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New roles for the major human 3'–5' exonuclease TREX1 in human
disease
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Louis, Missouri USA
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Abstract
Aicardi-Goutières syndrome (AGS), Systemic Lupus Erythematosus (SLE), Familial Chilblain
Lupus (FCL) and Retinal Vasculopathy and Cerebral Leukodystrophy (RVCL) {a new term
encompassing three independently described conditions with a common etiology—Cerebroretinal
Vasculopathy (CRV), Hereditary Vascular Retinopathy (HVR) and Hereditary Endotheliopathy,
Retinopathy and Nephropathy (HERNS)}—have previously been regarded as distinct entities.
However, recent genetic analysis has demonstrated that each of these diseases maps to chromosome
3p21 and can be caused by mutations in TREX1, the major human 3'–5' exonuclease. In this review,
we discuss the putative functions of TREX1 in relationship to the clinical, genetic and functional
characteristics of each of these conditions.
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Introduction
Recently, mutations in the ubiquitously expressed human 3'–5' exonuclease TREX1 (DNase
III) have been linked to four apparently independent diseases. In the case of Cerebroretinal
Vasculopathy (CRV), Hereditary Endotheliopathy, Retinopathy and Nephropathy (HERNS)
and Hereditary Vascular Retinopathy (HVR), a common etiology was first suspected based on
clinical similarities and further supported when all showed evidence of linkage to a single locus
on chromosome 3p21.1 We now know that these diseases consolidate to a single autosomal
dominant inherited entity named Retinal Vasculopathy and Cerebral Leukodystrophy (RVCL)
in which there are mutations affecting the carboxyl-terminus of TREX1.2 The other three
diseases, Aicardi-Goutières syndrome (AGS), Systemic Lupus Erythematosus (SLE) and
Familial Chilblain Lupus (FCL), share some clinical similarity but appear to be distinct clinical
conditions. AGS, a severe, usually lethal disease, resembling an intrauterine viral infection has
been associated with recessive mutations in TREX1 that impair its exonuclease activity.3 FCL
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is a rare, inherited form of lupus with prominent skin manifestations in which autosomal
dominant mutations in TREX1 that decrease exonuclease activity have been described.4,5
Mutations in TREX1 have also been identified in ~3% of patients with SLE, a complex disease
with diverse, systemic manifestations predominantly affecting women of child-bearing age.6
The goal of this review is to collate the existing information on these genetically related diseases
with an emphasis on how the mutations in TREX1 lead to the disease state.

Nucleases Role in Cell Biology
Deoxyribonucleases (DNA nucleases) are essential to maintain genome stability and are
involved in processes such as DNA replication, repair and recombination.7 These enzymes can
be divided into two classes: endonucleases that hydrolyse the deoxyribose phosphodiester
backbone within the DNA strand and exonucleases that hydrolyse the phosphodiester bonds
at the DNA ends. Nucleases have selective affinity for single-stranded (ss) or double-stranded
(ds) DNA. They differ in their mode of action (5'–3' or 3'–5' direction) and their main reaction
products (5' mono- or dinucleotides and 3' mononucleotides).8

DNA replication during mitosis follows a complex sequence of events in which polymerases
are responsible for the accurate duplication of the parental chromosomes. In mammalian cells,
the estimated spontaneous mutation rate is 10−10–10−12 per cell division.9 This is, however,
orders of magnitudes lower than the mutation rate of DNA polymerases such as Pol α and Pol
β (10−4–10−5).10 They are not accurate enough to replicate our 3 billion base pair genome
without deleterious consequences. Such a high mutation rate would be incompatible with life
and is why some DNA polymerases (e.g., Pols γ, δ and ε) contain additional 3'–5' exonuclease
activity. This “intrinsic” proofreading activity enables the polymerases to enhance the accuracy
of DNA synthesis by removing incorrectly incorporated nucleotides before the replication
process is reinitiated.

A second class of exonucleases is considered autonomous. These enzymes can hydrolyse their
target sequences independently and may also assist DNA polymerases lacking this activity
(e.g., Pol α) to increase their fidelity under normal conditions or in cases of genotoxic cell
stress.9 TREX1 is the most abundant DNA 3'–5' exonuclease in mammalian cells.8,11

TREX1 Genetics and Structure
TREX1 (former DNase III, Three prime Repair EXonuclease) was identified in 1999 by Hoss
et al.12 and Mazur and Perrino.13 The gene for TREX1 consists of a single exon and encodes
a protein of 314 amino acids. Sequence homology places TREX1 in the DnaQ 3'–5' exonuclease
family.14–16 The characteristic features of this family of exonucleases are three conserved
sequence motifs, Exo I, Exo II and Exo III, which form the active site of the enzyme14–16 (Fig.
1). Recent crystal structures of murine Trex1 with DNA17 demonstrate a dimer with the active
sites on opposing surfaces, allowing the potential for concurrent interaction with two 3' DNA
ends. These structures demonstrate close similarity with another DnaQ 3'–5' exonuclease, the
Escherichia coli DNA polymerase I. In addition to these three exonuclease motifs, TREX1 has
a highly hydrophobic carboxyl-terminal region which is predicted to form a transmembrane
helix.6,18 Deletion mutagenesis has demonstrated that this region is important in intracellular
localization but has no role in the catalytic function.2,6 The TREX1 protein also contains a
proline-rich sequence (PPII helix).17,18 This motif has been reported to play a crucial role in
protein-protein interactions, specifically with Src homology 3, WW and EVH1 domains.19
The structure of TREX1 indicates that the PPII helix is surface exposed and available for protein
interactions.17,18 This has been hypothesized to account for the interaction of TREX1 with
the SET complex17 (see below).

Kavanagh et al. Page 2

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



TREX1 Functions
Elucidation of the definitive in vivo function of TREX1 has proved problematic. TREX1 is an
autonomous non-processive 3'–5' DNA-specific exonuclease with a preference for ssDNA or
mispaired 3' termini.12,13,20,21 Further analysis has suggested that, unusual for an exonuclease,
TREX1 has a significant preference for particular DNA sequences and that this correlates with
exonuclease activity.18 This exonuclease function, in addition to slight homology with known
editing enzymes, suggests that it may serve a DNA-editing role in DNA replication or gap
filling during DNA repair. However, this has not been borne out by an increase in spontaneous
mutation rate or a higher cancer incidence in the Trex1 knockout mouse as would have been
predicted if TREX1 served an obligatory role of editing mismatched 3' termini generated during
DNA repair or DNA replication. Instead, the Trex1 knockout mouse displayed an autoimmune-
like inflammatory myocarditis leading to a dilated cardiomyopathy and a dramatically reduced
lifespan.22

Another role for TREX1 has been suggested by its association with the SET complex.23 This
protein complex is involved in granzyme A-mediated cell death, a caspase-independent
pathway which involves ssDNA damage. The killer lymphocyte associated protease, granzyme
A, causes mitochondrial damage and superoxide generation that induces nuclear translocation
of the SET complex. It then cleaves the NM23-H1 inhibitor, SET, freeing NM23-H1 to make
a ssDNA cut (introduces a DNA nick) that is then extended by TREX1. Cells with silenced
TREX1 are relatively resistant to apoptotic cell death but remain sensitive to the caspase-
activating granzyme B.23

A role for TREX1 in cell homeostasis has recently been described by Yang and colleagues.
24 They demonstrated that TREX1 deficiency results in constitutive activation of the ATM-
dependent DNA damage checkpoint. This results in impaired G1/S transition in Trex1-deficient
cells. Additionally, a 60–65 bp ssDNA species accumulates in the cytoplasm. Importantly,
similar phenotypic observations were obtained from both Trex1-deficient mouse cells as well
as from patient cells homozygous for a non-functional mutant form of the protein. These roles
of TREX1 have been postulated to be critical in controlling autoimmunity24,25 and will be
discussed later.

TREX1 versus TREX2
TREX1 has a homologue, TREX2, which has ~40% amino acid sequence identity with
TREX1.13,26 TREX2 is also an autonomous DNA 3'–5' exonuclease,13,26 important for cell
proliferation.26 TREX2 lacks the ~75 amino acid carboxyl-terminal hydrophobic domain found
in TREX1. This region is responsible for intracellular localization and contains the non-
repetitive proline-rich region which plays a crucial role in protein-protein interactions. TREX2
contains a conserved DNA binding loop positioned adjacent to the active site that has a
sequence distinct from the corresponding loop in the TREX1 enzyme. These differences
suggest non-overlapping physiological roles for these proteins.

Aicardi-Goutières Syndrome
In 1984, the autosomal recessive Aicardi-Goutières syndrome (AGS)(OMIM 225750) was first
described in eight children from five unrelated families who developed progressive
encephalopathy of early onset, brain atrophy, demyelination, basal ganglia calcifications and
chronic cerebrospinal fluid (CSF) lymphocytosis.27 These clinical findings mimic those
observed with intrauterine infections but evaluation for an infectious etiology was negative.
Affected children typically present before 4 months of age with failure to progress in motor
and social skills while one-third of cases present later, between 4 and 12 months of age, with
loss of previously acquired motor and mental skills.28 Neurological manifestations also
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include spasticity and an acquired microcephaly. Extra-neurological features observed in a
subset of patients include hepatosplenomegaly, anemia, thrombocytopenia, elevated liver
transaminases and chilblains (ulcerating lesions on fingers, toes or ear lobes).28 Due to the
similarity between AGS and intrauterine infection, levels of interferon α (IFNα) were measured
and found to be elevated in the CSF of affected infants.29

Two other familial diseases, the microcephaly and intracranial calcification syndrome (MICS)
30,31 and Cree Indian encephalitis,32 which were initially described as separate disorders, have
considerable overlap with AGS. All three are inherited as autosomal recessive diseases, can
have increased levels of IFNα in the CSF, and manifest various extra-neurological findings
such as hepatosplenomegaly, thrombocytopenia, elevated liver transaminases and chilblains.
33,34 Furthermore, Cree encephalitis has been found to be allelic with AGS.3,34 Thus, AGS,
MICS and Cree encephalitis appear to represent the same disorder.

Several cases in the literature have also reported an overlap between AGS and infantile systemic
lupus erythematosus (SLE).35–37 In addition to findings compatible with the diagnosis of
AGS, the affected children had autoantibodies typically found in lupus with antigenic
specificity for cardiolipin, ssDNA, dsDNA and RNA-protein complexes. Notably, neuro-lupus
has also been associated with increased levels of IFNα in the CSF despite being a non-infectious
disorder.38

The recent elucidation of the genetic basis for AGS provides a rationale for its clinical diversity.
TREX1 mutations were first demonstrated to cause AGS by Crow et al. (AGS1, OMIM
225750).3 Functional characterization of only a few AGS associated TREX1 mutations have
been performed3,5,13 (see Table 1); however, in the recessive mutations examined, a defect in
exonuclease activity was demonstrated. This is further supported by Yang et al., who have
demonstrated the presence of ssDNA in Trex1-null cells, findings also seen in AGS patient
cells carrying homozygous mutations in TREX1.24

Although AGS is classically inherited in an autosomal recessive manner, there is an isolated
report of an individual with an autosomal dominant form of the disease caused by a TREX1
mutation (AGS5; OMIM 610905).5 This individual possessed a D200N mutation which, on
functional analysis, demonstrated close to normal levels of exonuclease activity. Although the
mechanism of action remains to be established, it is proposed that this mutant alters the
specificity of TREX1 or interferes with protein-protein interactions.

In addition to mutations in TREX1, mutations in three other genes [RNASEH2A (AGS4, OMIM
606034); RNASEH2B (AGS2, OMIM 610326); RNASEH2C (AGS3, OMIM 610330)] have
been reported to cause AGS.39 RNase H2 is the principal source of ribonuclease activity in the
cell,40,41 however, the mechanism through which a reduction in ribonuclease activity leads
to disease remains speculative. Increased amounts of RNA-DNA hybrids stimulating an innate
immune response with overproduction of IFNα have been hypothesized. In addition to these
four causative genes, additional genes responsible for AGS are suggested by a cohort of
affected individuals in whom mutations have not been identified.42

Analysis of a large cohort of AGS has revealed genotype:phenotype correlations in the disease.
42 For instance, individuals with TREX1 mutations tend to present at birth while individuals
with mutations in RNASEH2B present later. AGS caused by RNASEH2B mutations also seems
to have a milder phenotype with a lower mortality and relatively preserved intellectual function.
42

Kavanagh et al. Page 4

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Familial Chilblain Lupus
Familial chilblain lupus (FCL, OMIM 610448) is a rare cutaneous form of SLE. It is an
autosomal dominant disease in which affected members present in early childhood with painful
bluish-red inflammatory cutaneous lesions, typically on fingers, toes, ear helices, nose and
cheeks. These lesions worsen with cold or wet exposure. They usually heal without scarring
but may ulcerate leading to atrophic and hypopigmented skin and, in severe cases, to destruction
of interphalangeal joints and distal toes.4,5,43 Some affected individuals also have antinuclear
antibodies and immune complexes.4,5,43 Progression to SLE is documented in 18% of
individuals with chilblain lupus44 but has not yet been described in individuals with FCL.

A SNP-based genome-wide linkage analysis mapped FCL to chromosome 3p and a subsequent
haplotype analysis narrowed the locus to 3p21-14, an area that includes the gene for TREX1.
4 Although FCL is not associated with neurological pathology, there is some overlap with AGS
in which some affected individuals develop chilblains and autoantibodies. Hence, TREX1 was
considered a plausible candidate gene and sequencing of affected individuals revealed several
mutations.

Rice et al.5 reported a family with compound heterozygous mutations in three siblings (c.
375dupT/F17S), though the disease segregated with only the c.375dupT mutation which was
assumed to be inherited from the unstudied affected father. The c.375dupT mutation resulted
in a truncated protein missing the last 188 amino acids, which would be predicted to be
functionally significant. The mother carrying the F17S mutation was unaffected. This change
is assumed to be a rare polymorphism. Exonuclease assays on lymphoblastoid cell lines derived
from the affected individuals demonstrate decreased enzymatic activity.5

Lee-Kirsch et al.43 described a heterozygous mutation (D18N) in a family with FCL. Functional
analysis of this mutation revealed a loss of exonuclease function. Further analysis demonstrated
reduced sensitivity to granzyme A-mediated cell death in patient-derived lymphoblastoid cell
lines.

Retinal Vasculopathy and Cerebral Leukodystrophy
Cerebroretinal Vasculopathy (CRV) is an inherited disorder first described by Grand et al., in
1988.45 It begins in middle age with predominant central nervous system, especially retinal,
involvement. Study of eight patients spanning three generations in the initial pedigree showed
100% penetrance with an autosomal dominant mode of inheritance. The disease manifestations
begin during the fourth or fifth decade and there is 100% mortality over a 5 to 10 year period
secondary to progressive neurological decline. Typical ophthalmologic findings on retinal
fluorescein angiograms are capillary dropouts, particularly in the macular region, leading to
loss of central vision, prominent juxta-foveolar capillary obliteration and telangiectasias.
Neurological manifestations commonly observed were transient ischemic attacks and strokes
with motor and sensory loss, cognitive dysfunction, headaches, personality disorders,
depression and anxiety. CT scans often show mass lesions with displacement of the surrounding
structures and central contrast enhancement commonly in the frontoparietal region.
Histopathology demonstrates coagulative necrosis secondary to an obliterative vasculopathy
and minimal inflammatory infiltrate (“as if the brain had been radiated”). Autopsies
demonstrate involvement of pons, cerebellum and basal ganglia in addition to the frontoparietal
region.45 The CRV family has now been followed for over two decades (Atkinson JP,
unpublished data). Hepatic and renal findings are not as clinically prominent as those seen in
the nervous system but noteworthy from a clinical point of view in about one-third. Elevation
of liver alkaline phosphatase is common and at autopsy, nodular regenerative hyperplasia is
found. Renal dysfunction of a glomerular origin with proteinuria and elevation of creatinine is
also observed. Renal histopathology is most suggestive of accelerated arteriolonephrosclerosis.
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Small vessel type gastrointestinal bleeding is also seen. Taken together, these data implicate
small vessel vasculopathy leading to premature infarction and necrosis of the tissue.

A smaller family of Ashkenazi Jewish ancestry was next reported, in which the affected
individuals had evidence of retinal vasculopathy on fluorescein angiograms and periventricular
white matter lesions on brain MRI.46 No follow-up on this family was possible. However, in
the original report45 there was also a patient of Ashkenazi Jewish origin with probable CRV
whose disease has now been confirmed genetically.2 In 1999 and 2000, Weil et al.,47 and
Niedermayer et al.,48 respectively reported two other families thought to have CRV.

In 1990, Storimans et al. published a preliminary report describing Hereditary Vascular
Retinopathy (HVR), a syndrome of retinal vasculopathy, migraines and Raynaud’s phenomena
in a Dutch kindred.49 It was further described by Terwindt et al., in 1998.50 As initially
reported, these patients did not appear to have pseudotumors, renal dysfunction or shortened
life expectancy similar to that seen in CRV patients. Furthermore, the visual acuity in these
patients was largely preserved due to predominant peripheral retinal involvement. 50 However,
further follow-up indicates that the clinical course is similar to the CRV and HERNS kindreds
(see below; from Arn MJM van den Maagdenberg to JPA, personal communication).

In 1997, Jen et al., described a Chinese American family with 11 affected members spanning
three generations who manifested a CRV-like illness.51 This group named the disease
Hereditary Endotheliopathy with Retinopathy, Nephropathy and Stroke (HERNS).
Ultrastructural studies showed distinctive multilaminated vascular basement membrane in the
brain and other tissues, including the kidney, gastrointestinal tract and skin. Genetic analysis
ruled out linkage to the cerebral autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL) locus on chromosome 19.51

A whole genome screen in the extended Dutch family found probable linkage to 3p21.1-
p21.3.1 Genetic analysis of patients from the CRV and HERNS kindreds demonstrated linkage
to the same region. In 2005, Cohn et al., reported a family diagnosed with HERNS and
prominent peripheral retinal involvement who also mapped to 3p21.1-p21.3.52 In 2007, CRV,
HERNS and HVR were grouped together as Retinal Vasculopathy with Cerebral
Leukodystrophy (RVCL, OMIM 192315) and the causative gene mutations were identified as
carboxylterminus frame shifts in TREX1.2 These mutant TREX1 forms (lacking their native
carboxyl-termini), no longer localize to their usual perinuclear site.2 Instead, they are now
apparently capable of freely diffusing throughout the cell (Fig. 2C and corresponding intensity
profiles D). Their distribution profile is indistinguishable from that of the fluorescent protein
alone (Fig. 2A). Importantly, the exonuclease activity of these proteins is fully preserved. In
contrast, fluorescent protein-tagged wild type TREX1 or TREX1 with deficient enzymatic
activity are concentrated in the expected perinuclear space and are not detectable in the
cytoplasm or nucleus (Fig. 2B).

A recent report by Winkler et al., details a familial disease they call Hereditary Systemic
Angiopathy (HSA) which bears a remarkable resemblance to RVCL.53 The affected
individuals present in the fourth to fifth decade with visual disturbances, migraine-like
headaches, and neurological symptoms including seizures, motor paresis and cognitive decline.
As the disease progresses, some develop renal and/or hepatic dysfunction. Furthermore, the
pathologic findings correlate with those seen in RVCL. Although the authors had included
CRV, HVR and HERNS in their differential diagnosis as separate entities, it is now clear that
all three represent the spectrum encompassing RVCL and HSA would also seem to fall within
that spectrum.
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Systemic Lupus Erythematosus and Sjogren’s Syndrome
Systemic Lupus Erythematosus (SLE) (OMIM152700) and Sjögren’s syndrome (SS) (OMIM
270150) are prototypes of autoimmune diseases because of the generation of a wide array of
autoantibodies. SLE is clinically very heterogeneous and linkage studies and candidate gene
studies have suggested many genes are involved in its pathogenesis (Table 1).54,55

As with AGS, SLE and SS are notable for the generation of antinuclear antibodies and an
IFNα activation signature. Rice et al. reported that at least one parent of a patient with AGS
had SLE.5 As a result of these similarities and the autoimmune phenotype of the Trex1 knockout
mouse, Lee-Kirsch et al. sequenced the coding regions of TREX1 in lupus cohorts from the
United Kingdom, Germany and Finland and discovered mutations in ~3% of individuals with
SLE.6 Subsequent work also demonstrated TREX1 mutations in individuals with SS.6

Mutations in SLE were seen throughout the TREX1 gene. Although functional analysis of the
missense changes was not performed, at least one of the mutants described in SLE had been
previously reported in AGS, R114H. Functional assessment of this mutant demonstrated
decreased exonuclease activity, establishing that at least some of the SLE mutants affect
enzymatic function. 36 Other missense mutants, however, lie outside the catalytic domain and
their functional significance remains unclear.6

Two frameshift mutations were also observed in SLE. Analogous to the mutations reported in
RVCL, these mutations would not be predicted to disrupt enzymatic function. Functional
analysis of one of these mutants, D272fs, failed to show any major enzymatic deficiency;
however, as with all mutations seen in RVCL, the frameshift mutations in SLE also altered
subcellular localization. Interestingly, the two mutants observed in SLE had different
intracellular distributions: the P212fs mutant distributed throughout the cytoplasm in
endosomal vesicles while the D272fs mutant was almost exclusively localized within the
nucleus, possibly in association with subnuclear organelles.6

In a recent study by Hur et al., although no conclusive association between TREX1
polymorphisms and SLE was demonstrated, certain TREX1 polymorphisms were protective
against the development of autoantibodies.56

Discussion
This review has described four independent conditions found to have a common underlying
etiology through mutations in the major mammalian autonomous 3'–5' exonuclease TREX1.
Although mutations in TREX1 are connected to all four conditions, there are differences with
respect to the functional changes which allow some genotype:phenotype correlations to be
defined (Table 2).

Homozygous TREX1 mutations cause the typical autosomal recessive form of AGS. Where
functional analysis has been performed, these mutations result in decreased exonuclease
function.3,5,17 Only one documented case of autosomal dominant AGS has been described in
the literature. Although the reported mutation does not alter exonuclease activity in vitro, it
may be non-functional in vivo.5

FCL is associated with heterozygous mutations in TREX1. In all individuals examined these
mutations result in reduced exonuclease activity.5,43 Some heterozygous parents of children
with AGS have been reported to present with chilblains following cold exposure.5 Although
a much milder condition than AGS, FCL has sufficient phenotypic overlap (chilblain-like
lesions and antinuclear antibodies) to suggest that the difference in these diseases may be a
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gene dosage effect. Therefore it appears that a partial loss of exonuclease activity is sufficient
to cause FCL

RVCL is also associated with heterozygous mutations in TREX1. In contrast to the
heterozygous mutations characterizing FCL, all the mutations described are in the carboxyl-
terminus of TREX1 and disrupt the predicted transmembrane domain.6,18 They do not diminish
the enzymatic function of TREX1 but alter its intracellular localization.2 We speculate that the
phenotype seen in RVCL is due to loss of the carboxyl-terminus which results in dissemination
of TREX1 throughout the cell. We hypothesize that this leads to a detrimental gain-of-function
phenotype. Alternatively, the mutations could just result in insufficient quantities of TREX1
in the correct location to fulfill its physiological role. How the latter explanation would fit with
the phenotypic differences seen between RVCL and FCL is unclear.

Heterozygous mutations in TREX1 have also been identified in a small number of SLE patients.
Unlike the mutations in FCL which disrupt exonuclease function and RVCL which disrupt
intracellular localization, the mutations observed in SLE are diverse. Some mutations disrupt
exonuclease activity, others result in altered intracellular localization, and many are of
unknown significance. SLE is a complex clinical disease and heterozygous mutations in
TREX1 appear to account for only ~3% of cases.6 Detailed phenotypic examination of these
individuals may result in a clearer understanding of the differences among RVCL, AGS and
FCL.

These conditions also provide a window into a better understanding of the in vivo roles of
TREX1. In the 10 years since TREX1 was discovered, there has been much speculation on the
cellular function of this enzyme. Based on its involvement in these human diseases and from
knockout animal studies, it seems that TREX1 does not have a requisite role in DNA repair.
In contrast, it appears to be involved in the regulation of immunity through several non-
mutually exclusive pathways.

Yang et al., have recently demonstrated that TREX1-deficient cells accumulate ~60 bp ssDNA
species in the cytoplasm.24 Such DNA intermediates are not exclusively generated during DNA
replication. For example, DNA viruses and retroviruses are additional sources of DNA species
that could accumulate if a degrading enzyme is lacking. In the absence of TREX1, the DNA
intermediates required for the viral replication cycle could accumulate and become
immunostimulatory. A similar scenario applies to active endogeneous retroviruses (and
retrotransposons) residing in the human genome.25

Cell surveillance for viral DNA and RNA is in the form of Toll-like receptors, some of which
reside in the cytoplasm.57 Under normal physiological conditions host DNA is sequestered
from these receptors in the nucleus or mitochondria. It is possible that the cytoplasmic ssDNA
plays a pathogenic role by mimicking viral DNA and stimulating these receptors. This will
result in the production of antiviral cytokines including IFNα.

It is intriguing that both SLE and AGS are associated with high levels of IFNα. SLE has long
been associated with high serum IFNα levels58 and these levels correlate with disease activity
and severity.58–60 Evidence that the raised IFNα levels may be important in disease
pathogenesis comes from individuals treated with IFNα for malignancies and chronic hepatitis
C who have been seen to develop autoimmune diseases including SLE.61,62 Mouse models of
SLE also lend weight to a pathogenic role for IFNα. Administration of IFNα, either
exogenously,63,64 through an adenovirus vector,65 or by injection of IFNα-inducing agents66

in mouse models of lupus have demonstrated increased severity of disease. Additionally, some
lupus-prone mice lacking the Type I interferon receptor have a milder disease phenotype.67,
68 A role for IFNα in the pathogenesis of AGS is suggested by the reproduction of the
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neuropathology in transgenic mice with astrocytes chronically producing IFNα who develop
a progressive inflammatory encephalopathy, calcifications and neurodegeneration.69

Although no studies have examined IFNα in RVCL, several pieces of evidence may suggest
such an association. Although distinct from the retinopathy of RVCL, there is a retinopathy
associated with interferon that is characterized by cotton wool spots, retinal hemorrhages and
microaneurysms.70–74 Migraine and Raynaud’s phenomenon are also side-effects of IFNα
treatment and are seen in RVCL. If the pathogenic role of IFNα in RVCL can be confirmed,
then this would at last provide some hope for a condition which currently has a grim prognosis.
Chloroquine and glucocorticoids have been used in SLE and inhibit IFNα production75 and
the IFN signature76 respectively. Humanized monoclonal anti-IFNα antibodies77 and soluble
IFNα receptors78 may also become therapeutic options. However, further investigation is
required to confirm a pathogenic role for IFNα in RVCL as IFNα may not be the only link
between TREX1 mutations and immunity.

Yang et al. also demonstrated that Trex1-deficient cells had constitutive activation of the ATM-
dependent DNA-damage checkpoint resulting in impaired G1/S transition.24 This has been
hypothesized to impair T-lymphocyte development which may reduce their ability to regulate
self tolerance.25 TREX1 has also been shown to be involved in granzyme A-mediated cell
death. Granzyme A is released by cytotoxic T-cells and NK-cells. It has been demonstrated
that granzyme A-mediated cell death is impaired in FCL43 which may lead to the retention of
autoreactive lymphocytes resulting in disease.

Thus, the last two years have seen the remarkable discovery of mutations in one gene,
TREX1, which are responsible for four distinct clinical diseases. They have, however, areas of
clinical and genetic overlap which point to a common pathological mechanism. Further
definition of the physiological and pathological role of TREX1 will hopefully lead to treatment
advances for all these conditions.

Abbreviations

AGS aicardi-goutières syndrome

SLE systemic lupus erythematosus

FCL familial chilblain lupus

RVCL retinal vasculopathy and cerebral leukodystrophy

CRV cerebroretinal vasculopathy

HVR hereditary vascular retinopathy

HERNS hereditary endotheliopathy, retinopathy and nephropathy

HSA hereditary systemic angiopathy

References
1. Ophoff RA, DeYoung J, Service SK, et al. Hereditary vascular retinopathy, cerebroretinal vasculopathy

and hereditary endotheliopathy with retinopathy, nephropathy and stroke map to a single locus on
chromosome 3p21.1-p21.3. Am J Hum Genet 2001;69:447–453. [PubMed: 11438888]

2. Richards A, van den Maagdenberg AM, Jen JC, et al. Truncations in the carboxyl-terminus of human
3'–5' DNA exonuclear TREX1 cause autosomal dominant retinal vasculopathy with cerebral
leukodystrophy. Nat Genet 2007;39:1068–1070. [PubMed: 17660820]

Kavanagh et al. Page 9

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3’–5’ DNA exonuclease
TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 2006;38:917–920. [PubMed:
16845398]

4. Lee-Kirsch MA, Gong M, Schulz H, et al. Familial chilblain lupus, a monogenic form of cutaneous
lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 2006;79:731–737. [PubMed:
16960810]

5. Rice G, Newman WG, Dean J, et al. Heterozygous mutations in TREX1 cause familial Chilblain lupus
and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 2007;80:811–815. [PubMed: 17357087]

6. Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3'–5' DNA
exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007;39:1065–
1067. [PubMed: 17660818]

7. Hubscher U, Maga G, Spadari S. Eukaryotic DNA polymerases. Annu Rev Biochem 2002;71:133–
163. [PubMed: 12045093]

8. Lindahl T, Gally JA, Edelman GM. Properties of deoxyribonuclease 3 from mammalian tissues. J Biol
Chem 1969;244:5014–5019. [PubMed: 5824576]

9. Shevelev IV, Hubscher U. The 3'–5' exonucleases. Nat Rev Mol Cell Biol 2002;3:364–376. [PubMed:
11988770]

10. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics
1998;148:1667–1686. [PubMed: 9560386]

11. Lindahl T. Excision of pyrimidine dimers from ultraviolet-irradiated DNA by exonucleases from
mammalian cells. Eur J Biochem 1971;18:407–414. [PubMed: 5542950]

12. Hoss M, Robins P, Naven TJ, Pappin DJ, Sgouros J, Lindahl T. A human DNA editing enzyme
homologous to the Escherichia coli DnaQ/MutD protein. EMBO J 1999;18:3868–3875. [PubMed:
10393201]

13. Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences
encoding mammalian 3’→5’ exonucleases. J Biol Chem 1999;274:19655–19660. [PubMed:
10391904]

14. Barnes MH, Spacciapoli P, Li DH, Brown NC. The 3'–5' exonuclease site of DNA polymerase III
from gram-positive bacteria: definition of a novel motif structure. Gene 1995;165:45–50. [PubMed:
7489914]

15. Strauss BS, Sagher D, Acharya S. Role of proofreading and mismatch repair in maintaining the
stability of nucleotide repeats in DNA. Nucleic Acids Res 1997;25:806–813. [PubMed: 9064658]

16. Taft-Benz SA, Schaaper RM. Mutational analysis of the 3'→5' proofreading exonuclease of
Escherichia coli DNA polymerase III. Nucleic Acids Res 1998;26:4005–4011. [PubMed: 9705512]

17. de Silva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T. The crystal structure of TREX1
explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering. J Biol
Chem 2007;282:10537–10543. [PubMed: 17293595]

18. Brucet M, Querol-Audi J, Serra M, et al. Structure of the dimeric exonuclease TREX1 in complex
with DNA displays a proline-rich binding site for WW domains. J Biol Chem. 2007

19. Zarrinpar A, Bhattacharyya RP, Lim WA. The structure and function of proline recognition domains.
Sci STKE 2003;2003:8.

20. Bebenek K, Matsuda T, Masutani C, Hanaoka F, Kunkel TA. Proofreading of DNA polymerase eta-
dependent replication errors. J Biol Chem 2001;276:2317–2320. [PubMed: 11113111]

21. Mazur DJ, Perrino FW. Structure and expression of the TREX1 and TREX2 3’→5’ exonuclease
genes. J Biol Chem 2001;276:14718–14727. [PubMed: 11278605]

22. Morita M, Stamp G, Robins P, et al. Gene-targeted mice lacking the Trex1 (DNase III) 3’→5’ DNA
exonuclease develop inflammatory myocarditis. Mol Cell Biol 2004;24:6719–6727. [PubMed:
15254239]

23. Chowdhury D, Beresford PJ, Zhu P, et al. The exonuclease TREX1 is in the SET complex and acts
in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell
2006;23:133–142. [PubMed: 16818237]

24. Yang YG, Lindahl T, Barnes DE. Trex1 Exonuclease Degrades ssDNA to Prevent Chronic
Checkpoint Activation and Autoimmune Disease. Cell 2007;131:873–886. [PubMed: 18045533]

Kavanagh et al. Page 10

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



25. Coscoy L, Raulet DH. DNA mismanagement leads to immune system oversight. Cell 2007;131:836–
838. [PubMed: 18045527]

26. Chen MJ, Ma SM, Dumitrache LC, Hasty P. Biochemical and cellular characteristics of the 3'→5'
exonuclease TREX2. Nucleic Acids Res 2007;35:2682–2694. [PubMed: 17426129]

27. Aicardi J, Goutieres F. A progressive familial encephalopathy in infancy with calcifications of the
basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 1984;15:49–54. [PubMed:
6712192]

28. Goutieres F. Aicardi-Goutieres syndrome. Brain Dev 2005;27:201–206. [PubMed: 15737701]
29. Goutieres F, Aicardi J, Barth PG, Lebon P. Aicardi-Goutieres syndrome: an update and results of

interferon-alpha studies. Ann Neurol 1998;44:900–907. [PubMed: 9851434]
30. Burn J, Wickramasinghe HT, Harding B, Baraitser M. A syndrome with intracranial calcification and

microcephaly in two sibs, resembling intrauterine infection. Clin Genet 1986;30:112–116. [PubMed:
3757300]

31. Reardon W, Hockey A, Silberstein P, et al. Autosomal recessive congenital intrauterine infecction-
like syndrome of microcephaly, intracranial calcification and CNS disease. American Journal
Medical Genetics 1994;52:58–65.

32. Black DN, Watters GV, Andermann E, et al. Encephalitis among Cree children in northern Quebec.
J Med Genet 1988;40:183–187. [PubMed: 12624136]

33. Sanchis A, Cervero L, Bataller A, et al. Genetic syndromes mimic congenital infections. J Pediatr
2005;146:701–705. [PubMed: 15870678]

34. Crow YJ, Black DN, Ali M, et al. Cree encephalitis is allelic with Aicardi-Goutieres syndrome:
implications for the pathogenesis of disorders of interferon alpha metabolism. J Med Genet
2003;40:183–187. [PubMed: 12624136]

35. Dale RC, Tang SP, Heckmatt JZ, Tatnall FM. Familial systemic lupus erythematosus and congenital
infection-like syndrome. Neuropediatrics 2000;31:155–158. [PubMed: 10963105]

36. Rasmussen M, Skullerud K, Bakke SJ, Lebon P, Jahnsen FL. Cerebral thrombotic microangiopathy
and antiphospholipid antibodies in Aicardi-Goutieres syndrome—report of two sisters.
Neuropediatrics 2005;36:40–44. [PubMed: 15776321]

37. De Laet C, Goyens P, Christophe C, Ferster A, Mascart F, Dan B. Phenotypic overlap between
infantile systemic lupus erythematosus and Aicardi-Goutieres syndrome. Neuropediatrics
2005;36:399–402. [PubMed: 16429382]

38. Lebon P, Lenoir GR, Fischer A, Lagrue A. Synthesis of intrathecal interferon in systemic lupus
erythematosus with neurological complications. Br Med J (Clin Res Ed) 1983;287:1165–1167.

39. Crow YJ, Leitch A, Hayward BE, et al. Mutations in genes encoding ribonuclease H2 subunits cause
Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat Genet 2006;38:910–
916. [PubMed: 16845400]

40. Frank P, Braunshofer-Reiter C, Wintersberger U, Grimm R, Busen W. Cloning of the cDNA encoding
the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII. Proc Natl Acad
Sci USA 1998;95:12872–12877. [PubMed: 9789007]

41. Eder PS, Walder JA. Ribonuclease H from K562 human erythroleukemia cells. Purification,
characterization and substrate specificity. J Biol Chem 1991;266:6472–6479. [PubMed: 1706718]

42. Rice G, Patrick T, Parmar R, et al. Clinical and molecular phenotype of Aicardi-Goutieres syndrome.
American Journal of Human Genetics 2007;81:713–725. [PubMed: 17846997]

43. Lee-Kirsch MA, Chowdhury D, Harvey S, et al. A mutation in TREX1 that impairs susceptibility to
granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med 2007;85:531–537.
[PubMed: 17440703]

44. Millard LG, Rowell NR. Chilblain lupus erythematosus (Hutchinson). A clinical and laboratory study
of 17 patients. Br J Dermatol 1978;98:497–506. [PubMed: 656324]

45. Grand MG, Kaine J, Fulling K, et al. Cerebroretinal vasculopathy: A new hereditary syndrome.
Ophthalmology 1988;95:649–659. [PubMed: 3174024]

46. Gutmann DH, Fischbeck KH, Sergott RC. Hereditary retinal vasculopathy with cerebral white matter
lesions. Am J Med Genet 1989;34:217–220. [PubMed: 2817001]

Kavanagh et al. Page 11

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



47. Weil S, Reifenberger G, Dudel C, Yousry TA, Schriever S, Noachtar S. Cerebroretinal vasculopathy
mimicking a brain tumor: a case of a rare hereditary syndrome. Neurology 1999;53:629–631.
[PubMed: 10449133]

48. Niedermayer I, Graf N, Schmidbauer J, Reiche W. Cerebroretinal vasculopathy mimicking a brain
tumor. Neurology 2000;54:1878–1879. [PubMed: 10802812]

49. Storimans CW, Oosterhuis JA, van Schooneveld MJ, Bos PJ, Maaswinkel-Mooy PD. Familial
vascular retinopathy. A preliminary report. Doc Ophthalmol 1990;75:259–261. [PubMed: 2090400]

50. Terwindt GM, Haan J, Ophoff RA, et al. Clinical and genetic analysis of a large Dutch family with
autosomal dominant vascular retinopathy, migraine and Raynaud’s phenomenon. Brain
1998;121:303–316. [PubMed: 9549508]

51. Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy and stroke
(HERNS). Neurology 1997;49:1322–1330. [PubMed: 9371916]

52. Cohn AC, Kotschet K, Veitch A, Delatycki MB, McCombe MF. Novel ophthalmological features in
hereditary endotheliopathy with retinopathy, nephropathy and stroke syndrome. Clinical &
Experimental Ophthalmology 2005;33:181–183. [PubMed: 15807828]

53. Winkler DT, Lyrer P, Probst A, et al. Hereditary Systemic Angiopathy (HSA) with cerebral
calcifications, retinopathy, progressive nephropathy and hepatopathy. J Neurol 2008;255:77–88.
[PubMed: 18204807]

54. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008;358:929–939. [PubMed:
18305268]

55. Crow MK. Collaborations, genetic associations and lupus erythematosus. N Engl J Med
2008;358:956–961. [PubMed: 18204099]

56. Hur JW, Sung YK, Shin HD, Park BL, Cheong HS, Bae SC. TREX1 polymorphisms associated with
autoantibodies in patients with systemic lupus erythematosus. Rheumatol Int. 2007

57. Unterholzner L, Bowie AG. The interplay between viruses and innate immune signaling: recent
insights and therapeutic opportunities. Biochem Pharmacol 2008;75:589–602. [PubMed: 17868652]

58. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL. Immune interferon in the
circulation of patients with autoimmune disease. N Engl J Med 1979;301:5–8. [PubMed: 449915]

59. Bengtsson AA, Sturfelt G, Truedsson L, et al. Activation of type I interferon system in systemic lupus
erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus
2000;9:664–671. [PubMed: 11199920]

60. Dall’era MC, Cardarelli PM, Preston BT, Witte A, Davis JC Jr. Type I interferon correlates with
serological and clinical manifestations of SLE. Ann Rheum Dis 2005;64:1692–1697. [PubMed:
15843451]

61. Gota C, Calabrese L. Induction of clinical autoimmune disease by therapeutic interferon-alpha.
Autoimmunity 2003;36:511–518. [PubMed: 14984028]

62. Ronnblom LE, Alm GV, Oberg KE. Autoimmunity after alpha-interferon therapy for malignant
carcinoid tumors. Ann Intern Med 1991;115:178–183. [PubMed: 2058872]

63. Heremans H, Billiau A, Colombatti A, Hilgers J, de Somer P. Interferon treatment of NZB mice:
accelerated progression of autoimmune disease. Infect Immun 1978;21:925–930. [PubMed: 213392]

64. Adam C, Thoua Y, Ronco P, Verroust P, Tovey M, Morel-Maroger L. The effect of exogenous
interferon: acceleration of autoimmune and renal diseases in (NZB/W) F1 mice. Clin Exp Immunol
1980;40:373–382. [PubMed: 6160000]

65. Mathian A, Weinberg A, Gallegos M, Banchereau J, Koutouzov S. IFNalpha induces early lethal
lupus in preautoimmune (New Zealand Black × New Zealand White) F1 but not in BALB/c mice. J
Immunol 2005;174:2499–2506. [PubMed: 15728455]

66. Walker SE. Accelerated mortality in young NZB/NZW mice treated with the interferon inducer
tilorone hydrochloride. Clin Immunol Immunopathol 1977;8:204–212. [PubMed: 902437]

67. Santiago-Raber ML, Baccala R, Haraldsson KM, et al. Type-I interferon receptor deficiency reduces
lupus-like disease in NZB mice. J Exp Med 2003;197:777–788. [PubMed: 12642605]

68. Braun D, Geraldes P, Demengeot J. Type I Interferon controls the onset and severity of autoimmune
manifestations in lpr mice. J Autoimmun 2003;20:15–25. [PubMed: 12604309]

Kavanagh et al. Page 12

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



69. Akwa Y, Hassett DE, Eloranta ML, et al. Transgenic expression of IFNalpha in the central nervous
system of mice protects against lethal neurotropic viral infection but induces inflammation and
neurodegeneration. J Immunol 1998;161:5016–5026. [PubMed: 9794439]

70. Guyer DR, Tiedeman J, Yannuzzi LA, et al. Interferon-associated retinopathy. Arch Ophthalmol
1993;111:350–356. [PubMed: 8447745]

71. Sugano S, Yanagimoto M, Suzuki T, et al. Retinal complications with elevated circulating plasma
C5a associated with interferon-alpha therapy for chronic active hepatitis C. Am J Gastroenterol
1994;89:2054–2056. [PubMed: 7942735]

72. Hayasaka S, Fujii M, Yamamoto Y, Noda S, Kurome H, Sasaki M. Retinopathy and sub-conjunctival
haemorrhage in patients with chronic viral hepatitis receiving interferon alfa. Br J Ophthalmol
1995;79:150–152. [PubMed: 7696235]

73. Soushi S, Kobayashi F, Obazawa H, et al. [Evaluation of risk factors of interferon-associated
retinopathy in patients with type C chronic active hepatitis]. Nippon Ganka Gakkai Zasshi
1996;100:69–76. [PubMed: 8644532]

74. Kawano T, Shigehira M, Uto H, et al. Retinal complications during interferon therapy for chronic
hepatitis C. Am J Gastroenterol 1996;91:309–313. [PubMed: 8607498]

75. Lebon P. Inhibition of herpes simplex virus type 1-induced interferon synthesis by monoclonal
antibodies against viral glycoprotein D and by lysosomotropic drugs. J Gen Virol 1985;66:2781–
2786. [PubMed: 2999320]

76. Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus
erythematosus blood. J Exp Med 2003;197:711–723. [PubMed: 12642603]

77. Chuntharapai A, Lai J, Huang X, et al. Characterization and humanization of a monoclonal antibody
that neutralizes human leukocyte interferon: a candidate therapeutic for IDDM and SLE. Cytokine
2001;15:250–260. [PubMed: 11594789]

78. Han CS, Chen Y, Ezashi T, Roberts RM. Antiviral activities of the soluble extracellular domains of
type I interferon receptors. Proc Natl Acad Sci USA 2001;98:6138–6143. [PubMed: 11344274]

Kavanagh et al. Page 13

Cell Cycle. Author manuscript; available in PMC 2010 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Schematic diagram of the TREX1 protein structure with sites of mutations associated with
human disease. Numbers for each mutation correspond with those listed in Table 1. Regions
I, II and III represent the exonuclease domains (Exo I–III). Region P represents the polyproline
II helix (PPII). Region TMD represents the putative transmembrane domain.
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Figure 2.
Functional consequences of TREX1 mutations associated with RVCL. Confocal microscopy
of HEK293T cells showing transiently expressed yellow fluorescent protein (eYFP)-tagged
TREX1 proteins (green), TOPRO3 staining of nuclei (red), and the overlay for eYFP alone
(A), wild-type TREX1 (B), and the CRV mutant form of TREX1 (C) as well as the
corresponding intensity profile for each across region of drawn arrow (D).
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Table 2

Clinical, pathological and laboratory features of diseases associated with TREX1 mutations

Features Retinal
Vasculopathy with

Cerebral
Leukodystrophy

(RVCL)

Systemic Lupus
Erythematosus

(SLE)

Aicardi-Goutières Syndrome (AGS) Familial Chilblain
Lupus (FCL)

Inheritance Autosomal Dominant Polygenic Rare
monogenic forms

Autosomal Recessive* Autosomal Dominant

Genes TREX1 TREX1, DNASE1,
HLA, FCGR2A/B,
BLK, FCGR3A/B,

CIQ, CIR, CIS,
MBL, CRP, CR2,

C2, C4, IRF5,
TYK2, PTPN22,
PDCDI, CTLA4,
TLR5, TNFSF4,

BANK1, ITGAM,
KIAA1542 PXK,

STAT4

TREX1 (ACSI)
RNASEH2A (AGS4)
RNASEH2B (AGS2)
RNASEH2C (AGS3)

TREX1

Onset Between 30–50 years Usually between
15–40 years

Usually by 4 months Early childhood

Mortality Usually within 10
years from time of

onset

5–20% 10 year
mortality

Usually by 10 years of age Non-lethal

Neurological
Manifestations

  Clinical Strokes,
pseudotumors,

seizures, migraine-
like headaches,
motor/sensory/

cerebellar deficits,
personality changes,
decrease in mental

acuity

Strokes, seizures,
psychosis, mood
disorders, aseptic

meningitis,
transverse myelitis,

mononeuritis
multiplex,
peripheral

neuropathy,
cognitive

dysfunction

Failure to progress developmentally
(or deterioration) in motor and social
skills, peripheral spasticity, dystonic

posturing, truncal hypotonia, seizures,
acquired microcephaly

None reported

  Radiological Scattered areas of
increased signal in
deep white matter,
enhancing lesions

(often irregular) with
mass effect and

edema progressing to
a multifocal process

Small white matter
lesions, focal areas

of infarction

Basal ganglia calcification, white
matter hypodensities, progressive

brain atrophy

N/A

  Pathological Localized areas of
coagulative necrosis

with fibrinoid
necrosis of the walls

of the vessels
(resembling
obliterative

vasculopathy),
multilayering of the
basement membrane

of capillaries

Immune-complex
vasculitis (often
with perivascular

lymphocytic
infiltrate without

destruction of vessel
wall), thrombotic
occlusion of the

blood vessels
(APLS), necrotizing

vasculitis with
fibrinoid necrosis &

Brain atrophy, wide-spread
demyelination, calcification in white

matter & basal ganglia, multiple small
infarcts, small vessel proliferation with
thickened adventitial and medial walls,

astrocytosis

N/A
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Features Retinal
Vasculopathy with

Cerebral
Leukodystrophy

(RVCL)

Systemic Lupus
Erythematosus

(SLE)

Aicardi-Goutières Syndrome (AGS) Familial Chilblain
Lupus (FCL)

neutrophilic
infiltration (rare),

accelerated
atherosclerosis

Ophthalmologic
Manifestations

Predominant macular
involvement,

microaneurysms and
telangiectasia,

capillary dropout,
progressive visual

defects

Keratoconjunctivitis
sicca, iritis,
episcleritis,

keratitis, retinal
vasculitis,

choroidopathy
papillitis, ischemic
optic neuropathy,
retrobulbar optic

neuritis

Reduced/absent vision in some,
abnormal eye movements, optic
atrophy/pale papillae, congenital

glaucoma

None reported

Other organ
involvement

Renal impairment,
proteinuria,
hematuria,

micronodular
cirrhosis, GI

bleeding, anemia,
Raynaud's

phenomenon

Cutaneous rash,
photosensitivity,
oral/nasal ulcers,

pleuritis
pericarditis, GI

dysmotility,
pancreatitis,

hepatitis, nephritis,
pneumonitis,
pulmonary

hypertension &
hemorrhage,

arthritis, myositis,
antiphospholipid

antibody syndrome,
Raynaud's

phenomenon,
cytopenias

Chilblains, anemia, thrombocytopenia,
hepatosplenomegaly, intermittent
sterile pyrexias, hypothyroidism,

insulin dependent diabetes mellitus,
scoliosis, cardiomegaly

Chilblains, large joint
arthralgias

Laboratory
Abnormalities

  Autoantibodies +/− ++++ +/− +

  Interferon-α Unknown ↑ ↑ Unknown

  CSF Elevated protein Pleocytosis,
elevated protein

including IgG and
oligoclonal bands

Chronic lymphocytosis N/A

*
One autosomal dominant case reported;4 ANA, antinuclear antibodies; APLS, antiphospholipid; CSF, cerebrospinal fluid; GI, gastrointestinal.
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