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Epigenetic silencing of the c-fms locus during
B-lymphopoiesis occurs in discrete steps
and is reversible
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and Constanze Bonifer1,*
1Molecular Medicine Unit, St James’s University Hospital, University of
Leeds, Leeds, UK, 2Research Institute of Molecular Pathology, Vienna
Biocenter, Vienna, Austria and 3Institute for Molecular Bioscience,
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The murine c-fms (Csf1r) gene encodes the macrophage

colony-stimulating factor receptor, which is essential for

macrophage development. It is expressed at a low level in

haematopoietic stem cells and is switched off in all non-

macrophage cell types. To examine the role of chromatin

structure in this process we studied epigenetic silencing of

c-fms during B-lymphopoiesis. c-fms chromatin in stem

cells and multipotent progenitors is in the active confor-

mation and bound by transcription factors. A similar

result was obtained with specified common myeloid and

lymphoid progenitor cells. In developing B cells, c-fms

chromatin is silenced in distinct steps, whereby first

the binding of transcription factors and RNA expression

is lost, followed by a loss of nuclease accessibility.

Interestingly, regions of de novo DNA methylation in B

cells overlap with an intronic antisense transcription unit

that is differently regulated during lymphopoiesis.

However, even at mature B cell stages, c-fms chromatin

is still in a poised conformation and c-fms expression can

be re-activated by conditional deletion of the transcription

factor Pax5.

The EMBO Journal (2004) 23, 4275–4285. doi:10.1038/

sj.emboj.7600421; Published online 14 October 2004

Subject Categories: chromatin & transcription; development

Keywords: antisense RNA; c-fms locus; chromatin; gene

silencing; Pax5

Introduction

During haematopoietic differentiation, haematopoietic stem

cells (HSCs) become gradually restricted in their differentia-

tion potential. The balanced formation of the different blood

cell types therefore requires the activation of genes in appro-

priate cells as well as the silencing of genes in cells in which

expression is undesired (Hu et al, 1997; Miyamoto et al, 2002;

Smale, 2003). Blood cell growth and differentiation are

regulated by specific cytokines, which act on cells expressing

particular combinations of lineage-specific cytokine receptors.

Because the cytokine requirement for precursor cells is different

from that of mature cells, it is important to render cells of one

lineage unresponsive to the cytokines regulating alternative

lineage cells. Cell type-specific inhibitors of cytokine receptor

signalling have been characterized (reviewed in Fujimoto and

Naka, 2003), but little is known about how cytokine receptor

gene expression is silenced at the epigenetic level.

Once a cell is committed to differentiate towards a parti-

cular lineage, it responds to lineage-specific signals and

generally cannot alter its cell fate. However, certain types of

apparently committed cells still have the potential to differ-

entiate into cells of another lineage (reviewed in Graf, 2002).

The importance of cytokine signals in lineage determination

was emphasized by a series of experiments using transgenic

mice expressing the human interleukin (IL)-2 receptor b or

granulocyte–macrophage colony-stimulating factor (GM-CSF)

receptor in haematopoietic progenitors (Kondo et al, 2000;

Iwasaki-Arai et al, 2003). These experiments showed that

purified common lymphoid progenitors (CLPs) and pro-T

cells from these mice can be converted by alternative cyto-

kine signalling into myeloid cells. Lineage switching was also

found in murine pro-B cells ectopically expressing the human

macrophage colony-stimulating factor (CSF-1) receptor

(c-fms) gene (Borzillo et al, 1990). Such manipulated cells

can differentiate to macrophages in response to CSF-1. This

alternative differentiation is suppressed by IL-7 signalling,

which suggests that signals through the CSF-1 and IL-7

receptors can play an instructive role in myeloid and lym-

phoid differentiation, respectively.

Expression of the c-fms gene is tightly controlled. c-fms

mRNA is detected in HSCs at a low level and is upregulated

during macrophage differentiation. Receptor protein expres-

sion on the surface of the cells is only found on committed

macrophage precursors (Tagoh et al, 2002). Tissue-specific

mRNA expression of c-fms is regulated by well-studied pro-

moter and intronic enhancer elements (Figure 1). The pro-

moter used in macrophages is a TATA-less myeloid promoter,

with multiple purine-rich elements bound by Ets family

transcription factors, notably PU.1 (Yue et al, 1993; Ross

et al, 1998). Tissue-restricted expression of the gene is

dependent on the c-fms intron regulatory element or FIRE

(Himes et al, 2001; Sasmono et al, 2003). We have previously

examined the mechanism of upregulation of c-fms expression

during macrophage differentiation. We showed that the c-fms

promoter is already occupied by transcription factors at the

stage of common myeloid progenitors (CMPs) where only a

low level of transcripts is detected. During macrophage

differentiation, c-fms expression is regulated by the coordi-

nated assembly and disassembly of transcription factor com-

plexes on FIRE (Tagoh et al, 2002). c-fms cis-elements in

macrophages show a high level of histone acetylation, but

associate with both positive and negative chromatin modifi-

cation activities (Follows et al, 2003).
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c-fms expression is silenced in non-macrophage cells.

Silencing of c-fms mRNA in B lymphocytes is dependent on

the presence of the transcription factor Pax5 (Nutt et al,

1999). Interestingly, conditional inactivation of Pax5 in com-

mitted B cell precursors leads to derepression of the c-fms

gene (Mikkola et al, 2002). This is also observed after over-

expression of the myeloid transcription factors C/EBP a and b
in B cells (Xie et al, 2004). However, the chromatin structure

of c-fms in B cells with which these transcription factors

interact and the mechanism of derepression are essentially

unknown. Silencing of macrophage-specific genes during

B-lymphopoiesis is not well understood and may not be

straightforward, as B cells and macrophages share a number

of different transcription factors such as PU.1. To address this

issue, we have examined the chromatin alterations occurring

during the silencing of c-fms expression in B cell develop-

ment. We show that the chromatin at cis-regulatory regions of

the c-fms locus is in an active conformation and is bound by

transcription factors in stem cells and early precursor cells.

Epigenetic silencing of c-fms during B-lymphopoiesis occurs

in distinct steps, but even in mature B cells c-fms chromatin

is still in a poised conformation. This is confirmed by our

finding that de novo DNA methylation is increased in T cells,

but is delayed in B cell development whereby the promoter

and FIRE remain unmethylated throughout. We show that

such a poised chromatin conformation correlates with the

potential to re-activate c-fms expression even in purified

mature B cells by conditional deletion of Pax5. An important

finding of this study is that regions of de novo DNA methyla-

tion in lymphoid cells overlap with an intronic antisense (AS)

transcription unit that is active in committed B cells and

macrophages, but not in cells where c-fms is completely shut

down.

Results

The c-fms promoter and FIRE bind transcription factors

in pluripotent stem cells and common lymphoid

progenitor cells but not in differentiated B cell

populations

Expression of c-fms mRNA is detectable in HSCs and CMPs

(Miyamoto et al, 2002; Tagoh et al, 2002), but is absent in

pro-B cells (Nutt et al, 1999). To define the first steps in c-fms

silencing, we asked whether transcription factor occupancy

on c-fms in stem cells is complete and thus indicative of a

primed chromatin structure. Secondly, because restricted

lymphoid progenitor cells (CLPs) were shown to possess

latent myeloid differentiation potential (Kondo et al, 2000;

Iwasaki-Arai et al, 2003), we examined whether c-fms was

still occupied by transcription factors. We addressed these

questions by studying purified Lin�Sca1þc-Kithi (LSK) cells,

which were highly enriched for HSCs and short-term recon-

stituting stem cells (Geiger et al, 1998; Adolfsson et al, 2001),

CLPs (Kondo et al, 1997) and CMPs (Akashi et al, 2000;

Tagoh et al, 2002). As a control, we examined purified pro-B

cells from the bone marrow of RAG2�/� mice and mature

bone marrow-derived macrophages. The purity of each po-

pulation was confirmed by surface marker analysis, Giemsa

staining, colony assays and mRNA expression analysis

(Figure 2 and Supplementary Figures 1 and 2; data not

shown). Purified cells displayed distinct in vitro differentia-

tion potentials (Figure 2A). As described previously, LSKs

and CMPs mostly generated myeloid colonies (Akashi et al,

2000). CLPs generated lymphoid colonies containing B and

NK cells but no myeloid cells, as confirmed by FACS analysis

of CD19, NK1.1 and CD11b expression (data not shown). The

CLP fraction formed in average one GM colony in 1000 cells,

which was probably derived from a low-level contamination

with myeloid precursors. Clonogenicity of CLPs under lym-

phoid assay conditions was much lower than that of myeloid

progenitors under myeloid assay conditions, the latter reg-

ularly produced at least 250 colonies from 1000 cells (Tagoh

et al, 2002 and this study). The expression profile of selected

genes in purified restricted progenitors confirmed the identity

of these cells (Akashi et al, 2000; DeKoter and Singh 2000;

Supplementary Figure 1). mRNA for the myeloid-specific

lysozyme M gene was only detected at trace levels in CLPs

(Supplementary Figure 3A), confirming that this cell popula-

tion had negligible myeloid contamination.

The result of our c-fms expression studies is shown in

Figure 2B. c-fms transcripts were found around the detection

limit in purified primary pro-B cells. In contrast, all other

precursor cell types (LSKs, CLPs and CMPs) expressed low

but clearly detectable levels of c-fms RNA. The low level of

Promoter FIRE-1kb

−2000 −1000 +1000 +2000 +3000 +4000ATG

FIRE

(enhancer)

DNaseI hypersensitive sites

Conserved regulatory sequences

bp

ChIP assay

DNA methylation
analysis

+6000
Exons

Figure 1 Map of the c-fms regulatory region. DHSs present in macrophages are shown as vertical arrows. Numbers indicate the nucleotide
position relative to the ATG start codon. Grey boxes represent exons, and black boxes show regions conserved between human and mouse. The
main transcription start sites are indicated as horizontal arrows. Amplicons for ChIP assays and DNA methylation analysis are indicated.
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GM colony formation of the CLP fraction (less than 1%

compared with CMPs) was not reflected at the level of

c-fms expression (20% of that of CMPs). These results were

mirrored by transcription factor-binding site occupancy as

revealed by in vivo DMS footprinting analysis with these cell

populations. As shown in Figure 3, the PU.1 consensus

sequences within the promoter and FIRE were occupied in

LSKs, CLPs and CMPs. The footprints seen at the promoter

were weaker in CLPs than in LSKs, CMPs or macrophages,

whereas the footprints at FIRE were similar in both CLPs and

CMPs. In contrast, the Ets/AML1/Sp1 cluster in FIRE was

only occupied in CLPs, CMPs and mature myeloid cells. To

further rule out the possibility of myeloid contamination, we

performed a DMS footprinting experiment on a sample con-

sisting of a mixture of 95% wild-type pro-B cells (lacking

footprints) and 5% monocytic cells (with fully occupied

transcription factor-binding sites). RNA prepared from this

cell mixture contained a much higher level of lysozyme M

RNA than CLPs (Supplementary Figure 3A), but showed no

footprints at the promoter and FIRE (Supplementary Figure

3B and C). This confirms that the threshold for detecting

alterations of DMS reactivity in mixed cell populations is

significantly higher than any possible myeloid contamina-

tion. In summary, although purified CLPs were functionally

distinct from CMPs and could not generate myeloid cells,

c-fms chromatin in these cells is accessible to transcription

factor binding, resulting in low level but clearly detectable

c-fms mRNA expression. No footprints on any of the c-fms cis-

regulatory elements were seen in pro-B cells, confirming that

the loss of steady-state mRNA is accompanied by a loss of

stable transcription factor binding in the majority of cells.
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Figure 2 Characterization of purified LSKs, CLPs and CMPs.
(A) Colony-forming activities of LSKs, CLPs and CMPs. Sorted
cells were seeded at a density of 1000 cells/ml in methylcellulose
medium containing IL-7, SCF and VEGF for lymphoid assays (pre-B
cell mix), and IL-3, IL-6, SCF and Epo for myelo-erythroid assays
(GM, M, Mix, BFU-E). Colonies were scored at days 8–10. The
results are represented as the mean value of four independent
experiments. (B) Expression of c-fms mRNA in purified LSKs,
CLPs, CMPs, pro-B cells and macrophages (M^). Gene expression
was measured by RT–PCR. Arbitrary units were calculated relative
to the expression level in CMPs. The bars represent the mean value
of two independent experiments.

Figure 3 Transcription factor binding to the c-fms promoter and
FIRE is lost in pro-B cells. DMS footprinting analysis of promoter
(upper strand) (A) and FIRE (lower strand) (B). The numbers on the
left indicate the nucleotide position relative to the ATG codon.
Transcription factor-binding sites and their nature as determined
by ChIP assays and in vitro DNA–protein interaction studies (Tagoh
et al, 2002; Follows et al, 2003) are indicated. Black circles indicate
hypermethylated guanines, and open circles indicate hypomethy-
lated guanines compared with DMS-treated naked DNA (G). Grey
circles indicate weaker footprints. From left to right: DMS-treated
naked DNA (G), purified cells (LSKs, CLPs, CMPs, bone marrow
macrophages (M^), freshly purified pro-B cells from RAG2�/�

mice).
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c-fms chromatin in B cells is still in a poised

conformation

Experiments from our laboratory showed that genes destined

for activation undergo a number of defined chromatin altera-

tions during cell differentiation, which start long before the

onset of gene expression (Kontaraki et al, 2000; Tagoh et al,

2004). If such a stepwise process could be linked to a specific

chromatin fine structure of given genes during gene silencing,

this would enable the definition of windows of opportunity

for the reversion of specific gene expression programmes. We

therefore examined different chromatin features of c-fms

during B-lymphopoiesis as well as in other non-myeloid cell

types and compared them with those of myeloid cells.

A hallmark of active chromatin is its enhanced accessi-

bility to digestion with nucleases. We measured differential

nuclease accessibility in various cell types using DNaseI and

micrococcal nuclease (MNase). Digestion products were vi-

sualized at single nucleotide resolution by using two different

types of ligation-mediated PCR (LM-PCR). DNaseI digestion

followed by amplifying single-strand molecules measures the

number and position of nicks in one DNA strand, thus

assaying both DNA accessibility and DNA topology. MNase

digestion was followed by the selective amplification of

double-strand breaks, which usually occur in nucleosomal

linker regions. The appearance of specific bands in such an

assay is interpreted as an indication for a specifically posi-

tioned nucleosome. To perform these assays we isolated

B220þ bone marrow B cells, consisting mainly of early B

cell precursors and CD19þ splenic B cells consisting mostly

of mature B cells, as indicated in Supplementary Figure 3. In

addition, we assayed primary embryonic fibroblasts, mature

macrophages and purified T cells (Supplementary Figure 3).

Figure 4A shows an MNase digestion experiment examin-

ing nuclease accessibility at the c-fms promoter. To control

for equal digestion efficiency, we also examined the GAPDH

promoter, which is active in every cell type. With fibroblasts

we obtained a rather diffuse cleavage pattern except for

one slightly stronger band upstream of the PU.1-binding

sites at �130 bp just upstream of the main transcription

start sites. Macrophages showed a different digestion pat-

tern. Here we observed a strong MNase hypersensitive site

(MNase HS) downstream of the main transcription start
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Figure 4 Chromatin at the c-fms promoter is in a partially active conformation in B cells. (A) From left to right: In vivo MNase footprinting
experiment with naked DNA and chromatin prepared from the indicated cell populations using primers specific for the c-fms promoter (upper
panel) or the GAPDH promoter (lower panel). Horizontal arrows indicate the position of transcription start sites. The PvuII site is at position
�66 bp. (B) In vivo DNaseI footprinting experiment with naked DNA and the indicated cell populations using increasing amounts of DNaseI
(20 and 40 U) G: G-reaction of naked DNA. For further description, see Figure 3.
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sites. Interestingly, we saw the same MNase HS in immature

B cells, although the upstream band was also present. The

same was true for mature B cells, although the intensity of the

MNase HS was reduced compared to the upstream band. In

contrast, the pattern in T cells resembled more that of

fibroblasts, and the MNase HS had almost disappeared.

However, as the naked DNA control showed some preferen-

tial digestion of the MNase HS sequence, we confirmed by

restriction enzyme accessibility assay using PvuII that this

region was indeed differentially accessible to nuclease diges-

tion in macrophage and fibroblast nuclei (Himes et al, 2001;

data not shown).

In DNaseI hypersensitive site (DHS) mapping experiments,

which assay double-strand cuts produced by DNaseI, we

have previously shown that the c-fms promoter is strongly

DNaseI hypersensitive in macrophages but not in fibroblasts

(Himes et al, 2001). More importantly, no DHS was seen in an

IL-7-dependent pro-B cell line (data not shown). Figure 4B

shows the result of a high-resolution DNaseI digestion ex-

periment with the GAPDH promoter as control. c-fms chro-

matin in macrophages was highly accessible across the entire

promoter region, and a pattern was generated that was

similar but not identical to that generated by naked DNA.

DNaseI accessibility in immature B cells was only slightly

reduced as compared to macrophages and was progressively

reduced in mature B cells, T cells and fibroblasts.

Taken together, our experiments demonstrate that

although transcription factors are no longer stably bound,

the chromatin structure at the c-fms promoter in immature B

cells is very similar to that of myeloid cells. Moreover, even in

mature B cells, the region downstream of the main transcrip-

tion start sites was still highly MNase accessible. No cell

population exhibited a DNaseI hypersensitive region at the

exact position of the MNase HS, which therefore most

likely marks the position of linker DNA. A reasonable hypo-

thesis is therefore that the c-fms promoter is occupied by

a nucleosome that adopts alternative average positions in

c-fms-expressing and nonexpressing cells. In B cells, this

nucleosome maintains a position identical to that of myeloid

cells and is only destabilized later in B cell development,

along with gradually increasing chromatin compaction.

Histone modifications at the c-fms locus are altered

in a complex fashion during B-lymphopoiesis

Chromatin activation and silencing are regulated by different

enzymatic activities that modify the N-terminal tails of

histones (Fischle et al, 2003). Histone acetylation is a hall-

mark of active chromatin, whereas the methylation of histone

H3 lysine 9 (K9) is indicative of inactive chromatin.

Moreover, transcription leaves a trail of histone modification

(histone H3 lysine 4 (K4) trimethylation) behind, which has

been interpreted as a ‘memory’ of recent transcriptional

events and can be maintained through several cell genera-

tions (Ng et al, 2003). We examined the level of histone H3

modification at c-fms by chromatin immunoprecipitation

(ChIP) assays using crosslinked chromatin digested with

MNase (Figure 5). Each amplicon was represented at equal

levels in the input DNA (data not shown). We have pre-

viously shown that the activation of c-fms expression in

macrophages is accompanied by hyperacetylation of histone

H3 at each regulatory region (Follows et al, 2003). These data

were obtained with sonicated chromatin and could be repro-

duced by the experiment shown in Figure 5A, thus validating

our experimental approach. The analysis includes examina-

tion of a second conserved region of the c-fms intron, which

is annotated as FIRE-1kb. This sequence is also DNaseI

hypersensitive in macrophages and has enhancer activity in

transient transfection assays (Himes et al, 2001). An elevated

level of H3K9 acetylation was only seen in macrophages and

monocytes, whereas in all other cell types acetylation levels

were low, but were still slightly elevated in immature B cells.

H3K9 dimethylation levels across c-fms were high in fibro-

blasts, but lower in all other cell types (Figure 5B). However,

the c-fms intronic region but not the promoter and down-

stream genomic regions showed increased H3K9 dimethyla-

tion levels in B-lineage cells as compared to myeloid cells.

The result of the analysis of H3K4 trimethylation was surpris-

ing (Figure 5C). Here we saw a high signal at the promoter

Figure 5 Alterations of histone H3 modifications inside and outside
the c-fms regulatory region during B-lymphopoiesis. ChIP assays
using antibodies specific for acetylated H3K9 (A), dimethylated
H3K9 (B) and trimethylated H3K4 (C). The region-specific enrich-
ment by ChIP was examined by real-time PCR using primers
indicated in Figure 1. DNA enrichment was calculated as described
in Materials and methods. Bars represent the mean7s.d. of quanti-
fications from two to four separate immunoprecipitations analysed
in duplicate.
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and downstream regulatory regions not only in macrophages

and monocytes but also in B cell precursors. The H3K4

trimethylation level in the intronic region was as high as in

macrophages.

CpGs at c-fms cis-regulatory regions are unmethylated

in early progenitors and myeloid cells and are

differentially methylated during B- and T-lymphocyte

differentiation

Methylation of CpGs is a hallmark of silent chromatin (Bird,

2002). We therefore examined the DNA methylation status of

selected CpG motifs centrally located within each of the c-fms

cis-elements at the different stages of myeloid cell and B cell

differentiation by using methylation-sensitive restriction en-

zymes. This analysis was performed with LSKs, CMPs, CLPs

pro-B cells, sorted splenic B and thymic T cells as well as

embryonic fibroblasts (Figure 6B and Supplementary Figure

4). The c-fms regions investigated were the promoter, FIRE-

1kb, FIRE and a downstream region ((C); Figure 6A), which

did not harbour a DHS and is not conserved between human

and mouse. The promoter of the silent a-fetoprotein gene

served as additional control. Both genomic regions were fully

methylated in every cell type examined (Figure 6B).

The CpGs at all c-fms cis-elements analysed were highly

methylated in embryonic fibroblasts and completely un-

methylated in macrophages (Figure 6B). CpGs at the promo-

ter (site 1) and FIRE (site 4) showed a similarly low

methylation level in LSKs, CMPs and CLPs. However, the

methylation level of CpGs at the intronic FIRE-1kb (sites 2

and 3) was elevated in CLPs and was further increased with

progressing B cell differentiation. CpG methylation at the

promoter and FIRE remained at low levels during B cell

development. In contrast, CpG methylation levels at the

promoter and FIRE were increased in T cells.

Regions of DNA methylation and increased histone

H3K9 dimethylation overlap with a differentially

regulated antisense transcription unit

As shown above, levels of H3K4 trimethylation were elevated

throughout the intronic regulatory region in B cells. Two

Figure 6 DNA methylation at specific c-fms cis-regulatory elements during haematopoietic differentiation. (A) Schematic representation of the
position of the recognition sites of the differentially methylation-sensitive restriction enzymes MaeII and HpaII in the c-fms promoter and first
intron (1–4: regulatory regions; C: downstream control region). Relevant DNA sequences and the position of transcription factor-binding sites
are depicted in Supplementary Figure 4. (B) DNA methylation status at specific c-fms cis-regulatory (black bars) and control regions (white
bars) in the indicated cell types. After HpaII or MaeII digestion of genomic DNA from each cell type, the amount of undigested DNA was
measured by real-time PCR. The bars represent the mean value7s.d. of two to four independent experiments analysed in duplicate. AFP:
a-fetoprotein promoter.
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explanations were possible for our findings. One was that

H3K4 trimethylation was highly stable and was still present

in B cells, although transcription had ceased. However, H3K4

trimethylation levels at some positions of the c-fms locus

were almost as high in B cells as in macrophages. An

alternative explanation was that the c-fms intronic region

was subject to intragenic transcription. Small RNA molecules

and in particular AS RNAs have been implied in gene silen-

cing and the initiation of heterochromatin formation (Grewal

and Moazed, 2003). To this end, we examined the different

cell types for the presence of AS c-fms RNA using real-time

RT–PCR analysis (Figure 7). To ensure that only AS RNA
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molecules were detected, we used biotinylated primers for

cDNA synthesis, bound the reaction products to magnetic

beads and removed excess RNA and contaminating genomic

DNA. To get a first idea of the position of a putative AS

transcription unit and to quantify accurately RNA levels, we

amplified specific regions by real-time PCR using different

sets of primers. All cDNA synthesis reactions were further

controlled by (i) including GAPDH primers to test for RNA

quality, (ii) performing real-time PCR experiments on sam-

ples without reverse transcriptase (�RT) and (iii) verifying

the correct fragment size by gel electrophoresis (data not

shown). AS transcription was only found in macrophages and

B cells, but not in fibroblasts and Tcells. The level of AS RNA

was low, but similar in macrophages and B cells, whereas

significant levels of spliced sense transcripts were only

detected in macrophages (Figure 7B). This indicates that AS

transcription in B cells is genuine and does not result from

contamination with myeloid cells. AS RNA was only found

around FIRE. To confirm this finding, the start site of the AS

transcript at FIRE was determined by reverse transcriptase-

terminal transferase-dependent PCR (RT–TDPCR). This

method uses terminal transferase tailing and linker ligation

to amplify cDNA and to identify the start site of low abundant

transcripts (Chen et al, 2000). Two major transcription start

sites within FIRE at þ 2760 and þ 2706 were detected in

macrophages and immature as well as mature B cells, but not

in any other cell types tested (Figure 7C).

Epigenetic c-fms silencing is reversible throughout

B-lymphopoiesis

Our observation of a poised chromatin structure and incom-

plete DNA methylation of c-fms in mature B cells raised the

possibility that c-fms chromatin could be reprogrammed into

the active state in mature B cells. Conditional deletion of the B

cell commitment gene Pax5 was previously shown to re-activate

c-fms expression in pro-B cells (Mikkola et al, 2002). However,

it is not known whether the loss of Pax5 at later stages of B cell

development could also lead to derepression of the c-fms gene.

To address this question, we have taken advantage of the CD19-

cre line, which efficiently deletes a floxed (F) Pax5 allele only in

mature B cells (Horcher et al, 2001). Conditional Pax5 inactiva-

tion in mature B cells of Pax5F/� CD19-cre mice leads to the loss

of Pax5 function and concomitant upregulation of CD25 in

contrast to the B cells of control Pax5F/þCD19-cre mice

(Horcher et al, 2001). We therefore sorted mature Pax5-deficient

(Pax5D/�) B cells as CD25þ IgMþ cells from the lymph nodes of

Pax5F/�CD19-cre mice after MACS depletion of non-B cells,

whereas control Pax5D/þ B cells were isolated as IgMþ IgDþ

cells from Pax5F/þCD19-cre mice (Supplementary Figure 5).

RT–PCR analysis confirmed that the floxed Pax5 allele

was deleted in all sorted Pax5D/� B cells, leading to the

downregulation of the Pax5 target gene CD19 (Figure 8A)

as previously published (Horcher et al, 2001). Figure 8A

clearly shows that the loss of Pax5 led to re-expression of

the c-fms gene in mature Pax5D/� B cells in contrast to the

control Pax5/þ B cells. Real-time PCR quantification further-

more revealed that the c-fms gene was re-activated to

the same expression level seen in Pax5�/� bone marrow

pro-B cells (Figure 8B). These results unequivocally demon-

strate that c-fms silencing in B lymphocytes requires the

continuous presence of Pax5 even at late stages of B cell

differentiation.

Discussion

c-fms cis-regulatory elements are occupied in

pluripotent and restricted haematopoietic precursor

cells

In this paper, we present for the first time in vivo footprinting

experiments with CLPs and with a cell population (LSKs) that

was highly enriched for HSCs and short-term reconstituting

stem cells. LSKs show basically the same degree of transcrip-

tion factor occupancy at the c-fms promoter as CMPs, thus

providing direct confirmation of the hypothesis that the

chromatin of most, and not just a subset, of stem cells and

Figure 8 Epigenetic silencing of c-fms is reversible in mature B
cells. (A) Mature control and Pax5-deficient B cells were isolated
free of contaminating non-B cells from the lymph nodes (LN) of
Pax5F/þ CD19-cre mice (abbreviated as Pax5D/þ ) or Pax5F/�CD19-
cre (Pax5D/�) mice (Horcher et al, 2001) prior to RNA preparation
and cDNA synthesis as described in Supplementary Figure 5 and
Materials and methods. The cDNA of both cell types was normal-
ized for equal expression of the hypoxanthine phosphoribosyltrans-
ferase (HPRT) gene followed by analysis of the indicated transcripts
by semiquantitative RT–PCR of five-fold serial cDNA dilutions. Pax5
transcripts were amplified from exons 1A to 5. DE2 denotes the
truncated transcript of the Pax5D allele lacking exon 2 in contrast to
the full-length transcript (FL). A PCR artefact consisting of an
FL/DE2 cDNA hybrid is indicated by an asterisk. All PCR fragments
had the correct size, expect for the respective spliced mRNA.
(B) Real-time PCR quantification of c-fms mRNA levels in macro-
phages (M^), sorted lymph node (LN) B cells and in vitro-cultured
bone marrow (BM) pro-B cells of the indicated Pax5 genotypes. The
c-fms mRNA level of the CMP was used as reference, which was
arbitrarily assigned a value of 1.
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early progenitors is primed and accessible to transcription

factor binding. Another important result of our study is that

the c-fms gene is still expressed at low levels in CLPs. This is

in apparent contrast to previous studies that have not de-

tected c-fms mRNA expression in single CLPs that were

purified by the same method (Miyamoto et al, 2002). This

may be because the level of c-fms expression is below the

detection limit of single-cell PCR. More convincingly, we

observed that c-fms transcription factor-binding sites in

CLPs were still occupied by transcription factors, although

the signal was weaker than in CMPs and LSKs. We excluded

the possibility that the signal originated from the small

population of myeloid precursor cells in the sorted population

or from a different level of transcription factors in these cells.

Instead, we believe that transcription factor binding in CLPs

is becoming destabilized, in contrast to cells which are

functionally committed to the myeloid lineage. Support for

the idea that transcription factor action can be dynamic

comes from lineage tracing experiments in which mice carry-

ing a Cre recombinase gene knocked into the myeloid-specific

lysozyme M gene were crossed with ROSA26-EYFP reporter

mice (Ye et al, 2003). These experiments revealed EYFP

expression in non-myeloid cells, indicating that pluripotent

cells giving rise to all myeloid and lymphoid cell types

express the recombinase at a low level at some point in

time. Transplantation experiments with sorted EYFP-negative

cells from such mice showed restoration of EYFP activity,

demonstrating that the expression of Cre recombinase under

the control of the mouse lysozyme M gene is an infrequent but

dynamic event.

Silent chromatin formation at the c-fms locus during

B cell differentiation is a gradual process

Taken together, our results show that epigenetic silencing of

the c-fms locus during lymphopoiesis is a slow process that

begins at the CLP stage. c-fms cis-regulatory regions first lose

transcription factor binding and DNaseI hypersensitivity. In

parallel, mRNA expression from the c-fms promoter ceases

and H3K9 hyperacetylation at the c-fms regulatory region is

reduced. These processes are completed at the pro-B cell

stage. However, at the same stage, not all c-fms chromatin

features have reversed to an inactive state. In contrast to

T cells, B cell precursors and even mature B cells showed

certain chromatin features characteristic of an active locus. In

immature B cells, DNaseI accessibility at the promoter was

still high and levels of H3K4 trimethylation throughout the

intronic regulatory region were elevated. In all B cell types

studied, levels of H3K9 dimethylation were low compared to

fibroblasts, and the region immediately downstream of the

transcription start sites was still MNase hypersensitive. Our

studies of DNA methylation confirmed this idea. Using a

randomly integrated transgene, it was recently shown that

DNA methylation is the last step in gene silencing and slowly

increases during different cell generations (Mutskov and

Felsenfeld, 2004). A similar observation was made with the

mouse Dntt gene that is shut down during the maturation of

immature thymocytes into mature Tcells (Su et al, 2004). The

situation at the c-fms locus appears to be more complex. c-fms

cis-regulatory elements exhibited low DNA methylation levels

in all precursor types and macrophages. However, although

in T-lymphopoiesis DNA at all c-fms elements became sig-

nificantly methylated, it was differentially methylated during

B-lymphopoiesis. CpGs between FIRE and the promoter were

progressively methylated, whereas CpGs at the cores of the

c-fms promoter and FIRE stayed unmethylated throughout.

Experiments from our laboratory indicate that CpGs located

in the centre of critical transcription factor-binding sites but

not in the flanking regions of myeloid-specific genes are the

first to be demethylated during haematopoiesis (Tagoh et al,

2004). A possible role of transcription factors in protecting

DNA from methylation has been reported and may be caused

by an interference of these transcription factors with main-

tenance methylation after DNA synthesis (Mummaneni et al,

1998; Kress et al, 2001; Thomassin et al, 2001). Such transient

interaction cannot be detected by DMS in vivo footprinting

(Lefevre et al, 2003). Therefore, it is tempting to speculate

that differential methylation of the c-fms promoter and FIRE

in B cells and T cells may be caused by transcription factors

(such as PU.1), which are expressed both in macrophages

and B cells.

The c-fms locus contains a differentially regulated

antisense transcription unit

Our experiments revealed the presence of an AS RNA within

the coding region of the c-fms gene starting at the FIRE that is

expressed at low levels in macrophages and B cells. AS RNAs

have been shown to play a role in the regulation of

X-inactivation and genomic imprinting (Lee et al, 1999;

Sleutels et al, 2002). For the human a-globin locus, it was

recently shown that the insertion of an AS promoter next to a

CpG island leads to gene silencing and DNA methylation

(Tufarelli et al, 2003). We do not yet know whether AS RNA

expression is strictly required for c-fms silencing. However,

our extensive analyses of c-fms chromatin and expression are

fully consistent with a regulatory role of the AS transcription

unit. We found that AS transcripts were upregulated by

agonists (LPS, phorbol esters, CSF-1) that repress c-fms

mRNA expression in macrophages (Himes and Hume, manu-

script in preparation). Here, we show that the balance

between sense and AS RNA expression in the c-fms intronic

region is dynamically regulated in different cell types. AS

RNA is expressed at similar levels in both macrophages and B

cells, whereas sense RNA is only expressed in macrophages.

The ratio of sense to AS expression therefore correlates with

c-fms activity. This is in agreement with our previous ob-

servation that FIRE is a dynamic element, which differentially

binds transcription factors in development and associates

with histone acetylases as well as histone deacetylases

(Tagoh et al, 2002; Follows et al, 2003). The data presented

here show most convincingly that the AS transcription unit

overlaps with a region of increased de novo DNA methylation

as well as with areas of elevated H3K4 trimethylation and

H3K9 dimethylation. This raises the interesting possibility

that small double-stranded RNA molecules are formed that

target gene silencing complexes to the c-fms intronic region,

as shown in yeast and Drosophila (Schramke and Allshire,

2003; al-Bhadra et al, 2004; Verdel et al, 2004). The level of

AS transcript was low as compared to the sense transcript.

This is reminiscent of reports from intergenic transcripts

within the b-globin locus that were found at similar low

levels, as they were only expressed at a specific point within

the cell cycle (Gribnau et al, 2000). AS transcription was

absent in T cells and fibroblasts where c-fms chromatin

was shut down. This could indicate a requirement for AS
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transcription to initiate epigenetic silencing, but not for its

maintenance.

c-fms silencing is reversible in B cells

Our chromatin structure studies exclude some possible me-

chanisms by which Pax5 represses c-fms in B cells. The

presence of Pax5 in wild-type B-lineage cells does not cause

remodelling of the promoter nucleosome into the inactive

conformation, it does not induce locus-wide histone H3K9

hypermethylation and it does not induce competitive binding

of Pax5 to cis-regulatory elements and other conserved regions

of the c-fms gene (this study and unpublished observations).

Our experiments point to a mechanism by which Pax5 shifts

the balance between activating and repressing activities re-

cruited to the c-fms locus, and it is likely that this balance needs

to be continuously re-established during B-lymphopoiesis. In

support of this idea, we show here that c-fms expression can be

re-activated not only in pro-B cells (Mikkola et al, 2002) but

also in mature B cells, indicating that the repression of c-fms

requires the continuous presence of Pax5 throughout B cell

differentiation. Our finding that the c-fms locus is not comple-

tely assembled into silent chromatin in mature B cells provides

a molecular explanation for the c-fms re-activation in response

to Pax5 loss and C/EBP overexpression (Xie et al, 2004).

Importantly, the derepression of the c-fms gene in mature

Pax5-deficient cells of the Pax5F/-CD19-cre genotype resulted

in a similar level of c-fms mRNA expression as in Pax5�/� pro-

B cells, strongly suggesting that re-activation events occur in

the majority of the mature Pax5-deficient B cells.

Our data link the plasticity of the epigenetic state of the

c-fms gene to a specific chromatin state that is depleted of

activating histone marks (acetylated histones) and even

contains partly methylated DNA, but is still in a poised

conformation. Not only c-fms but also a number of other

lineage-specific genes were activated upon the conditional

inactivation of Pax5 in mature B cells (A Schebesta and M

Busslinger, unpublished observations). It will be interesting

to see whether these genes adopt similar intermediate epige-

netic states in development.

Materials and methods

Purification and RT–PCR analysis of mature Pax5-deficient
B cells
Lymph node cells from Pax5F/þ CD19-cre or Pax5F/�CD19-cre mice
(Horcher et al, 2001) were stained with PE-anti-CD8 (53-6.7), CD4

(L3T4), DX5 (DX5), CD11c (HL3), Mac-1 (M1/70), Gr-1 (RB6-8C5),
CD43 (S7) and Ter119 (TER119) antibodies, and non-B cells were
eliminated by magnetic cell sorting with anti-PE MACS beads.
Mature B cells of the Pax5F/þ CD19-cre genotype were subsequently
isolated by FACS sorting as IgMþ IgDþ B cells, and Pax5-deficient
mature B cells of the Pax5F/� CD19-cre genotype were sorted as
IgMþCD25þ B cells (Horcher et al, 2001). Flow cytometric
reanalysis indicated that the sorted cells were free of contaminating
non-B cells (Supplementary Figure 5). RNA was prepared from the
sorted cells and analysed by RT–PCR with previously described
primers (Horcher et al, 2001) except for the c-fms primers.

Detection of antisense RNA
cDNA was synthesized from 2 mg of DNaseI-treated total RNA by
using 400 U of M-MLV reverse transcriptase using biotinylated
primers specific for c-fms (2 pmol) and GAPDH (0.2 pmol) in one
reaction. Synthesized cDNA was immobilized on Dynabeads
(Dynal, M-270). RNA and trace amounts of genomic DNA were
removed by alkaline denaturation and serial washing (Chen et al,
2000). cDNA was eluted by heating the beads suspension in 0.1�
TE for 15 min at 991C and was followed by real-time quantitative
PCR. Relative activity was calculated using genomic DNA as a
standard. Input and efficiency of cDNA synthesis was normalized
against GAPDH signals. The amount of spliced transcripts was
calculated using cDNA evaluated as equivalent amount to genomic
DNA.

RT–TDPCR
RT–TDPCR reaction was performed as described previously (Chen
et al, 2000). First strand cDNA was synthesized as described above.
After the immobilization on Dynabeads, cDNA was tailed with three
guanines and ligated to the linker, which contains three cytosines at
the end. The ligated products were PCR-amplified using linker
primer and nested gene-specific primer and visualized by primer
extension reaction using a radiolabelled nested primer. In vitro-
transcribed RNA was prepared from c-fms fragment (þ 849 to
þ 3656) cloned into pBluescriptTMII KSþ using T7 RNA polymer-
ase.

Further previously published methods can be found as Supple-
mentary material. All primer sequences are described in Supple-
mentary Table 1.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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