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Abstract 

Phosphoinositol-specific phospholipase C enzymes (PLCs) are central to inositol lipid 

signaling pathways, facilitating intracellular Ca2+ release and protein kinase C 

activation. A sixth class of Phosphoinositol-specific PLC with a novel domain 

structure, PLC-eta (PLCη) has recently been discovered in mammals. Recent 

research, reviewed here, shows that this class consists of two enzymes PLCη1 and 

PLCη2. Both enzymes hydrolyze phosphatidylinositol 4,5-bisphosphate and are more 

sensitive to Ca2+ than other PLC isozymes and are likely to mediate G-protein coupled 

receptor signaling pathways. Both enzymes are expressed in neuron-enriched regions, 

being abundant in the brain. We demonstrate that they are also expressed in 

neuroendocrine cell lines. PLCη enzymes therefore represent novel proteins 

influencing intracellular Ca2+ dynamics and protein kinase C activation in the brain 

and neuroendocrine systems.  
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Introduction 

Phospholipase C enzymes (PLCs, EC 3.1.4.3) catalyze the cleavage of 

phosphatidylinositol 4,5-bisphosphate (PIP2) and result in the release of 1,2-

diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3) from membranes in 

response to receptor activation. These products trigger the activation of protein kinase 

C and the release of Ca2+ from intracellular stores, respectively (1,2). They are crucial 

for initiation of cellular activation, proliferation, differentiation and apoptosis. Until 

recently, five distinct classes of PLCs that specifically react with 

phosphatidylinositols were known to exist in mammals, the β, γ, δ, ε and ζ-type 

enzymes (3,4). They have been classified on the basis of amino acid sequence, 

domain structure and amino acid similarity and by the mechanisms through which 

they are recruited in response to activated receptors. We, along with several other 

groups, identified a sixth class that was termed PLCη (5-8). Two putative PLCη 

enzymes were identified in humans and mice, PLCη1 and PLCη2 (5) and both were 

confirmed to catalyze hydrolysis of PIP2 (6-8) suggesting that PLCηs, like other 

PLCs, are involved in production of the secondary messengers DAG and IP3.  

 

Domain Structure of PLCη enzymes 

Like other mammalian PLCs, the domain structure of PLCηs consists of 

Pleckstrin homology (PH), EF-hand, catalytic X and Y domains and protein kinase C 

conserved region 2 (C2). Figure 1A shows the domain organization of all mammalian 

PLC-isozymes including all known forms of PLCη. Certain isoforms of PLCη1 and 

PLCη2 possess domain complements similar to PLCβ, which couple to G protein-

coupled receptors (GPCRs). The PH domain (absent in PLCζ; ~110 residues) binds 

polyphosphoinositides (9) and is present in many signaling proteins that associate 



with phospholipid membranes (10,11). This domain is not essential for membrane 

localization of PLCδ1 and PLCδ4 (6,12) but appears to be more important for 

membrane localization of PLCη2. Approximately 85% of native PLCη2 and 97% of a 

FLAG-tagged PLCη2 constructs were found to localize to plasma membrane, whereas 

only 6% of a PLCη2 construct with the PH domain removed was present at the cell 

surface (6). The role of the EF hand domain (~65 residues) in PLCs is unclear but the 

X-ray structure of PLCδ1 shows that it serves as a flexible “hinge-like” link between 

the PH and the catalytic domains (13). The X and Y domains (~150 and ~115 

residues, respectively) fold to form the catalytic site. The X domain is involved in 

both substrate and Ca2+ binding (which is essential for catalysis), while the Y domain 

primarily interacts with the substrate (13). These regions contain the highest degree of 

sequence identity (between 60-85%) among different mammalian PLCs (14). The C2 

domain is essential for catalytic activity (15) and is often associated with proteins that 

interact with phospholipids. In some PLCs the C2 domain binds Ca2+ and mediates 

Ca2+-dependent interactions with the lipid membrane. It has been speculated that the 

C2 domain of PLCδ1 may contain as many as four Ca2+-binding sites (15). PLCηs 

share a close evolutionary relationship with other PLC isozymes and are most closely 

related to the PLCδ class (5,6). However, unlike PLCδs, the PLCη enzymes contain 

an extended loop (~100 residues longer) between the X and Y domains and also 

include an additional C-terminal region that is rich in serine and proline residues. 

Serine- and proline-rich regions have proposed roles in protein-protein interactions 

(16,17). The C-terminal region of PLCηs are likely to be of functional yet undefined 

importance. 

PLCηs also contain a class II PDZ (post synaptic density protein, Drosophila 

disc large tumor suppressor, and zo-1 protein) conserved binding motif (PDZCBM; 



ΨXΨ-COOH, where Ψ represents a hydrophobic residue) at the C-terminus. PLCβs 

also contain a PDZCBM albeit a different motif (class I; (S/T)X(L/V)-COOH) and 

have been shown to be involved in the formation of multi-protein scaffolds including 

the InaD complex which mediates the assembly of photoreceptors via TRP channel 

activation (18,19) and the Na+/H+ exchanger regulatory factor 1-assembled complex 

in the kidney (20). It is therefore likely that in addition to classical PLC signaling 

PLCηs, like PLCβs, play role in the formation of PDZ multi-protein complexes. 

Three splice variants of PLCη1 and five splice variants of PLCη2 have been 

identified, all of which differ in length in the C-terminal region. The three variants of 

PLCη1, ‘a’, ‘b’ and ‘c’ encode human proteins of 1002, 1693 and 1035 amino acids, 

respectively (7). Interestingly, all three variants contain class II PDZCBM, although 

the actual sequence of the motif for PLCη1a (VQI-COOH) differs from that of PLCη1b 

and PLCη1c (LRL-COOH). This hints that variant ‘a’ may function as part of a 

different PDZ protein-scaffold than the other two variants. The five PLCη2 variants 

encode human proteins of 1416, 989, 1583, 1156 and 1211 amino acids and have been 

categorisd according to the exon structure of the spliced forms: ‘21a/23’, ‘21a/22/23’, 

‘21b/23’, ‘21b/22/23’ and ‘21c/22/23’, respectively (8). Of these five variants, only 

two (‘21a/23’ and ‘21b/23’) contain a class II PDZCBM (both LRL-COOH), whilst the 

other three variants do not contain a PDZCBM at all. This again suggests the potential 

for differing functions between spliced forms in vivo. 

 

Expression of PLCη enzymes 

 Murine PLCη1 expression has been investigated by RT-PCR using primer 

pairs targeting a common region of the three splice variants and also for the PLCη1a 

variant only (7). In the range of tissues examined the PCR products of the common 



region were most abundant in brain and kidney but were also observed in lung, 

spleen, intestine, thymus and pancreas. PLCη1a was detected in the brain and lung 

only. Immunoblotting confirmed expression of PLCη1a protein in neuronal tissues 

such as cerebrum, cerebellum and spinal cord. In situ hybridization revealed a high 

level of expression throughout the brain, especially in neuronal cell enriched regions 

such as the inner layer of the olfactory bulb, the hippocampus, Purkinje layer of 

cerebellum, cerebral cortex, zona incerta, habenular nuclei and hypothalamus (7). RT-

PCR and Northern blot analyses have shown that PLCη2 gene expression is 

detectable in both brain and intestine of mice (5,6). In addition, expressed sequence 

tags (ESTs) corresponding to human PLCη2 were identified in cDNAs isolated from a 

range of neuron-rich tissues including anaplastic oligodendroglioma, epithelioid 

carcinoma, leukopheresis, lymph, nerve tumor, optic nerve, pancreatic islet, pituitary 

and retinoblastoma cell populations (5). Immunoblot analysis detected PLCη2 

expression in the brain but not in a variety of other murine tissues including small 

intestine, heart, skeletal muscle, kidney, liver, lung, testis or spleen (6). Expression of 

PLCη2 protein in the brain was found to be developmentally dependent, being 

detectable 1-2 weeks after birth. It was also detected at high levels in neuron-

containing primary cultures but not in astrocyte cultures. In situ hybridization on 

murine tissue sections showed gene expression in pyramidal cells of the olfactory 

bulb, hippocampus and cerebral cortex, three regions where PLCη1 is also expressed.  

The hippocampus and cerebral cortex are involved in memory and learning 

(21,22). The olfactory bulb functions in odor and pheromone perception and is also 

involved in neuro-hormonal programming of the hypothalamo-pituitary axis (23,24). 

PLCη enzymes may therefore play a vital role in neural signaling pertaining to 

memory and learning or neuron-hormonal regulation. This hypothesis is consistent 



with the observation that PLCη2 increases with post natal age. In addition PLCη2 was 

found to have a very similar expression pattern to that of neuron marker protein, 

microtubule-associated protein 2 (MAP2) (6). This suggests that PLCη2 is 

particularly likely to be involved in some aspect of neural or neuroendocrine 

functioning. 

Further evidence that PLCη2 may play a role in the hypothalamo-pituitary axis 

has come from recent work in our laboratory where we have found this protein to be 

present in the GnRH neuronal cell line, GT1-7 and in the LβT2 and αT3 pituitary cell 

lines but not in HEK293 cells (Figure 1B). HEK293 cells were used as a negative 

control due to the absence of product when mRNA isolated from these cells was 

assayed by RT-PCR using primers able to detect human PLCη2 transcript. The GT1-7 

cell line is a well-characterized model of the hypothalamic neuron able to secrete 

gonadotropin-releasing hormone (GnRH) in culture (25). LβT2 and αT3 cells are 

pituitary gonadotrope-like cells, which express GnRH receptor and can be stimulated 

to release the pituitary hormones luteinizing hormone and follicle stimulating 

hormone (26,27). Given the presence of PLCη2 in these neuroendocrine cells as well 

as neurons, a possible role for PLCη2 may affect vesicle exocytosis. This process is 

not only Ca2+-driven but requires formation of pre-synaptic-like PDZ domain-protein 

complexes at the surface of the cell membrane (28,29).   

 

Regulation and Differential Ca2+ Sensitivity   

 In the recent study by Zhou et al. (8), co-expression of PLCη2 with the G 

proteins, Gβ1 and Gγ2 resulted in elevated PLC activity in COS-7 cells. This suggests 

that PLCη2 may be activated in response to G protein-coupled receptor activation. 

Gβγ dimers have also been shown to activate PLCβ1-3 and PLCε (30-32) through 



interaction with the PH domain (33). Whether the observed Gβγ-mediated stimulation 

of PLC activity in PLCη2 is a direct or indirect effect remains to be examined. 

However, sequence analysis reveals that several key residues in the PH domain of 

bovine GSK2 that are known to directly bind Gβγ are conserved. These include 

Arg587 (which corresponds to Arg78 in PLCη2) and is essential for Gβγ-induced 

activation of this enzyme (34). 

All PLC isozymes can be activated by Ca2+ in vitro, but PLCδ1 is more 

sensitive to Ca2+ compared with the other isozymes and it can be constitutively 

tethered to PIP2-containing membranes via its PH domain in the absence of other 

signals (35). It has therefore been speculated that an increase in the intracellular Ca2+ 

to a level sufficient to fix the C2 domain of PLCδ1 to the membrane, triggers its 

activation (35). Thus, it has been postulated that activation of PLCδ1 isozymes may 

occur following receptor-mediated activation of other PLC isozymes (36). 

Interestingly, PLCη1 and PLCη2 exhibit Ca2+-dependent (PIP2)-hydrolyzing activity 

in vitro but differ greatly, compared with other PLCs, in their sensitivity toward Ca2+. 

Both enymes display maximal activity at a Ca2+ concentration of ~1µM (6,7), which 

is at least 10-fold lower than that required by PLCδ1 (6). Increased sensitivity means 

that PLCηs may catalyse PIP2-hydrolysis at much lower Ca2+ concentrations than 

PLCδ1 in vivo and indicate that like the PLCδ class, PLCη2 may not necessarily be 

linked to receptor-mediated activation. Alternatively, this enzyme may amplify the 

signaling events of other PLCs or even Ca2+ channels. A speculative representation of 

PLCη signaling is shown in Figure 2. Kinetic analyses for either of the PLCη 

enzymes have yet to be performed but it would be interesting to determine whether 

PIP2-hydrolysis occurs at a comparable or faster rate than other PLC enzymes under 



physiological conditions. If so, PLCη2 may facilitate very rapid communication 

between cells due to its elevated Ca2+ sensitivity. 

Analysis of the Ca2+-mediated lipid-binding site in the C2 domain of 

synaptotagmin I (a Ca2+-activated vesicle protein) shows that it consists of four 

aspartate residues, Asp172, Asp178, Asp230 and Asp232 (37). All four of these 

residues are conserved in the C2 domain of the PLCη enzymes but not in PLCδ1, 

where Asp172 is equivalent to Asn645 (38). Ca2+ ions would therefore be expected to 

bind more tightly at this site in synaptotagmin I and the PLCηs than to PLCδ1. This 

may explain the greater Ca2+-sensitivity exhibited by PLCηs. Other PLCs such as the 

PLCβ and PLCγ enzymes also contain a C2 domain, yet here the key residues 

involved in Ca2+ binding are not conserved (39). 

In conclusion, PLCη enzymes represent an exciting new discovery in the field 

of neurophysiology and molecular data suggests the basis for their involvement in 

novel protein networks relaying Ca2+-signaling and protein kinase C activation. Such 

networks are likely to be of great importance in the brain and neuroendocrine tissues. 

Our recent data suggest that neuroendocrine cell lines may be appropriate tools to 

begin examining the cell biology of PLCηs. It is hoped that these findings stimulate 

further research towards elucidating their physiological function.  
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Figure legends 

FIG. 1. A. Domain organization in murine PLC-isozymes including all known forms 

of PLCηs (yellow box). PH, Pleckstrin homology domain; EF, EF-hand domain; X, 

catalytic X domain; Y, catalytic Y domain; C2, C2 domain; SH, Src homology 

domain; RasGEF, guanine nucleotide exchange factor domain for Ras-like small 

GTPases; RA, Ras association domain; PDZ, post synaptic density protein, 

Drosophila disc large tumor suppressor, and zo-1 protein C-terminal binding motif. B. 

Western blot showing presence of PLCη2 in mouse GT1-7 neuronal, and LβT2 and 

αT3 neuroendocrine cells. 

 

FIG. 2. Schematic representation of putative PLCη signaling. PLCη catalyzed 

cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) results in the generation of 

1,2-diacylglycerol and inositol 1,4,5-triphosphate (IP3). These products stimulate Ca2+ 

release and protein kinase C (PKC) activation. In vivo PLCη2 may undergo receptor-

mediated activation via interaction with Gβγ or in response to a small elevation in 

levels of cytoplasmic Ca2+. PLCηs may also be involved in vesicle exocytosis through 

association with PDZ protein scaffolds.  



Figure 1. 
 

EF X Y C2PLCη1a PH

EF X Y C2PLCη1b PH

EF X Y C2PLCη1c PH

EF X Y C2PLCη2 PH

EF X Y C2PLCζ EF X Y C2PLCζ

PH EF X Y C2PLCβ PH EF X Y C2PLCβ

PH EF X Y C2PLCδ PH EF X Y C2PLCδ

PH EF X Y C2SH2SH2 SH3PLCγ P HPH EF X Y C2SH2SH2 SH3PLCγ P H

PHRasGEF EF X Y C2 RA1 RA2PLCε PHRasGEF EF X Y C2 RA1 RA2PLCε

EF X Y C2PLCη2 PH

EF X Y C2PLCη2 PH

EF X Y C2PLCη2 PH

EF X Y C2PLCη2 PH

1002 aa

1693 aa

1035 aa

PDZ

PDZ

PDZ

PDZ

PDZ

PDZ

21a/23

21a/22/23

21b/23

21b/22/23

21c/22/23

1416 aa

989 aa

1583 aa

1156 aa

1211 aa

HEK293
(-ve control) GT1-7 LβT2 αT3

A

B



Figure 2. 
 
 

PIP2 DAG

Ca2+

PKC

Cellular response 
Ras/Raf/MEK/ERK
pathway

Ca2+

IP3

Ca2+ channel
sensitive to IP3

Endoplasmic
reticulum

Receptor-mediated
activation

Cellular response

Gβ1 Gγ2
Gα

Gβ1γ2 activates 
PLC-η2

Vesicle exocytosis

YX
PH EF C2

neurotransmitter
or hormone

vesicle-membrane 
fusion scaffold?

PDZPDZ

Membrane-docked 
vesicle


