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Abstract 

In this multi-scale study, four robust, zirconium oxide based metal organic frameworks 

(MOFs), were examined using powerful molecular simulation tools as well as indispensable full-

scale PSA system modeling in order to determine their potential for H2 purification. Grand 

canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations were employed in 

order to evaluate the MOF working capacities, binary mixture selectivities, and micropore 

transport diffusivities for each of the components of a steam methane reformer offgas (SMROG) 

stream: H2, CO, CH4, N2 and CO2.  The small, functionalized pores of UiO-66(Zr)-Br were 

found to result in high N2 and CO selectivities and working capacities, while the slightly larger 

pore volume of UiO-66(Zr) favored higher CO2 and CH4 working capacities. The collective 
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impact of impurity uptakes and selectivities on the purification of H2 from five-component steam 

methane reformer offgas mixtures was investigated through PSA column modeling.  The 

breakthrough behavior of SMROG mixtures in columns containing MOF crystallites was 

determined using the simulated adsorption and diffusivity data as input.  MOF breakthrough 

curves for single as well as two layered beds, were compared to those of commercial adsorbents 

including Zeolite 5A and Calgon PCB.  Two of the MOFs, namely UiO-66(Zr) and UiO-66(Zr)-

Br were found to have longer dimensionless breakthrough times than the commercial zeolite 

materials, and are therefore expected to result in larger yields of high purity H2 per PSA cycle.  

UiO-66(Zr)-Br was found to be the most promising of the four MOFs, having the longest 

dimensionless breakthrough times in both, single and two-layered bed setups. 

 

 

Keywords Pressure swing adsorption, metal-organic frameworks, gas separation, hydrogen 

purification, molecular simulations, breakthrough curves, adsorption, diffusion. 
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1. Introduction 

Pressure swing adsorption (PSA) units
1-4

 are the technology of choice in hydrogen purification, 

accounting for 85% of the world’s hydrogen production. In a hydrogen PSA unit, gas streams are 

separated mainly based on equilibrium selectivity, i.e. the relative adsorption strengths of the 

components, which is determined by molecular volatility and polarity. One of the most common 

feed streams used in hydrogen PSA systems is steam methane reformer offgas (SMROG), which 

normally has a H2 content of 70-80%.
3
 The remainder of the mixture is composed of CO2, CH4 

(and higher hydrocarbons), CO, and N2, which must be removed in order to produce high purity 

H2. 

PSA units require high-performance adsorbents that have large capacities and selectivities for 

the impurities to be removed, and which can be easily regenerated at low pressure.
3
 Feed streams 

generally enter a PSA process at 4 – 30 atm, while the waste streams containing desorbed 

impurities leave the columns at 1.1 – 1.7 atm.
3
 Depending on the process temperature and 

pressure, frequently utilized adsorbents include activated aluminas, silica gels, activated carbons 

(ACs) and zeolites. Activated carbons are beneficial for the removal of CO2 and hydrocarbons 

due to their high capacities and low adsorption enthalpies, however their non-polar structures and 

large pore diameters render them less advantageous in the removal of N2 and CO. Zeolites on the 

other hand, have high selectivities for the polar adsorbates, but are difficult to regenerate upon 

CO2 adsorption due to the high interaction strength between the CO2 molecules and the charged 

zeolite pore surface. In order to increase separation efficiency, adsorption columns often contain 

two or more adsorbent layers, each of which is designed to target specific impurities.
5-9

  Such 

columns allow for CO2 to be retained in easily regenerated activated carbon particles, while 

lighter impurities are adsorbed in highly selective zeolite layers. The overall performance of the 
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PSA unit is highly dependent on the adsorbents chosen and is limited by the selectivity of the 

adsorbent for the most weakly interacting impurity – N2 in the case of SMROG. Once this 

impurity breaks through the adsorption column, the feed cycle must be stopped and the adsorbent 

must be regenerated.    

In the continuous search for high-performance adsorbent materials required in order to 

improve PSA product yield, purity and energy requirements, metal-organic frameworks (MOFs) 

have been identified as promising candidates. While many MOF studies have focused on 

adsorption of binary, and ternary mixtures
10

 containing the more abundant impurities, that is CO2 

and CH4, only a few have analyzed CO/H2 and N2/H2 mixture adsorption. It is important to bear 

in mind that PSA performance is determined by the adsorption behavior of each of the 

impurities, and that adsorption strength can vary widely depending on the polarity of the 

impurity and on the properties of the MOF such as pore size, topology and chemical 

functionality. Furthermore, the impurities are competing with each other for the adsorption sites 

available, therefore in order to identify the most promising MOFs for H2 purification a study of 

the adsorption as well as the micropore and macropore diffusion behavior of the complete 

mixture is required. A study of diffusion through the micropores is necessary in order to verify 

the dominant mass transfer resistance.  

According to the detailed report of Sircar and Golden, the criteria by which PSA adsorbents 

should be selected include multicomponent adsorption capacities, desorption behavior, 

selectivities and isosteric heats of adsorption.
11

 None of these factors however, can be used as a 

single selection criterion, as separation efficiency is affected by each parameter to some 

degree.
12-14
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The most effective method for testing the selective properties of materials to be used in 

separating H2 from multicomponent mixtures is the use of laboratory scale breakthrough and 

PSA cycle experiments, such as the Dual Piston PSA setup
15

, as well as mathematical models, 

which simulate column adsorption. As a result, numerous zeolite and activated carbon studies 

seeking to identify promising PSA adsorbents have presented breakthrough studies and PSA 

process modeling for multicomponent H2 mixtures through single as well as layered beds.
9, 16-20

 

Recently, breakthrough models have been employed to investigate whether MOFs can be used in 

PSA separations for various applications with mixtures containing up to four gases. A study 

carried out by Krishna and Long compared several MOFs to zeolites and activated carbons using 

breakthrough studies of CO2/CH4/H2 mixtures as well as binary combinations of the three 

gases.
12

 Their work highlighted the advantage of using breakthrough calculations for separation 

studies, and showed that Mg MOF-74 was the best material for CO2/H2, CO2/CH4 and CH4/H2 

separations.
12

 Herm et al. investigated CO2/CH4, CH4/H2 and CO2/CH4/H2 separations, processes 

which are relevant for CO2 capture and storage as well as for H2 purification, and found Mg 

MOF-74 to outperform Zeolite 13X for all three mixtures.
21

 Finally, the recent work of Wu et al. 

tested the performance of MOFs and zeolites in separating CO2/CO/CH4/H2, CO2/H2, CH4/H2 

and CO2/CH4 mixtures, and identified Cu-TDPAT as a particularly effective adsorbent for H2 

PSA purification from SMROG.
22

 

A typical SMROG stream to be introduced into a hydrogen purification PSA unit contains H2, 

N2, CO, CH4, CO2. Water is also normally present; however it is the most strongly adsorbed 

component and can be easily removed from the stream either prior to the PSA unit, or by using 

additional adsorbent layers in the PSA column. In this study the stream entering the PSA column 

is assumed to be water-free. Considering the wide variation in selectivities not only from one 
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MOF to another but also from one impurity to another, it is critical to include all mixture 

components in the modeling of breakthrough curves. In this work, we use a combination of 

powerful simulation tools in order to perform a multi-scale study on the progression of five-

component mixtures, consisting of both, weakly interacting gases such as N2 and CO as well as 

easily adsorbed gases such as CH4 and CO2, through columns containing four MOFs. While PSA 

studies in the literature are normally carried out, at least partially through experimental work, we 

present an entirely computational study enabled by a transition from simulations at the molecular 

level, to simulations performed on the unit operations scale. To the best of our knowledge this is 

the first time such a study, focusing on H2 purification from SMROG, has been published. 

The adsorption and diffusion of five-component mixtures in four MOFs, namely 

dehydroxylated UiO-66(Zr), UiO-66(Zr)-Br, UiO-67(Zr) and Zr-Cl2AzoBDC, which share the 

same topology as shown in Figure 1, was assessed in order to evaluate their potential for 

hydrogen purification. The MOFs were selected for their stability and resistance to solvents and 

mechanical pressure.
23, 24

 In addition, the water stability studies of Yang et al.
25

 and Biwas et 

al.
26

 have shown that the four MOFs  retain their crystallinity upon immersion in water. The high 

connectivity of metal centres to organic linkers, which is characteristic of the UiO-66 family, 

results in high shear and bulk moduli and is responsible for the excellent mechanical stability of 

these materials.
24

 The structures share the same inorganic zirconium oxide clusters, however the 

organic linkers connecting the metal clusters vary as shown in Figure 1, resulting in different 

pore sizes, pore volumes, and adsorption site strength. In the first part of the study, results from 

grand canonical Monte Carlo (GCMC) simulations are presented to determine the working 

capacities and selectivities for each of the impurities to be removed.  With the help of external 

force non-equilibrium molecular dynamics (EF-NEMD) simulations micropore transport 
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diffusivities of the mixture components in each of the four MOFs were calculated. The 

adsorption and diffusion data obtained through molecular simulations were then directly 

introduced as input into a PSA unit model. 

 

Figure 1. a) Octahedral and tetrahedral pores of UiO-66(Zr) b) Linkers joining the zirconium 

clusters in each of the four MOFs 

In the second part of our work, we employed an adsorption column model in order to study 

mixture adsorption and diffusion through adsorption columns containing each of the four MOFs 

alone or containing a layered bed consisting of activated carbon and a MOF. The breakthrough 

curves for each of the mixture components were analyzed, and the impact of the impurities on 

the overall performance of different MOFs for hydrogen purification from SMROG is discussed.  

The breakthrough study was extended to include the zeolite and activated carbon materials 

studied in detail by Rodrigues and co-workers
16, 27

 as well as Zeolite 5A and Calgon PCB
17, 28

 in 

order to determine whether MOFs are able to compete with commercial PSA adsorbents, and to 

identify which of the four MOFs is the most promising adsorbent for H2 PSA purification.   
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2. Methods 

2.1. GCMC Simulations 

Grand canonical Monte Carlo simulations were carried out using the multipurpose simulation 

code (MuSiC)
29

 in order to determine the adsorption isotherms of each of the pure gases as well 

as the binary mixtures at 298 K. Each MOF was treated as a rigid structure and the framework 

atoms were maintained fixed at their crystallographic positions.
23, 25, 26, 30

 The simulated 

adsorbate-adsorbate and adsorbate-framework interactions included both dispersion and 

electrostatic contributions. Dispersion, or van der Waals interactions, were modeled using the 

Lennard-Jones potential
31

 with a 12.8 Å cut-off, while the electrostatic interactions were 

calculated using the Ewald summation method.
32

 Periodic boundary conditions were applied in 

order to mimic an infinite crystal structure. The Lennard Jones parameters used to represent 

framework atoms were taken from the Universal Force Field (UFF),
33

 and the partial charges 

were adopted from previous studies.
25, 30, 34

 CH4, N2 and CO2 were modeled using the LJ 

parameters and partial charges given in the TraPPE force field.
35, 36

 CO was described using the 

model of Martín-Calvo et al.
37

,  while for H2 the two-site model of Yang was adopted.
38

 Potential 

parameters between unlike adsorbate-adsorbate and adsorbate-adsorbent atom pairs were 

determined using the Lorentz-Berthelot mixing rules. The Peng-Robinson
39

 equation of state 

with quadratic mixing rules was applied in order to determine the gas-phase fugacities for pure 

adsorbates as well as mixtures. 

The differential enthalpy of adsorption, was calculated directly from GCMC simulations as 

follows:
40

 

Dh =RT -
UadsNads - Uads Nads

Nads
2 - Nads Nads

 (1) 
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Here Δh denotes the differential enthalpy of adsorption, R is the universal gas constant, T is the 

simulation temperature, <Uads> is the average potential energy per molecule, and <Nads> is the 

average number of molecules adsorbed. The pore diameters were evaluated using the pore size 

distribution method of Gelb and Gubbins
41

 which give the diameter of the largest sphere that can 

be inserted without overlapping with any of the framework atoms. The pore volumes were 

determined using a numerical Monte Carlo algorithm to carry out random trial insertions using a 

0 Å probe molecule. This purely geometrical method in essence calculates all the space inside 

the unit cell that surrounds the framework atoms.   

 

2.2. MD Simulations 

Molecular dynamics (MD) simulations were performed in order to determine the micropore 

transport diffusivities of each of the SMROG components through the pores of the four MOFs 

studied. The micropore transport diffusivity, Dt, is related to the flux, J, through Fick’s law of 

diffusion as follows:
 

 

J =-DtÑq  (2) 

 

It is therefore necessary to evaluate Dt in order to accurately describe the flux of adsorbate 

molecules through MOF pores. In this work, we make use of the Onsager formulation in order to 

determine the transport diffusion coefficients of each of the adsorbates through the pores of each 

of the four MOFs. This method has been described in detail in other works,
42, 43

 and a summary 

of its application for the simplest case, single component diffusion, is provided in the 

Supplementary Information.  
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The EF-NEMD simulations in the NVT ensemble were carried out using the Gromacs 

package.
44

 Each simulation was run for 5.5 ns, where the first 0.5 ns were used for equilibration. 

A temperature of 298 K was maintained using the Nose-Hoover thermostat
45

 and a time step of 

1 fs was employed. The equilibrium configurations obtained from GCMC simulations at 298 K 

and 10 bar were used as starting configurations for each MD simulation. An external force of 0.1 

to 1.0 kJ/mol/Å was applied to each adsorbate molecule inside the simulation box such that a 

linear response was achieved. The MOFs were assumed to be rigid, and the framework atoms 

were fixed at their crystallographic coordinates. The framework atoms and the adsorbate 

molecules were represented using the same Lennard-Jones parameters that were used in the 

GCMC simulations, and the Lorentz-Berthelot mixing rules were employed. Electrostatic 

interactions were calculated using a particle mesh Ewald (PME) technique
46, 47

 with a spacing of 

0.12 Å. Each NEMD simulation was repeated five times, and the average displacement 

correlation function (DCF) values were obtained. The statistical errors for the DCFs were 

determined using the Student t-test with a 95% confidence interval.  

 

2.3. Breakthrough Simulation Details 

The breakthrough simulations are performed with our in-house general adsorption cycle 

simulator. The column model and the numerical algorithms to solve the model are described in 

detail elsewhere.
15

 This simulator implements the mass, momentum and energy balances for an 

adsorption column and auxiliary units such as valves and feed lines. For the breakthrough 

simulations only a model for the adsorption column shown in Figure 2 is required.  
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Figure 2. Characteristics of adsorption column model containing adsorbent pellets used in the 

breakthrough simulations. The inset shows a pellet of radius Rp, containing spherical crystallites 

separated by intercrystalline macropores. 

The model assumes that the mixture behaves as an ideal gas at the reference temperature. A 

dual-site Langmuir model is used to describe the adsorption process, and the pressure drop is 

described by the Ergun equation. An axially dispersed plug flow model is employed. The non-

isothermal process is modeled by accounting for heat transfer between the column wall and the 

bed, as well as between the column wall and the surroundings. The temperature inside the 

adsorbent pellets is assumed to be uniform. Detailed mass and energy balances are provided in 

the Supporting Information. 

The velocity at the column inlet is set and the outflow velocity is calculated from the mass 

balance. Initially the column is at uniform pressure, temperature and gas phase concentration. 

The adsorbate concentration is assumed to be in equilibrium with the set gas phase 

concentration. 

The governing partial differential algebraic equations are discretized along the spatial 

dimension with a flux-limited finite volume method
15

 and the resulting set of ordinary 

differential algebraic equations is integrated in time with the variable time step, variable order 

backward differentiation formulas implemented in SUNDIALS.
48
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The column characteristics and operating conditions were maintained constant for all materials 

and were taken from Ribeiro et al, including a feed flow rate of 12.2 m
3
/h, and an inlet pressure 

of 7 bar.
16

 SMROG feed is normally available between 21 and 38°C
11

, therefore the feed 

temperature was set to a value within this range, that is 298 K. The mixture composition was 

defined as shown in Table 1. A complete list of simulation parameters is provided in the 

Supporting Information. 

 

Table 1. Feed gas composition (SMROG)
16

 

 Composition (mole%) 

H2 73.0 

CO2 16.0 

CO 3.0 

CH4 4.0 

N2 4.0 

 

Single component and binary mixture adsorption isotherms for each of the four MOFs as well 

as the isosteric heats of adsorption and Henry constants were calculated using GCMC 

simulations and fitted to the dual-site Langmuir (DSL) model using the weighted least squares 

fitting detailed in the work of Brandani and Ruthven.
49

 The model parameters were determined 

by simultaneously fitting single component and binary mixture data while satisfying Henry 

constant restrictions. As shown in Figure 3 the DSL curves were in good agreement with the 

simulated isotherms. Furthermore the fitted parameters were able to predict correctly binary 

mixture selectivities for each of the four frameworks presented in Figure 4. It should be noted 

that although the DSL model as formulated here does not account for the impact of fugacity on 

adsorption, the PSA simulations in which they were employed were carried out for inlet 
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pressures ranging from 5 to 20 bar. Isotherm fitting was focused on the low pressure region 

corresponding to the partial pressure of each mixture component, where the ideal gas law is a 

reasonable approximation. The fitted pure component isotherm parameters, provided in the 

Supplementary Information, were used directly as inputs for the transient breakthrough 

simulations. In the case of Zeolite 5A and Calgon PCB as well as the commercial zeolite and 

activated carbon described by Ribeiro et al., isotherm parameters found in the literature
16, 17

 were 

refitted to the dual-site Langmuir model.  

Kinetic properties were represented using a bidisperse porous model, where macropore and 

micropore diffusivities are treated as resistances in series. Single component micropore transport 

diffusivities for the MOFs were calculated using EF-NEMD simulations and are given in 
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Table 2, while the micropore diffusivities for the commercial zeolite and activated carbon were 

taken from Ribeiro et al.
16

 In the case of Zeolite 5A and Calgon PCB, the dominant resistance 

was assumed to be the diffusion of molecules through the macropores, therefore micropore 

diffusion was not needed in the predictions obtained from the breakthrough model. The 

macropore diffusivities were determined using molecular diffusivities alone, which were 

calculated according to the Chapman-Enskog equation.
50

 Macropore diffusivity calculation 

details are provided in the Supplementary Information.  
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Table 2. Micropore Transport Diffusivities calculated from EF-EMD simulations 

Adsorbate 
Micropore Transport Diffusivity Dc  10

9
(m

2
/s) 

UiO-66(Zr) UiO-66(Zr)-Br UiO-67(Zr) Zr-Cl2AzoBDC 

H2 44.5 ± 3.23 10.80 ± 1.23 154.00 ± 1.28 193.00 ± 3.33 

CO2 5.96 ± 0.30 2.80 ± 0.30 26.60 ± 1.80 31.70 ± 0.89 

CO 5.83 ± 0.59 0.46 ± 0.06 23.40 ± 1.13 34.60 ± 1.94 

CH4 8.25 ± 0.68 0.22 ± 0.04 23.10 ± 2.12 28.10 ± 1.45 

N2 4.46 ± 0.65 0.25 ± 0.05 22.80 ± 1.45 28.70 ± 2.38 

 

The relative impact of these micropore diffusivities was compared to the macropore 

diffusivities using the criterion developed by Ruthven and Loughlin
51

 as shown in equation (3).   

 
2

2 1

pp

cc

rD

KrD 


 

(3) 

where  
 

p

adp H
K






1
    and   Had =

rsRTH

Mw

 

 

 

Here Dc and Dp are the micropore and macropore diffusivities through crystallites and pellets 

of radii of rc and rp, respectively, and H denotes the Henry constant.  The γ parameters evaluated 

for the four MOFs are given in Error! Reference source not found.. For γ < 0.1 the process is 

micropore diffusion limited, while for γ > 10 macropore diffusion is the governing process. In 

the case of 0.1 < γ < 10 both macropore and micropore diffusion must be taken into account. The 

crystallite and pellet radii were set to 3 μm and 0.85 mm, respectively. The crystallite size was 

chosen at the high end of the Zr MOF crystal size range
52

, in order to account for the longest 

possible micropore diffusion path. As all calculated γ values are greater than 10, the macropore 

diffusion process is much slower than diffusion through the micropores. We can therefore 
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conclude that for all mixture components and for all four MOFs the uptake rate is macropore 

diffusion limited.   

 

Table 3. Micropore/macropore comparison criterion, γ 

 UiO-66(Zr) UiO-66(Zr)-Br UiO-67(Zr) Zr-Cl2AzoBDC 

 H2 2,037 491 7,379 9,105 

CO2 39,492 54,095 49,277 31,414 

CO 4,556 555 8,515 9,241 

CH4 19,010 915 22,992 15,363 

N2 2,376 178 5,991 6,246 

 

3. Results and Discussion 

Table 4. Simulated isosteric heats of adsorption at 7 bar and 300 K for each of the mixture 

components, as well as free volumes and pore sizes for the four MOFs studied. 

Material 

Δh (kJ/mol) 
Void 

Fraction 

Pore 

Volume 

(cm
3
/g) 

Pore Size (Å) 
H2 CO2 CO CH4 N2 

UiO-66(Zr) 6.75 26.53 15.89 18.60 14.62 0.586 0.482 6.6, 7.5 

UiO-66(Zr)-Br 7.46 29.67 18.22 21.00 16.69 0.526 0.330 6.4, 7.3 

UiO-67(Zr) 5.01 20.37 11.89 14.17 10.69 0.716 1.011 8.9, 9.7, 11.9 

Zr-Cl2AzoBDC 4.69 17.28 11.31 13.51 10.37 0.748 1.118 10.4, 11.8, 13.6 

 

3.1. Pure Component Adsorption Isotherms 

The adsorption isotherms of each of the impurities in the four structures investigated were 

determined through GCMC simulations up to a pressure of 50 bar, and are shown in Figure 3. 
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They provide information not only about the relative capacities of the MOFs, but also about the 

relative strength of the adsorbate-framework interactions. Many studies have shown that the 

adsorption properties of MOFs are governed by a combination of the free volume and the 

enthalpy of adsorption.
53-55

 The influence of the free volumes and adsorption enthalpies 

presented in  

Table 4 on the isotherms shown in Figure 3 is a reflection of this relationship. At high 

pressure, the highest uptake of all four adsorbates occurs in UiO-67(Zr). Although Zr-

Cl2AzoBDC has a higher pore volume than UiO-67(Zr), and chlorine functionalized linkers, the 

slightly shorter linkers of UiO-67(Zr) lead to narrower pores and at the same time to stronger 

dispersion interactions. At high pressure, the UiO-66(Zr) and UiO-66(Zr)-Br frameworks show 

the lowest volumetric uptake for each of the adsorbates due to their lower pore volumes as 

shown in  

Table 4. At low pressure on the other hand, these smaller pore MOFs have the highest uptake 

of all four adsorbates. As shown in  

Table 4, the highest enthalpies of adsorption for CO, N2, CH4 and CO2 are observed in UiO-

66(Zr)-Br. This can be explained by the presence of narrow pores and pore windows and 

bromine functional groups, which result in strong dispersion and electrostatic interactions, 

respectively. It is interesting to note, however, that in the case of CO and N2 adsorption, all four 

frameworks have very similar uptake up to a pressure of 20 bar. The highest N2 enthalpy of 

adsorption was observed in UiO-66(Zr)-Br, followed by the unfunctionalized UiO-66(Zr), 

however N2-framework interactions are relatively weak compared to the other impurities that 

must be removed during H2 purification. As a result N2 will be the most weakly retained 

impurity, and its breakthrough time dictates the length of the PSA feed step.
3
 It is therefore 
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particularly important to identify materials that can selectively adsorb N2 from H2 fuel sources 

such as SMROG. 
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Figure 3. Pure component adsorption isotherms obtained using GCMC simulations for a) CO2, 

b) CO, c) CH4, d) N2 and e) H2 in each of the four MOFs investigated.  UiO-67(Zr) – filled 

triangles, Zr-Cl2AzoBDC – open diamonds, UiO-66(Zr)– filled squares, UiO-66(Zr)-Br – open 

spheres.  The dotted lines represent the dual-site Langmuir fitted curves.  Loading is expressed in 

volumetric terms, where the volume represents the space taken up only by MOF crystallites. 
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3.2. Adsorption of Binary Mixtures 

In order to evaluate the ability of each MOF to selectively adsorb CH4, CO2, CO and N2 from 

SMROG streams, GCMC simulations were performed for binary mixtures of CH4:H2, CO:H2, 

CO2:H2, and N2:H2. The hydrogen content of a SMROG mixture is normally at least 70%, 

therefore the binary mixture simulations were carried out on mixtures with impurity:H2 ratios of 

30:70. By maintaining the hydrogen content constant across all four mixtures we are able to not 

only compare the selectivities of the four MOFs for each of the impurities, but also the degree of 

selectivity relative to the impurity to be removed. It should be noted that in a PSA column the 

ratio of impurity to H2 gas is significantly lower, particularly at the leading edge of the 

concentration front.  

The binary mixture adsorption data was used in order to determine the selectivities for each of 

the impurities, which are shown as a function of pressure in Figure 4. The highest selectivities 

for all four impurities are observed in UiO-66(Zr)-Br. This behavior is a result of the significant 

potential overlap caused by a narrow pore size, as well as the presence of Br functional groups, 

both of which lead to increased interactions between the adsorbate molecules and the framework. 

The lowest CO2, CH4, N2 and CO selectivities correspond to the large pores of UiO-67(Zr) and 

Zr-Cl2AzoBDC, where the adsorption enthalpies are the lowest.  
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Figure 4. Selectivities from binary mixture adsorption of a) CO2:H2 30:70, b) CH4:H2 30:70, c) 

CO:H2 30:70, and d) N2:H2 30:70. UiO-67(Zr) – filled triangles, Zr-Cl2AzoBDC – open 

diamonds, UiO-66(Zr) – filled squares, UiO-66(Zr)-Br – open spheres. The dotted lines represent 

the dual-site Langmuir fitted curves. 

 

The working capacities of each MOF, that is the amount of CH4, CO2, CO and N2 that can be 

adsorbed from each binary mixture at the PSA feed pressure less what remains adsorbed at the 

purge pressure, were calculated for a 1-7 bar process: 

Dqi = qi,7bar -qi,1bar  (4) 

The isothermal working capacity, Δqi, is a particularly useful measure, as it gives insight into 

the ease of regeneration of a MOF, as well as its ability to capture impurities. Note, that during a 

PSA process the temperature inside the bed increases during the adsorption process resulting in a 
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decrease of the working capacity. However the isothermal working capacities presented here 

provide a suitable measure for comparing different adsorbents. As shown in Figure 5, the 

highest CO and N2 working capacities correspond to UiO-66(Zr)-Br where stronger adsorbate-

framework interactions result in higher uptake at 7 bar than in the other three MOFs.  At 1 bar, 

uptake of CO and N2 is low in all four structures. UiO-66(Zr) has the highest CH4 and CO2 

working capacity due to strong adsorbate-framework interactions, as well as a higher pore 

volume than UiO-66(Zr)-Br. Interestingly, UiO-67(Zr) has a higher CO2 working capacity than 

UiO-66(Zr)-Br, in spite of a large difference in adsorption enthalpies. This indicates that unlike 

the working capacities of weaker adsorbates, which depend mainly on the enthalpies of 

adsorption, the amount of CO2 adsorbed during a PSA cycle is also dependent on the pore 

volume available. Figure S3 and S4 of the Supporting Information show the working capacities 

corresponding to the impurity partial pressures in an SMROG stream operating between 1 bar 

and 7 bar, and from 1 bar and 20 bar, respectively.  The highest working capacities for CO, N2 

and CH4 for both SMROG equivalent pressure ranges were found to correspond to UiO-66(Zr)-

Br.  The highest CO2 working capacities correspond to UiO-66(Zr) and UiO-66(Zr)-Br in the 

low pressure range, and to UiO-66(Zr) and UiO-67(Zr) in the high pressure range.  CO2 is the 

most abundant impurity present in an SMROG stream, typically 15-25%
3
, and interacts strongly 

with all four MOFs studied. As CO2 molecules are more competitively adsorbed in a PSA bed 

than CH4, CO and N2 molecules, they displace the more weakly interacting impurities from the 

adsorption sites, effectively “pushing” them to adsorption sites further up the column.  
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Figure 5. Working capacities from binary mixture simulations, for all impurities for a PSA 

operating range of 1-7 bar, and 298 K. 

The selectivity plots as well as the working capacities present valuable information about the 

potential of each MOF as a PSA adsorbent for H2 purification. However, our results show that a 

MOF might be very promising in some aspects while showing limitations in others. Based on its 

high selectivities and N2 and CO working capacities, UiO-66(Zr)-Br appears to have the greatest 

ability to retain weakly interacting impurities. Its small pore volume, and hence its lower CO2 

and CH4 working capacities however, may lead to a shorter overall breakthrough time. UiO-

66(Zr) on the other hand, which also exhibits relatively high selectivities, has high CO2 and CH4 

working capacities and is expected to display good retention of these strongly interacting 

impurities. Its lower N2 and CO selectivities however, could lead to a quicker elution of these 

impurities into the outlet stream. It is difficult to use this information alone in order to determine 

which material would be able to selectively adsorb the largest amount of impurities, allow for the 
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longest PSA feed step, as well as require the lowest amount of purge gas during the regeneration 

step. 

 

3.3. Breakthrough Curves  

In the work of Ribeiro et al., PSA cycles were modeled using five component SMROG 

mixtures and layered beds composed of a commercial zeolite and an activated carbon.
16

 Here we 

compare beds containing these commercial adsorbents to beds containing the four MOFs, UiO-

66(Zr), UiO-66(Zr)-Br, UiO-67(Zr) and Zr-Cl2AzoBDC as well as Zeolite 5A and Calgon PCB.   

The breakthrough curves in Figure 6 show the concentration of each impurity as a function of 

dimensionless time at the column outlet. The dimensionless time, τ, was calculated using  

t = tu
eL  

(5) 

 

Where u is the velocity of the mixture through the column, L is the column length, and ε is the 

bed void fraction. The use of dimensionless breakthrough time as opposed to specific time 

allows for a direct comparison of the breakthrough behavior between processes with different 

operating parameters. As shown in Figure 6, for all six adsorbents, the first impurity to elute is 

N2, followed by CO, CH4 and finally CO2 as expected considering the weak N2-pore surface 

interactions, and the high heats of adsorption of CO2 in each of the materials. N2 breakthrough is 

therefore confirmed as the limiting factor in determining the duration of the feed step in the PSA 

process. In addition, the strong interactions between CO2 and the adsorbents indicate that this 

impurity is the most difficult to desorb, and could therefore present a constraint during the purge 

step. In the four MOFs and the activated carbon, CO is adsorbed more weakly than CH4, and 

therefore elutes more quickly. Conversely in the commercial zeolite, the nonpolar CH4 molecules 
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interact more weakly with the framework, and therefore elute earlier than the polar CO 

molecules. The breakthrough curves of the three intermediate compounds adsorbed, that is N2, 

CH4, and CO, contain regions where the outlet concentrations are higher than their 

concentrations in the inlet stream. These regions contain one, two or three plateaus each, 

depending on the order of elution, and are caused by a competitive adsorption behavior, where 

more strongly adsorbed species displace weaker interacting species from adsorption sites within 

the column. For example, in Figure 6 a) the N2 curve presents three consecutive steps signifying 

the displacement of N2 molecules by CO, CH4 and CO2 molecules, respectively.  
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Figure 6. Simulated breakthrough curves for a five component mixture through a 1 m long 

adsorption column containing a) UiO-66(Zr)-Br b) UiO-66(Zr) c) UiO-67(Zr) d) Zr-Cl2AzoBDC 

e) AC* f) Zeolite*. long dashed line – CO2, short dashed line – CH4, dotted line – CO, solid line 

– N2. Zeolite* and AC* are the commercial adsorbents from the work of Ribeiro et al. 
16
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Figure 7. a) N2 and b) CO2 outlet concentrations as a function of dimensionless time for each of 

the six adsorbents. The inset in a) focuses on the 0-20 range. Zeolite* and AC* are the 

commercial adsorbents from the work of Ribeiro et al. 
16

 

 

We focus on the N2 and CO2 breakthrough curves shown in Figure 7 in order to determine how 

MOFs perform in comparison with the commercial zeolite and activated carbon. Two of the four 

MOFs considered, namely UiO-66(Zr) and UiO-66(Zr)-Br, have longer N2 breakthrough times 

than the zeolite, suggesting that these materials could potentially be used to replace zeolites in 

hydrogen purification beds in order to optimize the PSA process. The inset in Figure 7 a) shows 

UiO-66(Zr)-Br to have the longest time to breakthrough for N2 molecules, which makes it the 

most promising MOF in this study. UiO-67(Zr) and Zr-Cl2AzoBDC both have significantly 
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shorter N2 breakthrough times than the zeolite. Figure 7 b) shows that the CO2 breakthrough time 

of UiO-66(Zr)-Br is similar to that of the zeolite. CO2 adsorbs weakly in the activated carbon, as 

well as the large pore MOFs and therefore elutes at an earlier time point.  

 

Figure 8. N2 breakthrough time as a function of loading pressure. Zeolite* and AC* are the 

commercial adsorbents from the work of Ribeiro et al. 
16

 

In order to compare the performance of the four MOFs to industrial PSA adsorbents, we 

extended our analysis to include Zeolite 5A and activated carbon Calgon PCB, which have been 

widely studied. Breakthrough simulations for these materials were carried out based on the 

adsorption data provided in the recent PSA work of Ahn et al.
40

 In Figure 8 breakthrough times 

for the MOFs, zeolites and activated carbons are plotted as a function of loading pressure. For all 

adsorbents in this study N2 is the first impurity to elute into the product stream. Considering that 

the purity requirement for H2 fuel and propellant applications is a N2 concentration lower than 2 
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ppm
56

, the breakthrough time was defined as the time at which the N2 content in the outlet stream 

reaches a conservative 1 ppm.  

UiO-67(Zr) and Zr-Cl2AzoBDC have short breakthrough times across the entire pressure 

range, similar to the activated carbons, which is due to weak N2 framework interactions. The 

remaining two MOFs however, have longer breakthrough times than the two zeolite materials. 

The longest retention of impurities corresponds to UiO-66(Zr)-Br, making this a particularly 

promising PSA adsorbent.   

As mentioned earlier, the length of the PSA purge step is limited by the ease of CO2 desorption 

from the bed. Currently, PSA units employ layered beds containing two or more adsorbents. This 

technique aims to adsorb each impurity within a layer from which it can be readily desorbed. 

Alumina or silica layers are used to adsorb water vapor, while activated carbon is used to target 

CO2 and long hydrocarbons. These strongly adsorbing impurities are thus prevented from 

reaching the zeolite layer, from which they would be difficult to remove. In the work of Ribeiro 

et al., a layered bed containing activated carbon and zeolite is modeled as part of an eight-step 

PSA cycle, and an outlet stream purity of 99.9994% is obtained.
16

 Considering that some MOFs 

in this study have high heats of adsorption for CO2, particularly UiO-66(Zr)-Br, it is likely that 

the use of MOFs in layered adsorption beds along with activated carbon will prove to be more 

efficient than the use of a MOF-only bed. 
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Figure 9. N2 breakthrough time for layered beds as a function of loading pressure.  Each bed 

contains an AC* layer and an equal layer of MOF or zeolite. Zeolite* and AC* are the 

commercial adsorbents from the work of Ribeiro et al.
16

 

Breakthrough curves were modeled for the same gas mixture through 1 m long columns 

containing a 0.5 m bottom layer of the commercial activated carbon used by Ribeiro et al., 

followed by a 0.5 m layer of each of the MOFs and the commercial zeolite. The UiO-66(Zr) and 

UiO-66(Zr)-Br layered bed show similar or longer N2 breakthrough times than the two zeolite 

layered beds as shown in Figure 9. Generally N2 breakthrough times are shorter in the case of 

layered beds than for the single component beds due to the relatively fast movement of 

molecules through the AC layer. A comparison of the N2 time to breakthrough for single versus 

two-layered beds is shown in Figure 10. While the addition of an AC layer has the benefit of 

capturing CO2 molecules and preventing them from reaching the MOF layer, there is a trade-off 
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in terms of feed step duration, and this effect is most significant in the case of UiO-66(Zr)-Br.  

Nevertheless, while both UiO-66(Zr) and UiO-66(Zr)-Br perform better than the commercial 

zeolite of Ribeiro et al. and Zeolite 5A, the most promising framework for H2 purification using 

a two-layered bed is UiO-66(Zr)-Br. In UiO-67(Zr) there is only a minor decrease in 

breakthrough time when the AC layer is included, while in the Zr-Cl2AzoBDC breakthrough 

time is actually improved in the two layer setup. This is explained by a weak retention of CO2 in 

the two large pore MOFs as shown in Figure 7 b), which is similar or worse than that of AC*. 

 

Figure 10. Time to N2 breakthrough (1 ppm in the outlet stream) for 1 m columns containing 

MOF or zeolite only (black), and layered columns containing equal volumes of AC* and MOF or 

zeolite (grey). Zeolite* and AC* are the commercial adsorbents from the work of Ribeiro et al.
16

 

In order to compare the ease of column regeneration, layered bed adsorption simulations were 

carried out for each of the MOFs and zeolites and terminated at their specific N2 breakthrough 

times.  These simulations were then succeeded by a desorption stage carried out at 1 bar, 

consisting of a 50 s blow-down and a 450 s purge with pure H2.  The impurity loadings at the 

bottom of the MOF/zeolite layer, approximately in the middle of the column, during the 
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adsorption and desorption stages are shown on the left and right hand sides of Figure 11, 

respectively. Unsurprisingly the lowest loading during adsorption, and quickest regeneration is 

observed in UiO-67(Zr) and Zr-Cl2AzoBDC. The two smaller pore MOFs, UiO-66(Zr) and UiO-

66(Zr)-Br have the highest impurity loading following the adsorption stage. In particular, UiO-

66(Zr)-Br has a N2 loading that is more than three times those in Zeolite* and Zeolite 5A. 

Despite the higher amounts of impurities adsorbed inside the small-pore MOFs, full regeneration 

is achieved after approximately 300 s, which is nearly the same as the regeneration times 

observed for the two zeolites. This indicates that a layered PSA column containing UiO-66(Zr) 

or UiO-66(Zr)-Br could be used in order to produce a greater amount of high purity H2 than the 

two zeolites, without requiring a longer purge stage.     
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Figure 11. Adsorbed impurity concentrations at the bottom of the MOF/zeolite layer from 

layered bed adsorption simulations terminated at the N2 breakthrough point (left column) and 

desorption simulations (right column). Beds contain equal layers of AC* and a) UiO-66(Zr) b) 
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UiO-66(Zr)-Br c) UiO-67(Zr) d) Zr-Cl2AzoBDC e) Zeolite* and f) Zeolite 5A. Dotted line – CO, 

solid line – N2, long dashed line – CO2, short dashed line – CH4. The CO2 and CH4 curves 

coincide with the x-axes in all cases. Zeolite* and AC* are the commercial adsorbents from the 

work of Ribeiro et al.
16

 

For all of the frameworks investigated here, the chosen activated carbon layer height of 0.5 m 

was observed to prevent CO2 from eluting into the MOF layer before the N2 breakthrough time 

was reached. Given the substantial reduction in the overall N2 breakthrough time caused by the 

AC layer addition, only the minimum amount of AC required to retain the CO2 molecules should 

be used. We selected the structure identified as having the longest N2 breakthrough time, UiO-

66(Zr)-Br in order to investigate the optimum AC layer height. In Figure 12 a plot of the CO2 

AC layer breakthrough time is shown along with the overall N2 breakthrough time for a range of 

AC and UiO-66(Zr)-Br layer height ratios. The column length was maintained fixed at 1 m. For 

an AC layer height between 0.2 and 0.4 m, CO2 (shown as empty spheres) reaches the UiO-

66(Zr)-Br layer before the N2 concentration (shown as filled spheres) reaches 1 ppm in the 

product stream. In this region, the duration of the PSA cycle is limited by the CO2 breakthrough 

time through the activated carbon. For an AC layer thicker than 0.45 m, all of the CO2 is retained 

inside the AC layer for much longer periods of time. However, a thicker activated carbon layer 

results in poorer N2 retention. In the case of an AC layer height larger than 0.45 m the PSA cycle 

duration is limited by the N2 breakthrough time, which is significantly shorter. The operating 

range is therefore the area underneath the lowest of the two constraints, and is shown in grey in 

Figure 12 .The shortest AC layer height that would render a CO2 retention time in the AC layer 

that is longer than the N2 overall retention time is 0.45 m. Decreasing the AC layer length from 
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0.5 m to 0.45 m would increase the potential PSA dimensionless breakthrough time from 5.27 to 

5.47 (130 s to 135 s).  

 

Figure 12. For a layered bed of the commercial activated carbon and UiO-66(Zr)-Br: 1 ppm 

breakthrough time for CO2 at the end of the activated layer (open spheres) and the N2 

breakthrough time at the end of the column (filled spheres).  The grey shaded region in the graph 

denotes the PSA cycle durations for which both operating conditions are satisfied: N2 retention 

inside the column and CO2 retention in the activated carbon layer. 

 

4. Conclusions 

The work presented in this study demonstrates that some metal-organic frameworks may be 

able to compete with commercial zeolites as adsorbents for the purification of H2 from SMROG 

via pressure swing adsorption. The separation capabilities of four MOFs, namely UiO-66(Zr), 

UiO-66(Zr)-Br, UiO-67(Zr) and Zr-Cl2AzoBDC were compared to a commercial zeolite and a 

commercial activated carbon, as well as Zeolite 5A and Calgon PCB. The MOFs were first 
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evaluated in terms of their pure component adsorption isotherms, working capacities, and 

adsorption enthalpies for each of the mixture components, as well as binary mixture selectivities. 

UiO-66(Zr)-Br was observed to have the highest selectivities and working capacities for N2 and 

CO, indicating that the presence of narrow pores and functionalized linkers results in improved 

retention of weakly interacting gases due to stronger adsorbate – framework interactions.  

UiO-66(Zr) on the other hand displayed the highest CH4, and CO2 working capacities for a 1-7 

bar pressure range. Considering that CO2 is the most abundant impurity in the SMROG mixture, 

and that the most weakly adsorbed impurity is N2, it is difficult to determine which of the four 

MOFs would be most efficient in separating H2 from SMROG based on adsorption and 

selectivity data alone. We therefore employed breakthrough curve simulations for five 

component mixtures composed of H2, N2, CO, CH4 and CO2. These simulations are 

exceptionally useful as it enables the study of both, adsorptive and diffusive processes, and takes 

into account the contributions of each of the mixture components. The study of single and two-

layered beds revealed that UiO-66(Zr) and UiO-66(Zr)-Br have longer breakthrough times than 

the commercial zeolite studied by Ribeiro et al. and zeolite 5A, and would therefore result in a 

larger amount of high purity H2 product per PSA cycle. UiO-66(Zr)-Br was found to be the most 

effective material for retaining the impurities present in SMROG, having the longest 

breakthrough time in this study. 

It is important to bear in mind that PSA adsorbents are selected not only based on their 

thermodynamic properties but also on their physical robustness. The UiO-66(Zr) family of 

MOFs has been shown to have a high resistance to solvents and to mechanical pressure of up to 

10 kg/cm
2
,
23

 making UiO-66(Zr)-Br a particularly promising PSA adsorbent. 
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Figure Captions 

 

Figure 1. a) Octahedral and tetrahedral pores of UiO-66(Zr) b) Linkers joining the 

zirconium clusters in each of the four MOFs 

Figure 2. Characteristics of adsorption column model containing adsorbent pellets used 

in the breakthrough simulations. The inset shows a pellet of radius Rp, containing 

spherical crystallites separated by intercrystalline macropores. 

Figure 3. Pure component adsorption isotherms obtained using GCMC simulations for a) 

CO2, b) CO, c) CH4, d) N2 and e) H2 in each of the four MOFs investigated.  UiO-67(Zr) 

– filled triangles, Zr-Cl2AzoBDC – open diamonds, UiO-66(Zr)– filled squares, UiO-

66(Zr)-Br – open spheres.  The dotted lines represent the dual-site Langmuir fitted 

curves.  Loading is expressed in volumetric terms, where the volume represents the space 

taken up only by MOF crystallites. 

Figure 4. Selectivities from binary mixture adsorption of a) CO2:H2 30:70, b) CH4:H2 

30:70, c) CO:H2 30:70, and d) N2:H2 30:70. UiO-67(Zr) – filled triangles, Zr-Cl2AzoBDC 

– open diamonds, UiO-66(Zr) – filled squares, UiO-66(Zr)-Br – open spheres. The dotted 

lines represent the dual-site Langmuir fitted curves. 

Figure 5. Working capacities from binary mixture simulations, for all impurities for a 

PSA operating range of 1-7 bar, and 298 K. 

Figure 6. Simulated breakthrough curves for a five component mixture through a 1 m 

long adsorption column containing a) UiO-66(Zr)-Br b) UiO-66(Zr) c) UiO-67(Zr) d) Zr-

Cl2AzoBDC e) AC* f) Zeolite*. long dashed line – CO2, short dashed line – CH4, dotted 
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line – CO, solid line – N2. Zeolite* and AC* are the commercial adsorbents from the 

work of Ribeiro et al. 
16

 

Figure 7. a) N2 and b) CO2 outlet concentrations as a function of dimensionless time for 

each of the six adsorbents. The inset in a) focuses on the 0-20 range. Zeolite* and AC* 

are the commercial adsorbents from the work of Ribeiro et al. 
16

 

Figure 8. N2 breakthrough time as a function of loading pressure. Zeolite* and AC* are 

the commercial adsorbents from the work of Ribeiro et al. 
16

 

Figure 9. N2 breakthrough time for layered beds as a function of loading pressure.  Each 

bed contains an AC* layer and an equal layer of MOF or zeolite. Zeolite* and AC* are 

the commercial adsorbents from the work of Ribeiro et al.
16

 

Figure 10. Time to N2 breakthrough (1 ppm in the outlet stream) for 1 m columns 

containing MOF or zeolite only (black), and layered columns containing equal volumes 

of AC* and MOF or zeolite (grey). Zeolite* and AC* are the commercial adsorbents 

from the work of Ribeiro et al.
16

 

Figure 11. Adsorbed impurity concentrations at the bottom of the MOF/zeolite layer 

from layered bed adsorption simulations terminated at the N2 breakthrough point (left 

column) and desorption simulations (right column). Beds contain equal layers of AC* 

and a) UiO-66(Zr) b) UiO-66(Zr)-Br c) UiO-67(Zr) d) Zr-Cl2AzoBDC e) Zeolite* and f) 

Zeolite 5A. Dotted line – CO, solid line – N2, long dashed line – CO2, short dashed line – 

CH4. The CO2 and CH4 curves coincide with the x-axes in all cases. Zeolite* and AC* 

are the commercial adsorbents from the work of Ribeiro et al.
16
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Figure 12. For a layered bed of the commercial activated carbon and UiO-66(Zr)-Br: 1 

ppm breakthrough time for CO2 at the end of the activated layer (open spheres) and the 

N2 breakthrough time at the end of the column (filled spheres).  The grey shaded region 

in the graph denotes the PSA cycle durations for which both operating conditions are 

satisfied: N2 retention inside the column and CO2 retention in the activated carbon layer. 
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1. Macropore and Micropore Diffusion Parameters 

The linear driving force (LDF) parameters describing macropore and micropore diffusion 

are given in Table S 1. Micropore diffusivities were calculated using NEMD simulations, 

and the average microporous particle (crystallite) radius was assumed to be 3 μm.  

Macropore diffusivities were calculated by using the Chapman-Enskog equation for 

binary mixtures 

Dij = 0.0018583
1

Mi

+
1

M j

1

s 2

ij

æ

è
çç

ö

ø
÷÷
T
3
2

PWij

 (1) 

 

where Mi and Mj are the molar masses of each binary mixture component, and Ωij is the 

“collision integral” and is a function of kBT/εij.  σij is the separation distance between i and 

j at the lowest point of the Lennard-Jones potential well, while εij is the energy at the 

lowest point of the well.  The Ωij parameters were taken from the appendix tables of Bird 

et al..
1
 The Chapman-Enskog equation was extended to the five-component mixture as 

follows: 

Dim =
1- Xi

X j

Dijj¹i

n

å
 

(2) 

Here Xi and Xj are the molar fractions of the components in the mixture.  The macropore 

diffusivity can then be determined by dividing Dim by a tortuosity factor of τ = 2.   

Dp =
Dim

t
 (3) 

 

The pellet radius of the commercial zeolite and activated carbon of Ribeiro et al. were 

0.85 mm and 1.17 mm respectively.  In this work the pellet radius for the four MOFs was 

set to be the same as that of the zeolite, that is 0.85 mm.  
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Table S 1. LDF coefficients used to describe diffusion through MOF pellet macropores and micropore 

 

Dc/rc
2  

 (s
-1

) Dp/rp
2 

 (s
-

1
) 

MOFs, 

Zeolite* 

Dp/rp
2 

 (s
-1

) 

AC* 
UiO-66(Zr) UiO-66(Zr)-Br UiO-67(Zr) Zr-Cl2AzoBDC Zeolite* AC* 

H2 4.94E+03 1.20E+03 1.71E+04 2.14E+04 9.23E-02 8.89E-02 6.91 3.65 

CO2 5.87E+02 2.76E+02 2.96E+03 3.52E+03 1.87E-04 1.24E-02 4.75 2.51 

CO 5.86E+02 4.89E+01 2.60E+03 3.84E+03 4.22E-03 2.11E-02 4.17 2.20 

CH4 8.19E+02 2.34E+01 3.68E+03 3.12E+03 1.04E-02 3.96E-02 4.24 2.24 

N2 4.54E+02 2.62E+01 2.53E+03 3.19E+03 2.13E-02 2.29E-02 4.18 2.21 

 

Note:  The large difference between the Dc/rc
2  

 values calculated for the four MOFs and those provided by Ribeiro et al. for Zeolite* 

and AC* may be in part due a difference in the rc values used here and in the calculations of Ribeiro and coworkers.
2
  It must be 

mentioned however, that the transport diffusivities of molecules through structures containing pores in the range of 4 to 10 Å can vary 

by several orders of magnitude as shown by Ruthven and Post
3
, depending on the chemistry and topology of the materials.
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2. EF-NEMD Calculation Details 

The Onsager method is used in order to relate the flux to the chemical potential 

gradient 

J =-LÑm  (4) 

where L is sometimes referred to as an Onsager coefficient.  The transport diffusion 

coefficient Dt is related to L as follows: 

Dt = LG      where    G =
RT

c

d ln f

d lnc
 (5) 

 

The d(ln f)/d(ln c)  term is also known as the thermodynamic correction factor and can 

be determined directly from the single component adsorption isotherm.  For a dual site 

Langmuir isotherm expression the thermodynamic correction factor becomes
4
: 

G =
1

qi
1

qi
1-
qi
1

qi,s
1

æ

è
ç

ö

ø
÷

æ

è
ç
ç

ö

ø
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÷+
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qi
1-
qi
2

qi,s
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æ
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ç
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ø
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è
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ç

ö

ø
÷
÷

 
(6) 

 

Here q i
 1

 and q i
 2

 are used to denote the loadings at each of the two sites at a given 

pressure, and q i,s
 1

 and q i,s
 2

 are the saturation loadings. In order to determine the Onsager 

coefficients for each of our adsorbates, external force non-equilibrium molecular 

dynamics (EF-NEMD) simulations were carried out. 
5
 In EF-NEMD, an external force is 

applied to the adsorbate molecules inside the framework pores in order to imitate a 

chemical potential gradient effect.  This results in a movement of molecules along the 

direction of the applied force, and the molecular flux can be measured.   Here a force was 

applied along the x-direction.   

The flux was then calculated using 

J =
1

Vt
sim

r
k
t( )- rk 0( )é

ë
ù
û

k=1

N

å  (7) 
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where rk refers to the position of molecule k along the direction in which the force was 

applied, V represents the unit cell volume and τ is the time span of the simulation.  The 

sum of the molecular displacements at each time point is also known as the displacement 

correlation function (DCF).  Finally, the Onsager coefficients were determined using  

L =
J

F
 (8) 

and used in calculating the transport diffusion coefficients for each of the adsorbates.  It 

should be noted that this simple model applies only to the single component diffusion 

case.  

3. Breakthrough Simulation Details 

The mass balances along the column for axial dispersed plug flow and the linear 

driving force model used to represent the equivalent diffusion through both, the 

macropores and the micropores (bi-LDF), are given by 
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Here i goes from 1 to the number of components Nc. The value of the adsorbate 

concentration at equilibrium
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iq depends on the dual-site, multi-component Langmuir 

isotherm  
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The energy balance in the column is written in terms of the internal energy in the fluid 

and solid phase plus an equation for the wall temperature 
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The diffusive flux of component i in the fluid phase Ji, the thermal diffusive flux JT and 

the logarithmic mean surface to volume ratio of the column wall are given by 
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Here the axial dispersion coefficient is given by DL, the axial thermal conductivity by 

λL and the column wall thickness by δ. The component mole fractions are given by xi.  

The interstitial flow velocity v is calculated from the Ergun equation 
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The boundary equations for the mass and energy balance in the column are given by 

the Danckwert’s boundary conditions which can be written as 
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where the superscript indicates the enthalpy or concentrations to the left of the column 

boundary, respectively. 

The constitutive equations for the energy balance are given by 

 

 

   




































T

T
iPrefii

i

N

i

q

qTiTads

Tads

T

T
adsPTrefadsadsads

T

T
solPsrefsolsol

adssolsp

T

T
V

m

Trefpfp

sppfppp

T

T
PTreff

T

T
VTreff

ref

C
i

ijpp

p

P

ref

P

ref

ref

ref

ref

dTcHH

dqHH

HdTcqHHU

dTcUU

UUU

dTccUU

UUU

dTccHH

dTccUU

'~~~

'

'~

'

'~

1

'~

'~

,,

1
0 ,

,,

,,

,

,,

,,





 

Usol and Uads are the internal energy per unit volume in the adsorbent and the adsorbate, 

respectively. The subscript 'ref' indicates the reference value at Tref and Pref. The total 

concentration in the fluid phase and in the macropore are given by cT and cT
m
, 

respectively. ρs is the solid crystal density, qT is the total adsorbed concentration in the 

micropore and cP,sol is the specific heat capacity at constant pressure in the solid phase.  

The molar heat capacities at constant volume Vc~  in the fluid phase and at constant 

pressure in the fluid phase Pc~  and in the adsorbed phase adsPc ,
~  are calculated from the 

respective component heat capacities in the following way 
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The parameters used to describe the PSA column and the adsorbent materials modeled 

in the breakthrough simulations are give in Table S 2. 

 

Table S 2. Column parameters and properties of adsorbents used in this work, which 

were taken from the work of Ribeiro et al. 
2, 6

 

Feed flow rate (adsorption) (Nm
3
/h) 12.2 

Purge gas flow rate (desorption (Nm
3
/h) 5.0 

Inlet pressure (bar) 7 

Column length (m) 1 

Column diameter (m) 0.2 

Wall density (kg/m
3
) 8238 

Wall specific heat (J/kg/K) 500 

Void fraction of bed  0.38 

Void fraction of pellet 0.25 

Particle radius (m) Activated carbons: 1.17 x10
-3

 

MOFs and zeolites : 0.85 x10
-3

 

Heat transfer coefficient pellet-bed (J/m
2
/s/K) 219 

Heat transfer coefficient column wall (J/m
2
/s/K) 94 

Particle specific heat capacity (J/kg/K) Activated carbons: 709 

MOFs and zeolites: 920 
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4. Dual Site Langmuir Model Parameters 

Table S 3. Dual Site Langmuir Parameters for the four MOFs 

UiO-67(Zr)     

      

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 6346.78 4.88E-09 9383.60 6.16E-04 5.013 

CO2 6346.78 5.27E-05 9383.60 3.16E-05 20.37 

CO  6346.78 1.39E-04 9383.60 1.54E-04 11.87 

CH4 6346.78 2.95E-05 9383.60 2.00E-04 14.17 

N2 6346.78 3.77E-05 9383.60 2.62E-04 10.69 

      

Zr-Cl2AzoBDC     

      

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 6191.68 1.02E-14 11857.38 5.72E-04 4.69 

CO2 6191.68 6.17E-05 11857.38 5.91E-05 17.28 

CO  6191.68 4.47E-05 11857.38 1.58E-04 11.31 

CH4 6191.68 9.59E-06 11857.38 1.34E-04 13.51 

N2 6191.68 1.19E-06 11857.38 1.94E-04 10.37 

      

UiO-66(Zr)      

      

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 4620.80 2.79E-04 5028.37 2.79E-04 6.75 

CO2 4620.80 2.78E-06 5028.37 3.15E-05 26.54 

CO  4620.80 1.33E-05 5028.37 1.48E-04 15.89 

CH4 4620.80 1.18E-04 5028.37 1.67E-05 18.60 

N2 4620.80 1.94E-04 5028.37 1.42E-05 14.62 

      

UiO-66(Zr)-Br     

      

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 3460.93 2.30E-04 4618.56 2.28E-04 7.46 

CO2 3460.93 6.85E-07 4618.56 2.47E-05 29.67 

CO  3460.93 1.48E-04 4618.56 7.99E-06 18.22 

CH4 3460.93 1.37E-04 4618.56 3.15E-06 21.00 

N2 3460.93 1.59E-04 4618.56 6.29E-06 16.69 
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Table S 4. Dual Site Langmuir parameters for AC* and Zeolite*, the commercial 

adsorbents from the work of Ribeiro et al. 
2
 

AC*      

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 811.85 3.38E-05 3785.52 3.39E-05 12.80 

CO2 811.85 4.65E-05 3785.52 3.35E-06 29.10 

CO  811.85 1.56E-05 3785.52 9.59E-06 22.60 

CH4 811.85 2.21E-04 3785.52 8.92E-06 22.70 

N2 811.85 4.91E-04 3785.52 2.13E-05 16.30 

      

Zeolite*      

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 3888.07 1.07E-06 950.34 5.36E-04 9.23 

CO2 3888.07 2.43E-05 950.34 3.72E-07 36.00 

CO  3888.07 5.87E-07 950.34 2.12E-05 29.80 

CH4 3888.07 2.08E-05 950.34 1.30E-04 20.60 

N2 3888.07 8.99E-06 950.34 1.14E-04 20.40 

 

Table S 5. Dual Site Langmuir parameters for Calgon PCB and Single Site Langmuir 

parameters for Zeolite 5A
7
. Note that in reference 6 the heats of adsorption were reported 

with the wrong units. We have confirmed with the authors that the values and units 

provided here are correct. 

Calgon PCB     

Adsorbate q
1

s b
1
 q

2
s b

2
 -ΔHads 

 mol/m
3
 bar

-1
 mol/m

3
 bar

-1
 kJ/mol 

H2 5950.97 1.59E-03 1201.00 1.59E-03 12.06 

CO2 5950.97 4.61E-02 1201.00 3.57E-03 21.93 

CO  5950.97 1.33E-02 1201.00 6.33E-08 18.00 

CH4 5950.97 3.04E-02 1201.00 8.23E-05 17.96 

N2 5950.97 2.39E-07 1201.00 8.33E-02 6.95 

      

Zeolite 5A      

Adsorbate qs b -ΔHads 

 mol/m
3
 bar

-1
 kJ/mol 

H2 2594.04 5.32E-03 11.72 

CO2 5089.04 2.86E+00 39.05 

CO  2799.63 2.79E-02 22.18 

CH4 2589.98 1.95E-02 22.60 

N2 3066.76 1.10E-02 22.90 
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5. Validation of Breakthrough Simulations 

The in-house PSA model was first validated by carrying out breakthrough simulations 

set up to reproduce experimental data.
8
  In the work of Lopes et al, five multi component 

mixtures were fed through a column containing a commercial activated carbon, and the 

outlet concentrations were measured using a gas chromatograph.  The inlet pressure was 

5 bar, and a feed flow rate of 5 x 10
-5 

m
3
/s was applied.  The simulated breakthrough 

curves obtained using a mathematical model were in excellent agreement with the 

experimental data.
8
  Here, the CySim software was used together with the modelling 

parameters of Lopes et al, in order to calculate the breakthrough behaviour for cases 1 

and 5.  The inlet stream of experiment 1 contains 70% H2 and 30% CO2 while experiment 

2 involved a five component mixture made up 73:23:2.1:1.2:0.7 H2:CO2:CH4:CO:N2.  In 

Figure S 1 the simulated breakthrough curves obtained in this study are plotted along 

with the experimental data of Lopes et al.   Excellent agreement is observed for both 

mixtures considered, thereby confirming that the PSA simulator employed is able to 

accurately predict the breakthrough behaviour of mixtures of up to 5 components.  
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Figure S 1. Breakthrough curves for a) Case 1 and b) Case 5 of Lopes et al.
8
, and gas 

temperature within the bed for c) Case 1 and b) Case 5.  Case 1: 70% H2, 30% CO2.Case 

5: 73% H2, 23% CO2, 2.1% CH4, 1.2% CO, 0.7% N2.   Simulated breakthrough curves 

are shown as black lines, while experimental data is shown using symbols: blue diamonds 

CO2, yellow spheres H2, green squares CH4, red triangles CO, purple spheres N2.  H2 was 

omitted for clarity.   
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6. Validation of Adsorption Isotherms 

The simulated isotherms for CO2 and CH4 adsorption in UiO-66(Zr) were compared to 

the experimental data presented by Yang et al.
9
 as shown in Figure S 2.  The simulated 

isotherms are in good agreement with the experimental isotherms.  Additional validation 

studies could not be carried out for the remaining MOFs due to the unavailability of 

experimental data.  

 

Figure S 2. Dehydroxylated UiO-66(Zr) adsorption isotherms for a) CO2 and b) CH4 

from simulations (open spheres) and experiment (closed spheres).  The experimental data 

is taken from the work of Yang et al.
9
  

 

7. Working Capacities Equivalent to SMROG Composition 

 

Working capacities were determined for each impurity at pressures corresponding to its 

partial pressure in an SMROG stream.  Two operating ranges were considered: 1 – 7 bar 

given in Figure S 3, and 1 – 20 bar given in Figure S 4. 
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Figure S 3. Working capacities determined from binary adsorption data for pressure 

ranges resulting in equivalent SMROG impurity partial pressures in the 1 – 7 bar range. 

 

 

Figure S 4. Working capacities determined from binary adsorption data for pressure 

ranges resulting in equivalent SMROG impurity partial pressures in the 1 – 20 bar range. 

 

The total binary mixture pressures resulting in impurity partial pressures equivalent to 

those in an SMROG stream at 1, 7 and 20 bar are given in Table S 6. 
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Table S 6. Impurity partial pressures in SMROG stream at 1, 7 and 20 bar. 

 Binary Mixture Total Pressure (bar) 

P CO/H2 CH4/H2 N2/H2 CO2/H2 

1 bar 0.1  

(0.03/0.07) 

0.13  

(0.04/0.09) 

0.13 

(0.04/0.09) 

0.53 

(0.16/0.37) 

7 bar 0.7  

(0.21/0.49) 

0.93  

(0.28/0.65) 

0.93 

(0.28/0.65) 

3.73 

(1.12/2.61) 

20 bar 2  

(0.6/1.4) 

2.67  

(0.8/1.87) 

26.7 

(0.8/1.87) 

10.7  

(3.2/7.5) 
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8. Isosteric Heats of Adsorption 

 

 

Figure S 5. Isosteric Heats of Adsorption for H2, CO, N2, CH4 and CO2 in UiO-66(Zr) at 303 K. 
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Figure S 6. Isosteric Heats of Adsorption for H2, CO, N2, CH4 and CO2 in UiO-66(Zr)-Br at 303 

K. 
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Figure S 7. Isosteric Heats of Adsorption for H2, CO, N2, CH4 and CO2 in UiO-67(Zr) at 303 K. 
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Figure S 8. Isosteric Heats of Adsorption for H2, CO, N2, CH4 and CO2 in Zr-Cl2AzoBDC at 303 

K. 
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9. Estimation of Bulk Densities 

 

Table S 7. Estimated Bulk Densities based on the assigned pellet void fraction of 0.25 and bed 

void fraction of 0.38. 

MOF Crystal Density 

(kg/m3) 

Pellet Density 

(kg/m3) 

Bulk Density 

(kg/m3) 

UiO-66(Zr) 1219 914 567 

UiO-66(Zr)-Br 1597 1198 743 

UiO-67 710 533 330 

Zr-Cl2AzoBDC 671 503 312 

 

 

Nomenclature 

Ac Internal column surface area, m
2
 

Ap Pellet surface area, m
2
 

bi
j
 Adsorption equilibrium constant of site j for comp. i, Pa

-1
 

ci Gas concentration of component i, mol m
-3 

ci
m

 Gas concentration of component i in the macropore, mol m
-3

 

cT  The total concentration in the fluid phase, mol m
-3

 

cT
m

  The total concentration in the macropore, mol m
-3

 

cP,sol  The specific heat capacity at constant pressure in the solid phase, J kg
-1

 K
-1

 

cP,w Specific heat capacity of the column wall, J kg
-1

 K
-1 

Pc~  Molar heat capacity at constant pressure in the fluid phase, J mol
-1

 K
-1 

adsPc ,
~

   Molar heat capacity at constant pressure in the adsorbed phase, J mol
-1

 K
-1 
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Vc~
 Molar heat capacity at constant volume in the fluid phase, J mol

-1
 K

-1 

Dc Micropore diffusivity, m
2
s

-1
 

Dij Macropore diffusivity for binary mixtures, cm
2
 s

-1
 

Dim Macropore diffusivity for mixtures of more than two gases, cm
2
 s

-1
 

Dp Macropore diffusivity, m
2
s

-1
 

Dt Transport diffusivity, m
2
s

-1
 

J Flux of molecules through micropores, mol m
-2

 s
-1

 

h Heat transfer coefficient between the pellet and the bed, W m
-2

 K
-1 

hw Heat transfer coefficient at the column wall, W m
-2

 K
-1 

Had Dimensionless Henry’s constant 

Hf Enthalpy in the fluid phase per unit volume, J m
-3

 

iH
~

 Partial molar enthalpy in the fluid phase of comp.i, J mol
-1

 

j

iH
~

  Heat of adsorption of site j for comp.i, J mol
-1

 

Ji Diffusive flux of component i, mol m
-2

 s
-1 

JT Thermal diffusive flux, W m
-2 

kB Boltmann constant, J mol
-1

 K
-1

 

ki
p
 LDF mass transfer coefficient of component i in the pellet, m s

-1
 

ki
cr

 LDF mass transfer coefficient of component i in the crystal, m s
-1

 

Lc Column length, m 

L Onsager coefficient, mol m
-1

 s
-1

 

Mi Molar mass of binary mixture component i, g mol
-1

 

P Pressure, Pa 

Pref Reference pressure, Pa 
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qi Average adsorbed concentration of component i in the crystal, mol m
-3

 

qi
*
 Adsorbed concentration of component iat equilibrium, mol m

-3
 

qi,s
j
 Saturation capacity of site j for comp. i, mol m

-3
 

qT  The total adsorbed concentration in the micropore, mol m
-3

 

Qi Average adsorbed concentration of component i in the pellet, mol m
-3

 

rk Position of molecule k, m 

rc Crystal radius, m 

rp Pellet radius, m 

t Time, s 

Tf Fluid temperature, K 

Tref Reference temperature, K  

Tp Pellet temperature, K 

Tw Column wall temperature, K 

T∞ Outside temperature, K 

u Velocity, m s
-1

 

U External heat transfer coefficient, W m
-2

 K
-1

 

Uf Internal energy in the fluid phase per unit volume, J m
-3

 

Up Internal energy in the pellet per unit volume, J m
-3

 

Up,f Internal energy in the macropore per unit volume, J m
-3

 

Up,s Internal energy in the solid phase per unit volume, J m
-3

 

Usol internal energy per unit volume in the adsorbent, J m
-3

 

Uads  Internal energy per unit in the adsorbate, J m
-3

 

V Unit cell volume, m
3
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v Interstitial flow velocity, m s
-1

  

Vc Column volume, m
3
 

Vp Pellet volume, m
3
 

Vw Column wall volume, m
3
 

Xi Molar fraction of component i in mixture of gases 

Xi Molar fraction of component i in mixture of gases 

z Spatial dimension, m 

αwl Mean surface area to volume ratio of the column wall, m
-1 

δ Column wall thickness, m 

ε Bed void fraction 

εij Interaction energy between molecules i and j at the lowest point on the Lennard-Jones 

potential well, J mol
-1

 

εp Pellet void fraction 

λL Axial thermal conductivity and the column wall thickness, J m
-1

 s
-1

 K
-1

 

Γ Thermodynamic correction factor 

Δμ Chemical potential gradient, J mol
-1

 

µ Viscosity, Pa s 

Ωij Collision integral for the Chapman-Enskog diffusivity definition 

ρf Fluid density, kg m
-3

   

ρs Solid density, kg m
-3

 

ρw Column wall density, kg m
-3 

σij Separation distance between molecules i and j at the lowest point on the Lennard-Jones 

potential well, Å 
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τsim Time span of NEMD simulation, s 

τ Tortuosity factor 
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