ic, c = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1, ω 6= 0,

(16)

for θ ∈ (0,+∞), in the sense that

i any optimal solution of a problem of the form (16) is weakly efficient for Problem (14),

ii for every weakly efficient solution (ω, β) of Problem (14), (ω, β) is optimal for a problem of the
form (16) for some θ ∈ (0,+∞).

2

For θ ∈ (0,+∞), consider the convex minimization problem

min ‖ω‖
s.t.:

(
ω>xu − βc

)
≤ −1 ∀u ∈ Ic, c = 1, 2, . . . , R− 1

θ
(
ω>xu − βc−1

)
≥ 1 ∀u ∈ Ic, c = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1.

(Pθ)

Observe that Problem (P1), the particular case of θ = 1, corresponds to Problem (13). The following
lemma relates the solution of Problem (Pθ) for the different values of θ.

Lemma 6 Given (ω, β) ∈ IRp × IRR−1, the following statements are equivalent:

i There exists θ ∈ (0,+∞) such that (ω, β) is optimal for Problem (Pθ).

ii There exists Λ ∈ (−1, 1) such that ((1−Λ)ω, β̄) with β̄c = (1−Λ)βc + Λ, for all c = 1, 2, . . . , R− 1,
is an optimal solution for Problem (P1).

For the proof, see the Appendix B.

Now we are in conditions to characterize the set of weakly efficient solutions to Problem (14).

Theorem 7 Let (ω, β) ∈ IRp × IRR−1. The following statements are equivalent:

9



i (ω, β) is a weakly efficient solution of the biobjective Problem (14),

ii there exist γ > 0 and Λ ∈ (−1, 1) such that (γω, β̄), with β̄c = γβc + Λ, ∀c,= 1, 2, . . . , R− 1, is an
optimal solution of Problem (P1).

For the proof, see the Appendix C.

Corollary 8 (Characterization of Pareto-optimal solutions) Let (ω, β) ∈ IRp × IRR−1. The fol-
lowing statements are equivalent:

i (ω, β) is a Pareto-optimal solution of the biobjective Problem (14),

ii there exist γ > 0 and Λ ∈ (−1, 1) such that (γω, β̄), with β̄c = γβc + Λ, ∀c,= 1, 2, . . . , R− 1, is an
optimal solution of Problem (P1).

For the proof, see the Appendix D.

Observe that γ is a scaling parameter in the sense that (ω, β) and (γω, γβ) define the same ranking
region. This Corollary characterizes the set of Pareto-optimal solutions. Indeed, every Pareto-optimal
solution of the biobjective Problem (14) defines a region that is a translation of the region defined by
one of the solutions of Problem (P1). Remind that, in the particular case of the Euclidean norm, such
solution is unique. Thus, for obtaining the whole set of Pareto-optimal solutions to (14), one just has to
solve one problem, namely, Problem (P1), and then let the threshold vector β vary in the appropriate
range. Note that the different components of the threshold vector β should be moved all at the same
time. Thus, there is an only free parameter, called Λ in Theorem 7, in order to get all the different
Pareto-optimal solutions.

Example 9 A graphical illustration of this result can be seen in Figure 4. The data in Example 1 are
considered. Problem (P1) is solved to find the coefficients (ω, β) of the score function. The problem is
solved in Matlab 7.5. Remind that the classifier given by coefficients (ω, β) defines R − 1 hyperplanes
{x : ω>x = βc.}, separating rank c from rank c − 1 for every c = 1, 2, . . . , R − 1. Such classifier is one
Pareto-optimal soltuion of Problem (14). Corollary 8 characterizes all the Pareto-optimal solutions by the
classifiers with coefficients (ω, β̄) with β̄c = βc + Λ, ∀Λ ∈ (−1, 1) and c = 1, 2, . . . , R− 1. The hiperplanes
corresponding to several of these Pareto-optimal solutions are represented in Figure 4. In particular, the
solution with Λ = 0 is represented by a solid line, Λ = 0.5 by a dashed line, and Λ = −0.5 by a dotted line.
The set of hyperplanes representing any Pareto-optimal solution is a translation of the set of hyperplanes
representing another Pareto-optimal solution.

5 The general case: the soft-margin approach

In this section we address the general case and we propose a soft-margin approach to the problem.
In the geometrical interpretation for classical binary SVM, the hard-margin case is first analyzed.

Afterwards the problem is perturbed by adding a loss term that penalizes such perturbation. This is
called the soft-margin approach. A feasible optimization problem is obtained, but the meaning of margin
is lost.

This has also been suggested in the literature of ordinal regression, as reviewed in Section 2. Different
ways of defining these slack variables (one for each object, one for each object and possible rank, one for
each pair of objects) yield the different formulations described in Section 2, namely, Problems (3), (3)c,
(4), (5) and (7) proposed in [6, 11, 23, 39].

For simplicity, we focus on one of these formulations, namely Problem (3)c, proposed in [11]. However,
all the results in the section can be directly extended to the other slack variables proposed in [6, 11, 39].
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Figure 4: Score function and thresholds

In [11] two slacks ξu, ξ̃u, are associated to each object u ∈ I. Moreover, the constraint βc ≤ βc+1 for
all c = 1, 2, . . . , R − 2 is added to ensure that the thresholds are nondecreasing. Our aim is to perturb
problem (14) for the nonlinearly separable case, keeping the geometrical interpretation of margin. This

is done by defining the upgrading and downgrading margin by perturbing (10)-(11) via the slacks ξu, ξ̂u.

Definition 10 Given an arbitrary norm ‖ · ‖ in IRp × IR|I\I
R| × IR|I\I

1|, and a classifier (ω, β, ξ, ξ̃), the
upgrading soft margin of (ω, β, ξ, ξ̃), is defined as

ρ+(ω, β, ξ, ξ̃) = min
c=1,2,...,R−1

min
u∈Ic

(−ω>xu + βc − ξu)

‖(ω, ξ, ξ̃)‖
. (17)

Analogously, the downgrading soft margin of (ω, β, ξ, ξ̃) is defined as

ρ−(ω, β, ξ, ξ̃) = min
c=2,...,R

min
u∈Ic

(ω>xu − βc−1 + ξ̃u)

‖(ω, ξ, ξ̃)‖
. (18)

Moreover, the soft margin ρ(ω, β, ξ, ξ̃) is defined as the smallest of the two margins above,

ρ(ω, β, ξ, ξ̃) = min
{
ρ+(ω, β, ξ, ξ̃), ρ−(ω, β, ξ, ξ̃)

}
. (19)

A convenient choice for ‖ · ‖ in Definition 10 is a weighted Euclidean norm,

‖(ω, ξ, ξ̃)‖ =

√√√√√‖ω‖22 + C

 ∑
u∈I\IR

(ξu)2 +
∑

u∈I\I1
(ξ̃u)2

, (20)

where C is a constant trading off margin and generalization capability, [43].
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The problem of finding the vector (ω, β, ξ, ξ̃) yielding maximal soft margin, as given in Definition 10,
can be formulated as the quadratic convex problem with linear constraints:

min ‖ω‖22 + C
(∑

u∈I\IR(ξu)2 +
∑
u∈I\I1(ξ̃u)2

)
s.t. :

(
ω>xu − βc

)
− ξu ≤ −1 ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1(

ω>xu − βc−1
)

+ ξ̃u ≥ 1 ∀u ∈ Ic, ∀c = 2, . . . , R,
βc ≤ βc+1 ∀c = 1, 2, . . . , R− 2,
ξu ≥ 0 ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1,

ξ̃u ≥ 0 ∀u ∈ Ic, ∀c = 2, . . . , R,

ω∈IRp, β ∈ IRR−1.

(21)

Observe that Problem (21) differs from Problem (3)c, proposed by Chu and Keerthi [11], only in
that the squared slacks are penalized, instead of simply penalizing the slacks. This way, we retain the
interpretation of margin, which is lost in their approach. Following the interpretation of the loss term in
[15], Problem (21) is tailored for the minimization of 0/1 errors, since the loss does not depend on how
many ranks away from the true rank an object is assigned to.

The soft-margin counterpart of Problem (14) is then

max
{
ρ+(ω, β, ξ, ξ̃), ρ−(ω, β, ξ, ξ̃)

}
s.t. :

(
ω>xu − βc

)
− ξu < 0 ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1(

ω>xu − βc−1
)

+ ξ̃u > 0 ∀u ∈ Ic, ∀c = 2, . . . , R.
βc ≤ βc+1 ∀c = 1, 2, . . . , R− 2,
ξu ≥ 0 ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1,

ξ̃u ≥ 0 ∀u ∈ Ic, ∀c = 2, . . . , R,

ω∈IRp, β ∈ IRR−1.

(22)

Results similar to those presented in Section 3 can be obtained for Problem (22). Indeed, the set
of Pareto-optimal solutions of (22) can be characterized as translated solutions from the optimum of
Problem (21). However, an intuitive interpretation of the range obtained under this translation is not
straightforward. The characterization is stated in the following Theorem and Corollary.

Theorem 11 Let (ω, β, ξ, ξ̃) ∈ IRp× IRR−1× IR|I\I
R|× IR|I\I

1|. The following statements are equivalent:

i (ω, β, ξ, ξ̃) is a weakly efficient solution of the biobjective Problem (22),

ii there exist Λ ∈ (−1, 1), γ > 0, such that (γω, β̄, γξ, γξ̃), with β̄c = γβc + Λ, ∀c,= 1, 2, . . . , R− 1, is
an optimal solution of Problem (21).

Corollary 12 (Characterization of Pareto-optimal solutions) Let (ω, β, ξ, ξ̃) ∈ IRp×IRR−1×IR|I\I
R|×

IR|I\I
1|. The following statements are equivalent:

i (ω, β, ξ, ξ̃) is a Pareto-optimal solution of the biobjective Problem (22),

ii there exist Λ ∈ (−1, 1), γ > 0, such that (γω, β̄, γξ, γξ̃), with β̄c = γβc + Λ, ∀c,= 1, 2, . . . , R− 1, is
an optimal solution of Problem (21).

6 Illustrative examples in real-world datasets

In binary classification, when the importance of the errors is different for the two different classes,
the behavior of a classifier is usually analyzed using the ROC curve [27]. The ROC curve shows the
sensitivity, i.e., the proportion of correctly classified objects of the positive class, against the specificity,
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proportion of correctly classified objects of the negative class, for different values of the threshold. For
ordinary regression, as well as for multigroup classification and ordinal regression, some extensions to
the ROC curve have been proposed, see e.g. [20, 44]. For our model, we first define two different error
measurements. For every u ∈ I, let us denote by ĉu the rank predicted by the classifier for the object u.
Remind that cu denotes the actual rank of object u, and let ] denote the cardinality of a set.

• Empirical downgrading error is the proportion of downgraded objects in I among those whose rank
is greater than one.

D =
]{u ∈ I : ĉu < cu, cu 6= 1}

]{u ∈ S : cu 6= 1}
.

• Empirical upgrading error is the proportion of upgraded objects in I among those whose rank is
lower than R.

U =
]{u ∈ I : ĉu > cu, cu 6= R}

]{u ∈ S : cu 6= R}
.

Consider the classifiers with coefficients (ω, β̄) with β̄c = βc + Λ, ∀Λ ∈ (−1, 1). Let D(Λ) (respec-
tively, U(Λ)) be the empirical downgrading (resp. upgrading) error for the classifier with coefficients
(ω, β̄). Consider the curve (1−D(Λ), 1−U(Λ)) for different values Λ ∈ (−1, 1). we will call such plot the
DU curve (from downgrading/upgrading). Every point in the DU curve represents the trade-off between
downgrading and upgrading errors for a specific value of Λ. Observe that, thanks to the characterization
given by Corollary 12, all the Pareto-optimal solutions of the biobjective optimization of the downgrading
and upgrading margins are represented in such curve. This result reduces the resolution of the biobjec-
tive problem to solving just one single-objective problem. A property rather unusual in multiobjective
optimization.

As illustrative examples, the DU curves are represented in real-world datasets (see Figure 6). The
datasets were previously used by Chu and Keerthi in [11]1. These datasets are modified versions whose
originals had been previously used for metric regression problems. The metric regression task was con-
verted into an ordinal regression task by discretizing the response variable into 5 or 10 ordinal scales,
using equal-frequency binning. As representative example we choose the 5-classes case. Each dataset is
randomly partitioned into training and testing set. In our experiments, we always use the first out of the
20 repetitions recollected by Chu and Keerthi. No other preprocessing apart from the one used by Chu
and Keerthi has been done. More information about the datasets is given in Table 1.

database p training size testing size
pyrim 27 50 24

triazines 60 100 86
wpbc 32 130 54

machine 6 150 59
autodata 7 200 192
housing 13 300 206
stock 9 600 350

abalone 10 1000 3177

Table 1: Information of the datasets

In real-world applications, the soft-margin is usually considered either because data are not separable
or to avoid overfitting. We focus on the soft-margin model inspired in [11], whose biobjective counterpart
is Problem (22). Hence, optimization of Problem (21) proceeds. In our experiments it has been solved
using Matlab 7.5. The parameter C which allows to control overfitting is chosen by 10-fold crossvalidation
in the training set. A linear kernel is used in all the experiments, but other kernels can be used, as
discussed in Section 2.

13



Figure 5: DU curves. Pareto
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Figure 6: DU curves. Pareto
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The DU curve is the thick curve represented in Figure 6. The interpretation of this curve is similar
to the interpretation of the ROC curve. For Λ ∈ (−1, 1), (1 − D(Λ)) plays the role of the specificity
while (1−U(Λ)) plays the role of the sensitivity. The DU curve shows the tradeoff between downgrading
and upgrading error (any decrease in the downgrading error will be accompanied by an increase in the
upgrading error). The closer the curve follows the right-hand border and then the top border, the more
accurate the prediction. The closer the curve comes to the 45-degree diagonal, the less accurate the
prediction. In order to understand the behavior of the classifiers in forthcoming data, we computed the
downgrading and upgrading errors in a test dataset. The corresponding downgrading/upgrading curve
on the test data is represented as a thin curve.

Consider for instance the dataset auto.data. The data concerns city-cycle fuel consumption in miles
per gallon, to be predicted in terms of eight attributes. The classification task ‘mpg’ (miles per gallon) has
been discretized into 5 classes (very low, low, moderate, high, very high). Suppose that an environmental
tax is fixed using this rank. Misclassifying a car as having ‘moderate’ consumption when it has ‘high’
consumption, would cause a damage in the environment because it indirectly increases the consumption
of fuel. However, if the opposite error is incurred (misclassifying it as ‘very high’), the car’s company
would make an extra effort to prove that the actual fuel consumption is lower. In this setting, it seems
that the downgrading error is less important than the upgrading error, but, in any case, it does not seem
to be easy to quantify how many times one error is more important than the other. Looking at the DU
curve depicted in Figure 6, one observes that in order to get a downgrading error of 5% (the 0.95 in the
horizontal axis), one should admit an upgrading error of nearly 40%. But being less demanding in the
downgrading error (for instance, allowing 10% error), the upgrading error would be less than 25%. This
way, the decision maker can use the DU curve to trade off the importance of the two kinds of errors, and
how being more demanding with one of them affects being more tolerant with the other.

Note that the downgrading/upgrading curve can be drawn for any classifier that is based on a single
score function. The contribution of this paper is that it provides a theoretical foundation and an inter-
pretation of the points in this curve as the Pareto-optimal solutions of maximizing simultaneously the
downgrading and upgrading margins.

7 Conclusions

The use of multiobjective optimization techniques for Machine Learning and Data Mining problems has
gained much popularity in recent years. We have addressed in this paper the simultaneous minimization
of upgrading and downgrading errors, via, following an SVM-based approach, upgrading and downgrading
margins. Our main result states that the whole set of Pareto-optimal solutions can be obtained by solving
one quadratic optimization problem, and then let the thresholds vary in an appropriate range. This type
of characterization results are rather unusual in multiobjective optimization. In the hard-margin case,
such quadratic optimization problem coincides with the hard-margin version of the problems reviewed
from the literature.

Upgrading and downgrading errors in ordinal regression are only two kinds of errors that might be
taken into account. An error cost that depends on the rank a misclassified object belongs to is another
possibility that has been addressed in [41] for multiclass classification. In such paper, error costs are
symmetric, in the sense that misclassifying an object from class c into a class c′ is considered as important
as the other way round. Considering these two costs as different and unknown deserves further research.
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APPENDIX: Proofs of the results

A Proof of Proposition 4

Problems (3)
S
, (4)

S
and (5)

S
are identical to Problem (13). Problem (3)

S
c is a modification of (3)

S
, where

constraints βc ≤ βc+1 for all c = 1, 2, . . . , R− 1 are added. Such constraints are trivially satisfied at any
(ω, β) feasible for (3)

S
, thus (3)

S
c is also equivalent to (13). Showing the equivalence between these four

problems with Problem (7)
S

deserves further details.

We only show Part (i), since Part (ii) can be shown using the very same arguments. Let ω∗ be an

optimal solution of Problem (7)
S
. We need to prove that the (ω̂, β̂) given by the proposition is an optimal

solution of Problem (13).

First we prove that (ω̂, β̂) is feasible. Indeed, let u ∈ Ic and c = 1, 2, . . . , R− 1. One has that

ω̂>xu− β̂c = 2ω∗>xu−max
v∈Ic

ω∗>xv− min
v∈Ic+1

ω∗>xv =

(
ω∗>xu −max

v∈Ic
ω∗>xv

)
+

(
ω∗>xu − min

v∈Ic+1
ω∗>xv

)
(23)

Since u ∈ Ic, then
ω∗>xu −max

v∈Ic
ω∗>xv ≤ 0. (24)

Now we focus in the last two terms in (23). For v ∈ Ic+1, one has, by definition of z(u,v) in (6), that

z(u,v) = −1. Since ω∗ is feasible for Problem (7)
S
, we have that z(u,v)(ω∗>xu − ω∗>xv) ≥ 1, i.e.,

(ω∗>xu − ω∗>xv) ≤ −1.

Since this is true for all v ∈ Ic+1, we get

(ω∗>xu − min
v∈Ic+1

ω∗>xv) ≤ −1. (25)

Joining (23) with (24) and (25), we conclude that ω̂>xu − β̂c ≤ −1. It is analogous to prove that for

u ∈ Ic we have ω̂>xu − β̂c−1 ≥ 1. Hence, (ω̂, β̂) is feasible for Problem (13).

Now we show the optimality of (ω̂, β̂) for (13). Let (ω, β) be a feasible solution of Problem (13), i.e.,

ω>xu − βc ≤ −1, ∀u ∈ Ic, ∀c = 1, 2, . . . , R− 1, (26)

ω>xu − βc−1 ≥ 1, ∀u ∈ Ic, ∀c = 2, . . . , R. (27)

Then, 1
2ω is feasible for Problem (7)

S
. Indeed, let u, v ∈ I with cu > cv and thus z(u,v) = 1. (The case

with cu < cv, and thus z(u,v) = −1, is completely analogous). By (9), βc
u−1 ≥ βcv . Hence,

z(u,v)
(

1
2ω
>xu − 1

2ω
>xv

)
= 1

2ω
>xu − 1

2ω
>xv =

= 1
2

(
ω>xu − βcu−1

)
+ 1

2

(
βc

u−1 − βcv
)

+ 1
2

(
βc

v − ω>xv
)
≥ 1

2 + 0 + 1
2 = 1.

(28)

Hence, z(u,v)
(

1
2ω
>xu − 1

2ω
>xv

)
≥ 1 ∀u, v ∈ I with cu 6= cv, and this shows that 1

2ω is feasible for Problem

(7)
S
. By the optimality of ω∗ with respect to Problem (7)

S
, ω satisfies ‖ω∗‖ ≤ 1

2‖ω‖. In summary, we
have that

‖ω̂‖ = ‖2ω∗‖ ≤ ‖21

2
ω‖ = ‖ω‖.

Since (ω, β) is an arbitrary feasible solution of Problem (13), we have shown that (ω̂, β̂) is feasible

for Problem (13) with better or equal objective value, ‖ω̂‖ ≤ ‖ω‖. We conclude that (ω̂, β̂) is an optimal
solution of Problem (13), what proves the first part of the result. 2
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B Proof of Lemma 6.

First suppose that there exists θ ∈ (0,+∞) such that (ω, β) is optimal for Problem (Pθ). Let Λ = 1−θ
1+θ ∈

(−1, 1). We now prove that ((1 − Λ)ω, β̄) with β̄c = (1 − Λ)βc + Λ for all c = 1, 2, . . . , R − 1, is feasible
for Problem (P1). Denote ω̄ = (1 − Λ)ω. Since (ω, β) is optimal for Problem (Pθ), then for all u ∈ Ic,
with c = 1, 2, . . . , R− 1, the inequality

(
ω>xu − βc

)
≤ −1 holds. Hence, we have, for (ω̄, β̄),(

ω̄>xu − β̄c
)

=
(
(1− Λ)ω>xu − (1− Λ)βc − Λ

)
= (1− Λ)

(
ω>xu − βc

)
− Λ ≤

(1− Λ)(−1)− Λ = −1.
(29)

Analogously, for all u ∈ Ic, with c = 2, . . . , R, since for (ω, β) the inequality θ
(
ω>xu − βc−1

)
≥ 1

holds, we easily derive the following inequality for (ω̄, β̄),(
ω̄>xu − β̄c−1

)
=
(
(1− Λ)ω>xu − (1− Λ)βc−1 − Λ

)
= (1− Λ)

(
ω>xu − βc−1

)
− Λ ≥

(1− Λ) 1
θ − Λ =

(
1− 1−θ

1+θ

)
1
θ −

1−θ
1+θ = 1.

(30)

Hence, we have that (ω̄, β̄) is feasible for Problem (P1). Now, we need to prove that it is also optimal
for Problem (P1).

Let (ω̂, β̂) be a feasible solution of Problem (P1). Taking ω∗ = 1
1−Λ ω̂, and β∗c = 1

1−Λ (β̂c−Λ), we can
see that (ω∗, β∗) is feasible for Problem (Pθ). Indeed, for all u ∈ Ic, with c = 1, 2, . . . , R− 1, one has(

ω∗>xu − β∗c
)

=
(

1
1−Λ ω̂

>xu − 1
1−Λ (β̂c − Λ)

)
= 1

1−Λ

(
ω̂>xu − β̂c + Λ

)
≤

1
1−Λ (−1 + Λ) = −1.

(31)

Analogously, for all u ∈ Ic, with c = 2, . . . , R, the following inequality holds

θ
(
ω∗>xu − β∗c−1

)
= θ

(
1

1−Λ ω̂
>xu − 1

1−Λ (β̂c−1 − Λ)
)

= θ 1
1−Λ

(
ω̂>xu − β̂c−1 + Λ

)
≥

θ 1
1−Λ (1 + Λ) = θ 1

1− 1−θ
1+θ

(
1 + 1−θ

1+θ

)
= 1.

(32)

Since, by assumption (ω, β), is an optimum of Problem (Pθ), we have that ‖ω∗‖ ≥ ‖ω‖, which yields

‖ω̄‖ = (1− Λ)‖ω‖ ≤ (1− Λ)‖ω∗‖ = (1− Λ)
1

1− Λ
‖ω̂‖ = ‖ω̂‖.

In summary we have that (ω̄, β̄) is feasible for Problem (P1) and with objective value better than or equal

to an arbitrary feasible solution (ω̂, β̂) of Problem (P1). We conclude that (ω̄, β̄) is an optimal solution
of Problem (P1).

Now we prove the converse. Let Λ ∈ (−1, 1) be such that ((1 − Λ)ω, β̄), with β̄c = (1 − Λ)βc + Λ is
an optimal solution of Problem (P1) for an arbitrary (ω, β) ∈ IRp × IRR−1. We have to prove that (ω, β)
is an optimal solution of Problem (Pθ) for some θ ∈ (0,+∞).

Denote ω̄ = (1− Λ)ω. Then, ω = 1
1−Λ ω̄ and βc = 1

1−Λ (β̄c − Λ). Using the very same arguments than

used in (31) for (ω∗, β∗), one gets that (ω>xu − βc) ≤ −1 for all u ∈ Ic, c = 1, 2, . . . , R− 1. Analogously,
following the very same arguments than in (32), one gets that

(ω>xu − βc−1) ≥ θ 1

1− Λ
(1 + Λ),

which, taking θ = 1−Λ
1+Λ ∈ (0,+∞), is equal to 1 for all u ∈ Ic, c = 2, . . . , R. Hence we have that (ω, β) is

feasible for (Pθ).

Now we prove optimality of (ω, β) for (Pθ). Let (ω̂, β̂) an arbitrary feasible solution for Problem (Pθ).
Following the very same arguments than in (29) and (30), one gets that (ω∗, β∗), with ω∗ = (1−Λ)ω̂ and
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β∗c = (1− Λ)β̂c + Λ, ∀ c = 1, 2, . . . , R − 1, is a feasible solution for Problem (P1) and thus, the optimal
solution of Problem (P1), namely (ω̄, β̄), is better than or equal to it, i.e., ‖ω̄‖ ≤ ‖ω∗‖. Then, we have
that

‖ω‖ =
1

1− Λ
‖ω̄‖ ≤ 1

1− Λ
‖ω∗‖ =

1

1− Λ
(1− Λ)‖ω̂‖ = ‖ω̂‖.

In summary, we get that (ω, β) is feasible for Problem (Pθ) and better than or equal to any arbitrary

feasible solution (ω̂, β̂). Hence we conclude that (ω, β) is an optimal solution for Problem (Pθ).
2

C Proof of Theorem 7.

Let (ω̄, β̄) ∈ IRp × IR. By Lemma 5, (ω̄, β̄) is weakly efficient for Problem (14) if and only if there exists
θ ∈ (0,+∞) such that (ω̄, β̄) is an optimal solution of Problem (16). This is equivalent to (ω̄, β̄) being
optimal for

min ‖ω‖
D(ω,β)

s.t.:
(
ω>xu − βc

)
< 0 ∀u ∈ Ic, c = 1, 2, . . . , R− 1(

ω>xu − βc−1
)
> 0 ∀u ∈ Ic, c = 2, . . . , R

ω ∈ IRp, β ∈ IRR−1, ω 6= 0.

(33)

where D(ω, β) denotes

min

{
min

c=1,2,...,R−1
min
u∈Ic

(
−ω>xu + βc

)
, θ min

c=2,...,R
min
u∈Ic

(
ω>xu − βc−1

)}
.

Observe that any (ω, β) is optimal for (33) if and only if (µω, µβ) is optimal for (33) for any µ > 0.
Hence, by normalizing the denominator in the objective of (33) we have that (ω̄, β̄) is optimal for (33) if
and only if there exists and µ > 0 such that (µω̄, µβ̄) is optimal for the following problem:

min ‖ω‖
st: D(ω, β) = 1,

ω ∈ IRp, β ∈ IRR−1.
(34)

Such a problem is equivalent to the following one

min ‖ω‖
st: D(ω, β) ≥ 1,

ω ∈ IRp, β ∈ IRR−1.
(35)

Indeed, given a solution of Problem (35) with D(ω, β) > 1, a better solution can be built by dividing ω
and β by D(ω, β).

Problem (35) can be directly rephrased as Problem (Pθ). Hence, (ω̄, β̄) is weakly efficient for Problem
(14) iff there exists µ > 0 such that (µω̄, µβ̄) solves (Pθ) for some θ ∈ (0,+∞).

In order to finish the proof, let (ω, β) be weakly efficient for Problem (14). Then, as shown above,
there exist µ > 0 and θ ∈ (0,+∞) such that (µω, µβ) solves Problem (Pθ). By Lemma 6, there exists
Λ ∈ (−1, 1) such that ((1− Λ)µω, β̄) with β̄c = (1− Λ)µβc + Λ, for all c = 1, 2, . . . , R− 1, is an optimal
solution for Problem (P1). Hence, taking γ = (1 − Λ)µ, we have that (γω, β̄), with β̄c = γβc + Λ for
all c = 1, 2, . . . , R − 1, is an optimal solution for Problem (P1). This proves that (i) implies (ii) in the
Theorem.

To show that (ii) implies (i) let γ > 0 and Λ ∈ (−1, 1) such that (γω, β̄) with β̄c = γβc + Λ for
all c = 1, 2, . . . , R − 1, is an optimal solution for Problem (P1). Note that (γω, β̄) can be rephrased as
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((1 − Λ) γ
(1−Λ)ω, β̄) with β̄c = (1 − Λ) γ

(1−Λ)β
c + Λ. Applying Lemma (6), we get that ( γ

(1−Λ)ω,
γ

(1−Λ)β)

solves Problem (Pθ) for some θ ∈ (0,+∞). As stated above, taking µ = γ
(1−Λ) > 0, this is equivalent to

(ω, β) being weakly efficient for Problem (14). 2

D Proof of Corollary 8

Any Pareto-optimal solution is, by definition weakly efficient. Let us show that in our problem the
converse also holds. Let (ω, β) be weakly efficient to (14). By contradiction, suppose it is not Pareto-
optimal. Then there would exist a feasible solution (ω′, β′) satisfying (15) with at least one of those
inequalities strict.

Without loss of generality we can suppose that ‖ω′‖ = ‖ω‖ = 1. Note that both inequalities cannot
be strict because it would contradict the fact that (ω, β) is weakly efficient. Suppose ρ−(ω′, β′) =
ρ−(ω, β), thus ρ+(ω′, β′) > ρ+(ω, β). An analogous reasoning will follow in case ρ+(ω′, β′) = ρ+(ω, β)
and ρ−(ω′, β′) > ρ−(ω, β). We are going to build a feasible solution which is strictly better than (ω, β)
in both objectives.

Let Λ be such that 0 < Λ < ρ+(ω′, β′) − ρ+(ω, β). Consider β̂ with β̂c = β′c − Λ
2 for all c =

1, 2, . . . , R− 1. We have that (ω′, β̂) is feasible for Problem (14):

minc=1,2,...,R−1 minu∈Ic(−ω′>xu + β̂c) = minc=1,2,...,R−1 minu∈Ic(−ω′>xu + β′c − Λ
2 ) =

ρ+(ω′, β′)− Λ
2 > ρ+(ω′, β′)− ρ+(ω′,β′)−ρ+(ω,β)

2 = ρ+(ω′,β′)+ρ+(ω,β)
2 > 0,

(36)

and
minc=2,...,R minu∈Ic(ω

′>xu − β̂c−1) = minc=2,...,R minu∈Ic(ω
′>xu − β′c−1) + Λ

2 > 0. (37)

We now prove that (ω′, β̂) is better than (ω, β) in both objectives, which contradicts the efficiency of
(ω, β). First, since ρ+(ω′, β′)− ρ+(ω, β) > Λ, one obtains

ρ+(ω′, β̂) = minc=1,2,...,R−1 minu∈Ic
(
−ω′>xu + β̂c

)
= minc=1,2,...,R−1 minu∈Ic

(
−ω′>xu + β′c − Λ

2

)
=

ρ+(ω′, β′)− Λ
2 > ρ+(ω′, β′)− ρ+(ω′,β′)−ρ+(ω,β)

2 = ρ+(ω′,β′)+ρ+(ω,β)
2 .

(38)
Moreover, ρ+(ω′, β′) > ρ+(ω, β), which yields

ρ+(ω′, β′) + ρ+(ω, β)

2
>
ρ+(ω, β) + ρ+(ω, β)

2
= ρ+(ω, β). (39)

By putting together inequalities (38) and (39), one gets that ρ+(ω′, β̂) > ρ+(ω, β).
Secondly, since Λ > 0, one gets that

ρ−(ω′, β̂) = minc=2,...,R minu∈Ic
(
ω′>xu − β̂c−1

)
= minc=2,...,R minu∈Ic

(
ω′>xu − β′c−1 + Λ

2

)
=

ρ−(ω′, β′) + Λ
2 > ρ−(ω′, β′) = ρ−(ω, β).

(40)

In summary, we have found a feasible solution, better than (ω, β) in both objectives, which contradicts
(ω, β) being weakly efficient. Hence, we conclude that (ω, β) is Pareto-optimal for Problem (14) 2
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