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Interpretable Support Vector Machines for Functional
Data

Belen Martin-Barragan, Rosa Lillo, Juan Romo

Department of Statistics
Universidad Carlos III de Madrid (Spain)

Abstract

Support Vector Machines (SVM) has been shown to be a powerful nonparamet-
ric classification technique even for high-dimensional data. Although predictive
ability is important, obtaining an easy-to-interpret classifier is also crucial in
many applications. Linear SVM provides a classifier based on a linear score.
In the case of functional data, the coefficient function that defines such linear
score usually has many irregular oscillations, making it difficult to interpret.

This paper presents a new method, called Interpretable Support Vector Ma-
chines for Functional Data, that provides an interpretable classifier with high
predictive power. Interpretability might be understood in different ways. The
proposed method is flexible enough to cope with different notions of inter-
pretability chosen by the user, so the obtained coefficient function can be sparse,
linear-wise, smooth, etc. The usefulness of the proposed method is shown in real
applications getting interpretable classifiers with comparable, sometimes better,
predictive ability versus classical SVM.

Keywords: Data mining, interpretability, classification, linear programming,
regularization methods, functional data analysis

1. Introduction

Roughly speaking, the objects of study in Functional Data Aanalysis (FDA)
are functions. As functions we understand curves, surfaces or anything else
varying over a continuum. Although the continuum is often time, it might
also be other things: location, wavelength, probability, etc. Concrete values of
this continuum are sometimes referred to as time points in order to make the
description more intuitive.

We deal with the problem of classifying functional data. Suppose we observe
a binary response Y (the class) to a functional predictor X, where X ∈ X is a
function defined on the bounded interval I, i.e. X : I 7→ IR, and X is given set
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of functions. Our aim is to construct a classification rule that predicts Y to a
given functional datum X with good prediction ability and some interpretability
properties.

The classification rule is based on the sign of the so-called score function
f. The score function is an operator f : X 7→ IR that, for a given function
X, assigns a real number. Since our aim is interpretability, we consider the
score function to be a linear operator Tβ,ω with coefficient function w ∈ X and
intercept β ∈ IR :

f(X) = Tβ,wX =

∫
I
w(t)X(t)dt+ β = 〈w,X〉+ β, (1)

where 〈f, g〉 =
∫
I f(t)g(t)dt. The estimation of the coefficient function w on

the whole interval I is an infinite dimensional problem. This issue is addressed
via regularization, which simultaneously allows as to address our other concern:
interpretability.

As in standard Support Vector Machines (SVM), w(t) determines the dis-
criminative power of X(t). For example, areas where w(t) is zero or small has
none or low discrimination power, whereas for |w(t)| large, one can expect the
behavior of X(t) to influence the classification. This idea provides a clear in-
terpretation of w(t) at a particular time point t, but getting a general idea
about the coefficient function w requires it to be simple: for example, if w(t)
has unnatural wiggles all along the interval I, it would be difficult to interpret
its behavior.

In different applications the simplicity of w might be understood in different
ways. For instance, a coefficient function that is non-zero in just a few points,
could detect the few points that are more relevant in classification. This idea
has been proposed within a logistic regression model, see Lindquist & McK-
eague (2009). In other situations, one might prefer a coefficient function that is
constant over a few subintervals of I and zero on the rest. A method that de-
tects a few segments with high discriminative power have been proposed in Li &
Yu (2008) by combining feature selection, classical linear discriminant analysis
and SVM. In gene expression analysis, detection of relevant segments are also
quite desirable because relevant genes are expected to be located close to each
other along the chromosome (Rapaport et al., 2008). All this literature propose
different methodologies for different notions of interpretability. Our proposal
deals with all these notions under a common framework.

We borrow the interpretability notions proposed by James et al. (2009) for
functional linear regression. The idea is to enforce one or several derivatives of
the coefficient function w to be sparse. Which derivatives are enforced to be
sparse depends on the notion of interpretability preferred by the practitioner.
This paper proposes a new method, which we call Interpretable Support Vector
Machines for Functional Data (ISVMFD) that produces SVM-based classifiers
for functional data which have high classification accuracy and whose coefficient
function are easy to interpret. The problem is formulated as a linear program,
in the framework of L1-norm SVM.
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The outline of the paper is as follows: Section 2 reviews classic and recent
literature on the main tools related to our method: FDA and SVM. Recent
efforts to obtain interpretable SVM-based classifiers for multivariate data are
also reviewed in Section 2. In Section 3 the ISVMFD method is introduced and
it is proposed to implement it through the use of a basis. Section 4 studies
how other methods available in the literature are particular cases of ISVMFD.
A wide study with real-world datasets is presented in Section 5 and finally, in
Section 6, several conclusions are driven.

2. Literature review

The term Functional Data Analysis was first used in Ramsay & Dalzell
(1991) two decades ago. Since them, especially in the last decade, it has become
a fruitful field in statistic. The range of real world applications where the objects
can be thought as functions is as diverse as speech recognition, spectometric,
metheorology or clients segmentation to cite just a few (Algirdas & Laukaitis,
2008; Ferraty & Vieu, 2003; James et al., 2009; Laukaitis & Rackauskas, 2005).
A good review of the different FDA techniques applied to real world problems
can be found in Ramsay & Silverman (2002). For a deeper insight into the
subject see e.g. Ferraty & Vieu (2006) and Ramsay & Silverman (2005).

In spite of its continuous nature, the functions under study are usually col-
lected in a discrete manner. Hence, every function is represented by a high-
dimensional vector with highly correlated coordinates. Direct use of these multi-
variate techniques to functional data is possible, but often works bad in practice.
FDA makes use of the functional nature of the data to extend such techniques
to their functional counterparts. This way, the different classical multivariate
techniques have been extended to functional data. Principal functional com-
ponent analysis (Dauxois et al., 1982) was pioneer among these techniques.
Functional regression has also been widely studied, both in the case in which
the response is also functional (see e.g. Cuevas et al. (2002); Faraway (1997);
Liang & Zeger (1986)) , and the case in which the response is scalar (see e.g.
Báıllo & Grané (2009); Cardot & Sarda (2005); James (2002)). Classification or
discriminant analysis has also been taken into account (Ferraty & Vieu, 2003;
James & Hastie, 2001; Leng & Müller, 2005). Other interesting approaches in-
clude, for instance, a new concept of depth based on the band formed by two
functions (Lopez-Pintado & Romo, 2009).

We focus in this paper on the binary supervised classification problem, where
two classes {−1, 1} of curves need to be discriminated. SVM (Cortes & Vapnik,
1995; Moguerza & Muñoz, 2006; Vapnik, 1995) have become very popular during
the last decade. The basic idea behind SVM can be explained geometrically.
If we think in the data as living in a p−dimensional space, SVM finds the
separating hyperplane with maximal margin, i.e., the one furthest away from
the closest object. This geometrical problem is expressed as a smooth convex
problem with linear constraints, solved either in its primal or dual form. Another
interpretation can be done in terms of the regularization theory where the hinge
loss plus a quadratic regularization penalty is minimized (Hastie et al., 2001;
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Tibshirani, 1996). The most popular and powerful versions of SVM embed
the original variables into a higher dimensional space (Herbrich, 2002). This
embedding is usually implicitly specified by the choice of a function called kernel.

Extensions of SVM to functional data have been proposed in Muñoz &
González (2010) and Rossi & Villa (2006). In Muñoz & González (2010), SVM
is used to represent the functional data by projecting the original functions onto
the eigenfunctions of a Mercer Kernel. Rossi & Villa (2006) definine new classes
of kernels that take into account the functional nature of the data. Two types of
functional kernels are proposed: projection-based kernels and transformation-
based kernels. In projection-based kernels, the idea is to reduce the dimension-
ality of the input space, i.e. to apply the standard filtering approach of FDA.
Transformation-based kernels allow to take into account expert knowledge (such
as the fact that the curvatures of a function can be more discriminant than its
values in some applications).

With multivariate data, kernels provides an implicit way to get a nonlinear
classifier, by projecting the data in the higher dimensional space induced by
the kernel. The final classifier is nonlinear in the original space, but linear in
the projected space. Functional data are already high dimensional and the high
dimensionality is usually the cause of problems, hence the use of kernels to
project data in a higher dimensional space seem to be less crucial. Moreover,
the kernel-based classifier would be easy to interpret in the projected space, but
not in the original. We focus on the linear kernel in our method.

The interpretability issue in SVM has already been addressed for multivari-
ate data. The first attempts to make SVM more interpretable consist on a
two-step procedure: first, SVM is run, and then a rule, resembling the SVM-
classifier but easier to interpret, is built. See e.g. Baesens et al. (2003); Barakat
& Diederich (2006); Martens et al. (2007, 2009). One obtains an alternative
classifier which hopefully get similar predictions, but is more interpretable. Re-
cently, a two-stage iterated method is proposed for credit decision making (Li
et al., 2011), which combines feature selection and multi-criteria programming.
In Carrizosa et al. (2010, 2011), one-step SVM-based procedures are proposed
to get the relevant variables and the relevant interactions between variables.
Although one would expect classification rates to be deteriorated when look-
ing for interpretable classifiers, the experiments in Carrizosa et al. (2010, 2011)
show that their proposals are competitive with SVM. See Baesens et al. (2009);
Lessmann & Voß (2009); Van Gestel et al. (2007); Verbeke et al. (20011) for
other recent references on the topic.

3. Methodology

3.1. Interpretable Support Vector Machines for Functional Data

Let {Xu, Yu}nu=1 be a sample of n functional data Xu ∈ X together with
its class Yu ∈ {−1, 1}. The classical SVM with the linear kernel seeks for the
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coefficient function w that minimizes

minw,β‖w‖pp + C

n∑
u=1

h (yu, 〈w,Xu〉+ β) (2)

where ‖·‖p is the p−norm, h(y, s) = (1−ys)+ is the hinge loss and C is a tuning
parameter that trades off the regularization term ‖ω‖pp and the loss term.

The class is predicted as the sign of the score function given in (1). In case
of ties, i.e. f(X) = 0, prediction can be randomly assigned or following some
predefined order. Throughout this article, following a worst case approach, ties
will be considered as misclassifications.

Although the regularization with the Euclidean norm is the most common,
other norms have also been applied. For instance, the L1 norm is known to
be good when a sparse coefficient vector is desirable. Bradley & Mangasarian
(1998) demonstrated the usefulness of penalties based on the L1 norm in classifi-
cation problems. In regression, LASSO (Tibshirani, 1996) and the Dantzig selec-
tor (Candes & Tao, 2007) also successfully use the L1 norm in high-dimensional
problems.

In order to get the interpretable classifier, we propose a modified version of
SVM that we call Interpretable Support Vector Machines for Functional Data
(ISVMFD). Following the concepts of interpretability described in Section 1, we
propose to use a different regularization term that depends on the preferences
of the user for the interpretability notion. The user must select one or several
derivatives to be sparse. For example, if the user is concerned with detecting
relevant time points, the zero derivative (the actual w) is selected to be sparse.
Sparsity of the first derivative leads to constant-wise w which is useful to identify
relevant segments. A user might prefer a coefficient function that is zero over
large regions, but smooth quadratic-wise where it is nonzero. In this case,
sparsity on both the zero and the third derivative is sought.

Let D be the set of the chosen derivatives. The proposed regularization term
is
∑
d∈D ‖w(d)‖1, where ‖ · ‖1 is the L1 norm and w(d) is the d−th derivative of

w or an approximation of it. This yields to the following optimization problem,

minw∈X ,β∈IR
∑
d∈D

‖w(d)‖1 + C

n∑
u=1

h(yu, < w,Xu > +β). (3)

Note that when several derivatives are included in D, it might also be convenient
to give different weights to the different derivatives. We do not explore such
issue, but it is a straightforward modification of (3).

The set of functions X can be a wide space, such as L2, for which Problem
(3) become infinite dimensional. This issue is addressed in the next section via
the use of a basis.

3.2. Implementation through the use of a basis

We consider the selection of a p−dimensional basisB(t) = [b1(t), b2(t), . . . , bp(t)]
>,

in such way that:
w(t) = B(t)>η. (4)
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Usually, p is assumed to be low in order to provide some form of regularization
that avoids overfitting. However we work with p large enough to allow a perfect
fitting. In our method, regularization is not based on the low dimension of
B, but it is intrinsically related to the interpretability issue, as it is done by
minimizing the L1 norm of one or several derivatives of the score function w.

Our method can be applied to any high dimensional basis, such as Fourier,
splines or wavelets. To keep it simple, one might think on a simple grid basis,

bi(t) =

{
1 if t ∈ [ti−1, ti]
0 otherwise,

(5)

for all i = 1, . . . , p.
Once we have a basis B, the score function can be rephrased as:

f(Xu) = η>xu + β, (6)

where xu =
∫
I Xu(t)B(t)dt.

In principle, we do not assume the basis functions B(t) to be differentiable.
That is the case, for instance, of the base function proposed in (5). Based on
the choices of the practitioner, we are seeking a score function w that is sparse,
constant-wise, linear-wise, quadratic-wise, etc. We propose to approximate the
derivatives of w(t) by its finite differences. Let s0, s1, . . . , sr be a fine grid of
the interval I. This grid does not necessarily coincide with the grid used in
(5), although this is the option used in our numerical experiments. Denote
D0w = (w(s0), w(s1), . . . , w(sr))

> the discretization of the coefficient function
w on such grid. An approximation of the d−th derivative of w can be obtained
by the finite difference operator, that is

Ddw(sj) =
Dd−1w(sj)−Dd−1w(sj−1)

sj−sj−1
for j = 0, 1, . . . , r − d. (7)

Enforcing sparsity on Ddw = (Ddw(s0), Ddw(s1), . . . , Ddw(sr−d))
> yields a

coefficient function w whose d− th derivative is zero in all but a few points s.
Let Ad = [DdB(s0), DdB(s1), DdB(s2), . . . , DdB(sr−d)]

>, where Dd is the
finite difference operator defined in (7). Then, γ = Adη = Ddw is a good
approximation of w(d) and hence, enforcing sparsity in γ pushes w(d) to be zero
at most points t.

With this setting, (3) reduces to the vector optimization problem

minη,β
∑
d∈D

‖Adη‖1 + C

n∑
u=1

h(yu, η
>xu + β), (8)

which can be rephrased as the linear program:

min
∑
d∈D e

>
r+1−dzd + C

∑n
u=1 ξu

s.t. yu(x>u η + β) + ξu ≥ 1, u = 1, 2, . . . , n,
−zd ≤ Adη ≤ zd, d ∈ D,
ξu ≥ 0, u = 1, 2, . . . , n,

zd ∈ IRr+1−d, d ∈ D,
η ∈ IRp+1,
β ∈ IR,

(9)
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where ei is the i−dimensional vector with value one at each component.
Take for instance the case of the grid basis defined in (5). Suppose each

function Xu is defined on the interval I = [0, p] and the grid (0, 1, 2, . . . , p) is
considered. It can be easily seen that, η = (w(0), w(1), . . . , w(p))>, A0 is the
identity matrix and Ad = A>1 Ad−1 for d = 2, . . . , p. For example, A1 and A2 are
equal to:

A1 =


1 −1 0 . . . 0
0 1 −1 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . −1
0 0 0 . . . 1

 and A2 =


1 −2 1 . . . 0
0 1 −2 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . −2
0 0 0 . . . 1

 .

(10)

4. ISVMFD as a global framework of several existing methods

In this section we study how ISVMFD can be seen as a generalization of
other methods available in the literature. In particular, L1-norm SVM (Bradley
& Mangasarian, 1998; Carrizosa et al., 2010, 2011; Pedroso & Murata, 2001)
and Fused SVM (Tibshirani et al., 2005; Rapaport et al., 2008) turn out to be
particular cases of ISVMFD for particular choices of the derivatives.

For linear SVM applied to vectors instead of functions, the L1-norm SVM is
a modification of SVM where the quadratic penalty term is replaced by the L1-
norm penalty of the coefficient vector. See for instance Bradley & Mangasarian
(1998) and Zhu et al. (2003).

For simplicity in the notation suppose that I = [0, 1]. Let ti = i/p, for
i = 1, 2, . . . , p be a a regular grid on [0, 1]. Suppose the functional datum Xu is
known only on such grid. Consider that ISVMFD is used to select several time
points. This means that the set of derivatives D in (3) should be set to {0}. We
can represent the coefficient function w using a grid basis as in (5). Since Xu is
unknown in the open interval (ti−1, ti), we consider 1

pX(ti) as an approximation
of ∫

I
X(t)bi(t)dt =

∫ ti

ti−1

X(t)dt.

With this setting, application of ISVMFD to functions {Xu}nu=1 reduces to
solving (8) with

xu =
1

p
(Xu(t1), Xu(t2), . . . , Xu(tp))

>
, for all u = 1, 2, . . . , n.

In L1-norm SVM, the L1-norm penalty is known to act as a feature selection
problem because it enforces the coefficient vector to be sparse. Hence, the L1-
norm SVM is able to produce a classifier that detects the several time points
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that are more relevant for classification. L1-norm SVM applied directly to the
vectors {xu}nu=1 reduces to solving the following problem:

minω∈IRp,β∈IR‖ω‖1 + C

n∑
u=1

h(yu, ω
>x̂u + β), (11)

which is equivalent to (8).
Another method that can be seen as a particular case of ISVMFD is the

Fused SVM. Fused SVM is the SVM-based counterpart of Fused Lasso, both
proposed in Tibshirani et al. (2005). Fused Lasso is a generalization of Lasso
designed for problems whose features can be ordered in some meaningful way. It
encourages both sparsity of the coefficient vector and sparsity of the differences
between two consecutive components of the coefficient vector. Fused SVM seeks
for a coefficient vector w that optimizes the following linear program:

min
∑n
u=1 ξu

s.t. yu(x>u η + β) + ξu ≥ 1, u = 1, 2, . . . , n,∑p
j=1 |wj | ≤ s1,∑p
j=2 |wj − wj−1| ≤ s2,

ξu ≥ 0, u = 1, 2, . . . , n,
w ∈ IRp,
β ∈ IR,

(12)

where s1 and s2 are two tuning parameters that trade off the loss term and
the regularization terms (sparsity of w and sparsity of the differences). This
problem is known to be equivalent to

min
∑n
u=1 ξu + λ1

∑p
j=1 |wj |+ λ2

∑p
j=2 |wj − wj−1|

s.t. yu(x>u η + β) + ξu ≥ 1, u = 1, 2, . . . , n,
ξu ≥ 0, u = 1, 2, . . . , n,
w ∈ IRp,
β ∈ IR,

(13)
in the sense that, for any positive s1 and s2 on (12) there exist λ1, λ2 > 0, such
that (η, β, ξ) is optimal for (12) if and only if it is optimal for (13).

Taking λ1 = λ2 and C = 1
λ1
, (13) is the problem obtained when applying

ISVMFD with D = {0, 1} and the grid basis (5).

5. Illustration on real databases

5.1. Spectometric data

The Tecator1 data set consists of 215 near-infrared absorbance spectra of
meat samples. These data are recorded on a Tecator Infratec Food and Feed

1The data set is available at http://lib.stat.cmu.edu/datasets/tecator
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Analyzer working in the wavelength range 850 - 1050 nm by the Near Infrared
Transmission (NIT) principle. Each sample contains finely chopped pure meat
with different moisture, fat and protein contents. For each meat sample the
data consists of a 100 channel spectrum of absorbances and the contents of
moisture (water), fat and protein. The absorbance is -log10 of the transmittance
measured by the spectrometer. The three contents, measured in percent, are
determined by analytic chemistry.

Figure 1 shows the spectra of the samples with high (left) and low (right) fat
contents. The most important difference betweeen these two sets of curves seems
to be in their shape. High-fat curves tends to have two local minima whereas
low-fat have only one. This suggests, as pointed out previously in Rossi & Villa
(2006), to use the second derivative of the these curves instead of the original
curves. Figure 2 shows the curvature (second differences) of the curves.

For fair comparison with their results, we follow the same experimental set-
ting as in Rossi & Villa (2006). Hence, we focus in the discrimination of samples
with a low-fat content (less than 20%) versus high fat content (more than 20%).
The dataset is split into 120 spectra for learning and 95 for testing. This split-
ting is repeated 250 times. For each splitting, the training set is again divided
in two subsets: 60 spectra for learning and 60 spectra for validation. For each
training set, the SVM is run in the learning set with the trade-off parameter
of SVM, C, set to 10i for i = −1, 1, . . . , 8. The C with the best performance
in the validation set is chosen and the SVM with such C is run again in the
training set. Finally, the obtained classifier is evaluated in the testing set. This
process is repeated 250 times and the average error on the testing set over the
250 repetitions is given. In all the experiments we use CPLEX 12.1 to solve
the linear program (9). The whole algorithm is programmed in Matlab and it
is available under request.

As suggested in Figures 1 and 2, and in the empirical results obtained in
Rossi & Villa (2006) and Li & Yu (2008), the second derivative of the spectra
is more discriminative than the spectra itself. Hence, we focus on the use of
such a second spectra. To approximate the second derivative, Rossi & Villa
(2006) uses a fixed spline subspace to represent the functions so as to calculate
the seconde derivative. Instead of that, we apply the second finite diference
operator D2 defined in (7) to each function Xu. Classical linear SVM applied to
this transformed data yields an error of 1.8779%, which is better than the results
reported in Rossi & Villa (2006) for FSVM (3.28% for the linear kernel and 2.6%
for the Gaussian kernel). This example is also used in González & Muñoz (2010)
where each functional datum is projected onto a Reproducing Kernel Hilbert
Space (RKHS). Different kernels and different classifiers are tried. Among them,
the best classification error reported is 1.54%.

In each practical application, the interpretability of the coefficient function
issue might mean something different. For example, some practitioners might
prefer to get a very sparse coefficient function, whereas others might prefer a
linear-wise one. Different choices for the set of derivatives D yield different in-
terpretation effects for the coefficient function. We have tried several sensible
choices for these derivatives in order to compare them. Table 1 provides the
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interpretation effect and the classification error. The coefficient functions ob-
tained for the first 10 runs are depicted in Figures 4 and 5 (left), the first of
them is depicted on the right size to improve visualization.

D interpretation effect error
0 sparse 1.0821∗∗

0 and 1 sparse and constant-wise 1.2800∗

0 and 2 sparse and linear-wise 1.2968∗

0 and 3 sparse and quadratic-wise 1.3558∗

1 constant-wise 1.5368∗

2 linear-wise 1.8232
3 quadratic-wise 2.1600
linear FSVM none 3.28
Gaussian FSVM none 2.6
linear SVM none 1.8779
FSDA detection of segments 1.09
RKHS none 1.54

Table 1: Classification accuracy in tecator database. ∗∗ Significantly better (ttest) than all
the others; ∗ significantly better (ttest) than SVM.

The best result in terms of classification performance is obtained for the
sparse coefficient function. This error is very similar to the one provided in Li
& Yu (2008) (1.09 %) by Functional Segment Discriminant Analysis (FSDA), a
method that consists in a two-stage feature extraction followed by the applica-
tion of SVM.

Note that the horizontal axis of Figure 2 represents the wavelength channel
where the absorbance is measured. In this application, the detection of the
channels with higher discriminative power is a key problem. Figure 4 shows
that direct application of ISVMFD clearly detects channel 935 as the most dis-
criminative channel. Figure 6 shows, for every channel, the relative frequency of
being selected by ISVMFD over the 250 replications. It is clear that the chan-
nel 935 is selected almost always (99.2%), channels around it are also selected
quite often and other channels are selected with a frequency bellow 15%. In Li
& Yu (2008) a similar experiment is reported for FSDA, with 50 replications,
where the channel selected most frequently is also 935, but two other channels
905 ad 1045 are selected at remarkable frequencies too. Classical SVM, apart
from getting worse classification ability, cannot be easily used to detect relevant
channels as can be seen in Figure 3 where the coefficient vector is shown.

5.2. Phoneme

We consider the phoneme database2, previously used e.g. in Hastie et al.
(2001); Li & Yu (2008) and Rossi & Villa (2006). This dataset is part of TIMIT

2The data set is available at http://www-stat.stanford.edu/ tibs/ElemStatLearn/
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database and consits on log-periodograms of recorded phonemes of 32 ms dura-
tion (the length of each log-periodogram is 256). Following Rossi & Villa (2006)
we focus on the phonemes ‘aa’ versus ‘ao’. The curves are shown in Figure
7. We split the dataset in a training sample (with 519 ‘aa’ examples and 759
‘ao’ examples) and a testing sample (with the rest). The training sample is
then divided into a learning and a validation sample (each with the 50% of the
training sample) to choose the trade-off parameter C as in Section 5.1. The
training/testing split is repeated 20 times.

The classification errors reported in Rossi & Villa (2006) and Li & Yu (2008)
are 19.4%, 22% and 18.5% for linear FSVM, rfb FSVM and FSDA respectively.
SVM applied to the crude data yields an error of 22.08%. In González & Muñoz
(2010) the best classification error reported is 18.14% for RKHS. Table 2 pro-
vides the interpretation effect and the classification error for different choices of
D. In this example, it seems that all but SVM have comparable classification
ability. ISVMFD using a combination of sparsity of w and any other of the
subsequent derivatives are slightly better than the other approaches (FSDA,
FSVM and ISVMFD with the sparsity effect).

D interpretation effect error
0 sparse 19.3052
0 and 1 sparse and constant-wise 17.6879
0 and 2 sparse and linear-wise 17.7790
0 and 3 sparse and quadratic-wise 17.6651
1 constant-wise 18.7244
2 linear-wise 18.5080
3 quadratic-wise 18.2574
linear FSVM none 19.4
Gaussian FSVM none 22
linear SVM none 22.08
FSDA detection of segments 18.5
RKHS none 18.14

Table 2: Classification accuracy in phoneme database.

The coefficient functions obtained for the first 10 runs are depicted in Figures
9 and 10 (left), the first of them is depicted on the right size to improve visu-
alization. Since data are log-periodograms, the horizontal axis represents the
frequency. Take for instance the graphic on the bottom-right corner in Figure
9, we see how there is a region of almost irrelevant frequencies between 100 and
140. In general, the area before 50 seems to be the most relevant for classifica-
tion. There are several picks there. Around numbers 15 and 30, the coefficient
function is negative, what indicates that a high value of the log-periodogram at
these frequencies indicates a tendency to be classified in the negative class (the
‘ao’ phoneme). However, between them there is a region, from channels 23 to
26, where the coefficient is positive, indicating that high values at these num-
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bers are representative of the other class. A similar behavior can be observed
around numbers 41 and 46. None of these interpretations can be obtained with
SVM whose coefficient vector can be found in Figure 8. We can see that no area
of the channel spectrum seems more influent than another. The score function
randomly oscillates around zero along the whole curve.

5.3. Mitochondrial calcium data set

Biochemical studies suggest that higher levels of mitochondrial calcium over-
load, a measure of the mitochondrial calcium ion Ca2+ levels, indicate a better
protection against the ischemia process. The mitochondrial calcium overload
has been monitored in isolated mouse cardiac cells. In each cell, measurements
were taken every 10s during one hour (360 time instants). The mitochondrial
calcium overload was measured in two groups (control and treatment) with 45
and 44 cells, respectively. We refer to this dataset as the ca dataset. In our
experiment, we analyze the ability of the curves to discriminate between the
treatment and the control group. This dataset has been used in Báıllo et al.
(2010).

Since the number of curves is small, we follow a leave-one-out approach,
where the training set is formed by all but one curve. This split is repeated
for each curve in the dataset. Parameter C is chosen using half the training
sample as learning set, and the rest for validation. The SVM classifier directly
applied to the data achieves a classification error of 1.236%. The original data
can be seen in Figure 11 and the results of ISVMFD for different choices of
the interpretation effect can be seen in Table 3. In this case, the classification
error is identical for all the interpretation effects that encourage sparsity (zero
derivative) and it coincides with the crude SVM error. Figure 13 shows the
coefficient functions for such cases.

D interpretation effect error
0 sparse 1.1236
0 and 1 sparse and constant-wise 1.1236
0 and 2 sparse and linear-wise 1.1236
0 and 3 sparse and quadratic-wise 1.1236
1 constant-wise 4.4944
2 linear-wise 6.7416
3 quadratic-wise 5.6180
linear SVM none 1.236
k-NN (uniform metric)∗ none 21
k-NN (PLS-based semimetric)∗ none 34
nonparametric plug-in∗ none 15

Table 3: Classification accuracy in ca database. ∗ After elimination of the first part of the
data.

Looking at the curves in Figure 11, it seems that the largest differences
among the two classes are in the area after the first three minutes. In Báıllo
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et al. (2010), this part of the curves is eliminated from the study. It is stated
that in many cases the first three minutes each curve shows oscillations which
correspond to normal contractions of the cells. This part has high variability
and depends on uncontrolled factor. However, in this study we consider the
whole set of curves and let the proposed method to show the discriminative
power of each part of the curve.

The results reported by Báıllo et al. (2010) are 21%, 34% and 15%, respec-
tively for the k-NN (with uniform metric and PLS-based semimetric) and the
nonparametric plug-in discrimination rules. All of these methods were applied
after elimination of the high variability part. However, our results using SVM
and most versions of ISVMFD in the entire curves give a classification error of
1.1236%.

In this case, ISVMFD does not improve the classification error of SVM, so
the advantages are mainly in the interpretability of the results. Figure 12 shows
the coefficient function obtained by SVM. The high variability of the curves
in the first minutes is reflected in the values of the coefficient function for such
minutes. This suggests that the first part of the curves has higher discriminative
power. However, the coefficient function makes many wiggles around zero, so
it is difficult to see in what intervals this discriminative power is in favor or
against the positive class. Let us take a look at Figure 13, where the coefficient
functions obtained by ISVMFD is shown. If we are interested only in detecting
a few discriminative time points, the curves at the top seems to do a good work.
This case, a convenient choice is D = {0}, which detects the three most relevant
values at the first part of the time interval, and then several others less relevant
ones. The two first relevant time points, sorted along the time of occurrence,
have an impact in favor of the negative class, whereas the third one has impact
in favor of the positive class. Hence, ISVMFD is useful to detect the relevant
exact time points and its impact on classification.

The interpretation of the relevance of several exact time points might not
suit the doctors for medical interpretation. In case they think that the influence
of the mitochondrial calcium overload over the class changes smoothly over time,
other choices of D better suits their needs. For example, looking at the bottom
of Figure 13, i.e. D = {0, 3}, we observe that the score function is zero in large
areas of the time interval, and quadratic-wise in the rest. We again see that
the most relevant part is in the first part of the curve, but we also observe
something more in its behavior. It starts impacting in favor of the negative
class, and this impact is increasing until a pick where it starts to decrease until
it reaches another pick where the impact in favor of the positive class is the
highest, and again this impact decreases until it reaches an area of no impact
either in favor of the negative nor the positive class. A slight impact can be
observed later on, around the time 210.

The good error rates obtained when using the whole curve, compared with
the results in Báıllo et al. (2010), supports the conclusion about the relevance
of the first part of the curves. We run also SVM eliminating the first part of
the curves and obtained a classification error of 4.49%, that is worse that the
results obtained using SVM on the whole curves.
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5.4. Weather data

The weather dataset consists of one year of daily temperature measurements
from each 35 Canadian weather stations. Two experiments are conducted with
this data, considering two different classification tasks: regions (Atlantic cli-
mate vs. the rest) and rain (two classes are consider depending if the total
yearly amount of precipitations are above or below 600). This experiment is
inspired in the good interpretability results obtained in James et al. (2009) for
functional regression.

In this experiment, we follow a leave-one-out approach, where the training
set is formed by all but one curve. This split is repeated for each curve in the
dataset. Parameter C is chosen using half the training sample as learning set,
and the rest for validation.

For the classification of regions, the original data can be seen in Figure 15
and the results of ISVMFD for different choices of the interpretation effect can
be seen in Table 4. In this case, the best classification errors are obtained for
D = {0}, D = {0, 2} and D = {0, 3}, which corresponds to sparse function,
combination of sparse together with piece-wise linear function and combination
of sparse together with piece-wise quadratic function. The SVM classifier di-
rectly applied to the data achieves a classification error of 5.7143%. Figure 17
shows the coefficient functions for different D. For instance, in the case in which
sparsity and piece-wise linearity is encouraged, D = {0, 2}, we observe two main
picks: the first one in February, impacting in favor of the negative class, and
the second at the end of November, impacting in favor on the positive class.
In contrast, the coefficient function obtained by SVM, shown in Figure 16, is
difficult to interpret.

D interpretation effect error
0 sparse 2.8571
0 and 1 sparse and constant-wise 5.7143
0 and 2 sparse and linear-wise 2.8571
0 and 3 sparse and quadratic-wise 2.8571
1 constant-wise 8.5714
2 linear-wise 11.4286
3 quadratic-wise 17.1429
SVM none 5.7143

Table 4: Classification accuracy in regions database.

For the classification of rain, the original data can be seen in Figure 19 and
the results of ISVMFD for different choices of the interpretation effect can be
seen in Table 5. In this case, contrary to the situation in previous examples, we
face a situation in which encouraging sparsity yields, in general, worse results in
terms of error rates. The best result is obtained for D = {2}, which encourages
piece-wise linearity, without sparsity of the coefficient function itself. In Figure
22, we see how the impact in favor of the positive class increases until mid

14



March and then decreases until mid September, where it starts to increase
again. Again, the interpretation of the coefficient function obtained by SVM,
shown in Figure 20, is quite difficult.

D interpretation effect error
0 sparse 11.4286
0 and 1 sparse and constant-wise 11.4286
0 and 2 sparse and linear-wise 11.4286
0 and 3 sparse and quadratic-wise 11.4286
1 constant-wise 5.7143
2 linear-wise 2.8571
3 quadratic-wise 5.7143
SVM none 8.5714

Table 5: Classification accuracy in rain database.

6. Conclusions

In this paper we face the problem of obtaining an SVM-based classifier for
functional data that has good classification ability and provides a classifier easy
to interpret. The interpretability issue might strongly depend on the applica-
tions and the preferences of the user. Hence, we consider a flexible framework
where different properties of the coefficient function are allowed. ISVMFD gen-
eralizes two other proposals available in the literature: the L1-norm SVM and
the Fused SVM. The experiments on real-world datasets show that ISVMFD
produces an interpretable classifier that is competitive with SVM in terms of
classification ability and similar in computational times.
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Figure 1: Representation of original data for tecator dataset.

Figure 2: Representation of derivatives of the curves for tecator dataset.

Figure 3: Coefficient functions of SVM for tecator dataset.
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Figure 4: Coefficient functions of ISVMFD for tecator dataset. Part I.
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Figure 5: Coefficient functions of ISVMFD for tecator dataset. Part II.
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Figure 6: Proportion of times that every channel is detected as important by the classifier
tecator dataset.

Figure 7: Representation of data for phoneme dataset.

Figure 8: Coefficient functions of SVM for phoneme dataset.
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Figure 9: Coefficient functions of ISVMFD for phoneme dataset. Part I.

23



Figure 10: Coefficient functions of ISVMFD for phoneme dataset. Part II.
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Figure 11: Representation of data for ca dataset.

Figure 12: Coefficient functions of SVM for ca dataset.

25



Figure 13: Coefficient functions of ISVMFD for ca dataset. Part I.
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Figure 14: Coefficient functions of ISVMFD for ca dataset. Part II.
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Figure 15: Representation of data for Regions dataset.

Figure 16: Coefficient functions of SVM for Regions dataset.
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Figure 17: Coefficient functions of ISVMFD for Regions dataset. Part I.

29



Figure 18: Coefficient functions of ISVMFD for Regions dataset. Part II.
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Figure 19: Representation of data for Rain dataset.

Figure 20: Coefficient functions of SVM for Rain dataset.
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Figure 21: Coefficient functions of ISVMFD for Rain dataset. Part I.
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Figure 22: Coefficient functions of ISVMFD for Rain dataset. Part II.
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