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Abstract – We present a model for host-parasite dynamics which incorporates both vertical
and horizontal transmission as well as spatial structure. Our model consists of stacked contact
processes (CP), where the dynamics of the host is a simple CP on a lattice while the dynamics of
the parasite is a secondary CP which sits on top of the host-occupied sites. In the simplest case,
where infection does not incur any cost, we uncover a novel effect: a nonmonotonic dependence of
parasite prevalence on host turnover. Inspired by natural examples of hyperparasitism, we extend
our model to multiple levels of parasites and identify a transition between the maintenance of a
finite and infinite number of levels, which we conjecture is connected to a roughening transition
in models of surface-growth.

Introduction. – The need to understand and control
the dynamics of infections has motivated the development
of a variety of statistical mechanical models. One of the
most important of these is the contact process (CP) [1–4],
which describes the dynamics of an infection in a spatially
structured population. In the contact process, each site
on a lattice represents a host organism which can be in-

fected or susceptible (uninfected). Infection is transmitted
to neighbouring susceptible host sites at rate b, and in-
fected hosts recover (i.e. become susceptible) at rate d.
The contact process provides a baseline model for many
problems in ecology and epidemiology. It is also of funda-
mental importance in statistical physics. This is because
it exhibits a non-equilibrium phase transition between an
infected and a non-infected phase at a critical value of
λ = b/d [2, 3].

The standard CP model for an infected population as-
sumes that the host population is of fixed size, without
turnover, i.e. host births and deaths. This is valid if the
timescale on which the infection is gained and lost is much
shorter than the lifespan of an individual. Some infections,
however, are carried by individuals for long times, and may
be transmitted to offspring upon reproduction (vertical
transmission), as well as being transmitted horizontally—
i.e. upon physical contact between individuals. Examples
include plasmids carried by bacteria [5], some microsporid-
ian parasites of insects [6] and pathogens including HIV

and several hepatitis viruses. Here, we investigate the
interplay between vertical and horizontal transmission in
such populations. Other authors have determined the con-
ditions for parasite persistence in mean-field models that
lack spatial structure, in which the parasite may affect
host fitness [7–9], and have suggested that these condi-
tions may be affected by spatial structure [10]. Here, we
show that spatial structure can produce a qualitatively
new effect: a coupling between the dynamics of the infec-
tion and of the underlying host population, even when the
infection does not affect the fitness of the host.

We present a two level stacked contact process, in which
the host population is represented by a CP on a lattice,
and the parasite population is represented by a second
CP which sits on top of the host CP. This model in-
corporates both vertical and horizontal transmission —
if an infected host reproduces or dies, the parasite is re-
produced or dies with it (vertical transmission), and a
parasite-infected site can infect a neighbouring site if it is
occupied by an uninfected host (horizontal transmission).
We characterize the conditions for parasite persistence in
the form of a phase diagram and discover an interesting
phenomenon: although the steady-state properties of the
host population depend only on the ratio of its birth and
death rates, λ = b/d, the prevalence of the parasite can de-
pend non-monotonically on the host population’s turnover
rate. This phenomenon has its origins in the fluctuations

p-1

http://arxiv.org/abs/1212.1673v2


S. J. Court et al.

of spatial clusters of host individuals, and cannot straight-
forwardly be captured by a mean-field theory.

Parasitic infections are not always limited to two levels.
Hyperparasitism, in which an organism carrying a primary
parasite is susceptible to a secondary parasite [11], can be
harnessed as a biocontrol mechanism — examples include
viral infections of the fungus Cryphonectria parasitica that
causes chestnut blight [12], and cytoplasmic RNA elements
that infect the fungus causing Dutch elm disease [13]. In-
spired by these scenarios, we extend our model to a multi-

level stacked contact process, in which individuals carrying
a primary infection may be susceptible to secondary infec-
tions, and those carrying the secondary infection may be
susceptible to tertiary infections, etc. This raises a number
of questions: How does the dynamics of one parasite level
couple to the next, and how many levels of parasites are
sustainable in a population? We show that in our stacked
contact process, there is a well-defined transition between
maintenance of an infinite hierarchy of levels of parasites,
and limitation to a finite number of levels. The transition
between these two regimes appears to be connected to a
roughening transition in certain surface growth processes
[14–16]. This work presents new challenges to our under-
standing of contact processes, with potential implications
for the dynamics of long-timescale infections.

Two-level stacked contact process. – We begin
by considering the dynamics of a host and a single para-
site which can be transmitted vertically or horizontally —
a two-level stacked CP — on a 2D square lattice. Lattice
sites can be either empty or occupied by a host organism.
Occupied lattice sites become empty at rate d0, due to
death of hosts, and host organisms attempt to replicate
into neighbouring empty sites at rate b0 (the attempt rate
in any direction is b0/z, z being the coordination number
of the lattice). Host organisms may also carry a parasite,
which we assume to be neutral in the sense that organ-
isms with and without the parasite have identical birth
and death rates. Infected individuals pass the parasite to
uninfected neighbours at rate b1, and the parasite is lost
at a constant rate d1. We assume that the offspring of an
infected organism is also infected (vertical transmission),
and that when an infected host dies, the parasite dies with
it. Thus the infection dynamics consists of a secondary
CP, with parameters b1 and d1, which sits on top of the
host’s birth-death CP. Since the host population does not
occupy the whole lattice, the secondary CP does not take
place on a regular lattice but rather on the irregular net-
work of occupied sites which changes stochastically due to
the dynamics of the host population. The processes that
occur in our model are illustrated in Figure 1. We sim-
ulate this model using a stochastic kinetic Monte Carlo
algorithm, in which all events occur as Poisson processes
[17], on a 100× 100 lattice with periodic boundary condi-
tions. Averages are calculated after an initial transient to
allow the steady state to be reached.

b0

z

b0

z

b1

z

d0

d1

d0

Figure 1: The events that constitute the 2-level stacked
CP. Red and black circles represent host organisms and
parasites respectively. A site can be empty, occupied by
a susceptible host or occupied by an infected host. The
left panels represent reproduction of a susceptible or in-
fected host (top and middle, rate b0), and transmission of
the parasite (bottom, rate b1). The right panels represent
death of a susceptible or infected host (top and middle,
rate d0), and loss of the parasite (bottom, rate d1). z is
the number of nearest neighbour sites. The dotted squares
indicate the level of the CP at which the event happens.

Host dynamics influences parasite persistence. –

In this model, the host population undergoes a simple CP,
whose stationary properties are fully determined by the
single parameter λ0 = b0/d0 [1–4]. If λ0 is less than a crit-
ical value, λcrit, the only steady state is an empty lattice
and the population rapidly becomes extinct. If λ0 > λcrit,
a non-zero population can be maintained for long times,
before eventually becoming extinct due to a rare fluctua-
tion. The transition between these two regimes is second
order; the values of λcrit and the associated critical ex-
ponents have been characterised in detail [3]. Defining
τi = 0 or 1 if site i is empty or occupied respectively, the
dynamics of the host population obeys

d

dt
〈τi〉 =

1

z

∑

j

b0 〈τj (1− τi)〉 − d0 〈τi〉 , (1)

where the sum is over the z neighbours of lattice site
i and the angle brackets denote averages over multiple
realizations of the dynamics. The steady-state solution
of Eq. (1) satisfies 〈τi〉 = (λ0/(λ0 − 1)) 〈τiτj〉. Ignor-
ing correlations between neighbouring sites by assuming
that 〈τiτj〉 ≈ 〈τi〉 〈τj〉, we arrive at the mean-field result
〈τ〉 = 1− (1/λ0).
Considering now the dynamics of the parasite, we de-

fine σi = 1 if site i contains an infected host and σi = 0
otherwise (i.e. if site i is either unoccupied or contains a
susceptible host). σi obeys

d

dt
〈σi〉 =

1

z

∑

j

[b0 〈σj (1− τi)〉+ b1 〈σj (τi − σi)〉]

− d0 〈σi〉 − d1 〈σi〉 . (2)

The first term on the r.h.s. of Eq. (2) corresponds to ver-
tical transmission: an empty site is filled by replication of
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Figure 2: Phase diagram of the two-level stacked CP. Sym-
bols: simulation data showing boundary of parasite persis-
tence, for d1 = 1 and d0 = 1 (circles) or d0 = 20 (squares).
Dashed line: mean-field prediction λ1 = λ0/(λ0 − 1).

an infected host. The second term represents horizontal
transmission: a susceptible host, denoted by (τi − σi), is
infected by a parasite-carrying neighbour. The final two
terms correspond to death of an infected host and loss of
the parasite. Eq. (2) can be rewritten as

d

dt
〈σi〉 =

1

z

∑

j

[b0 〈σj〉+ (b1 − b0) 〈τiσj〉 − b1 〈σiσj〉]

− (d1 + d0) 〈σi〉 . (3)

Comparing this with Eq. (1), we see that the cross-
correlation 〈τiσj〉 perturbs the parasite dynamics from
that of a standard CP. Interestingly, however, if b1 = b0
(i.e. if the rates of horizontal and vertical transmission
are equal), this term vanishes and the form of Eq. (3)
becomes that of a standard CP with parameter λeff =
λ0λ1/(λ0 + λ1) = b/

∑
k dk. The parasite dynamics also

has CP-like behaviour in the mean-field limit, where we
neglect spatial correlations: setting 〈τiσj〉 ≈ 〈τi〉 〈σj〉 and
〈σiσj〉 ≈ 〈σi〉 〈σj〉 in Eq. (3), we obtain the steady-state
solution 〈σ〉 = 1− (1/λ0)− (1/λ1) ≡ 1− (1/λeff).
Figure 2 shows the phase diagram for our model, as a

function of λ0 and λ1. Three steady state scenarios are
possible: (i) the host population is extinct, (ii) the host
population is finite but the parasite is extinct, and (iii) the
parasite persists within a finite host population. Since the
dynamics of the host population is a standard CP, the host
population is extinct (scenario (i)) if λ0 < λcrit. For λ0 >
λcrit, the host population persists, with or without the
parasite. The condition for parasite persistence (i.e. the
boundary separating scenarios (ii) and (iii)) is predicted
by the mean field theory to be λ1 = λ0/(λ0− 1) (obtained
by setting 〈σ〉 = 0) – shown by the dashed line in Figure
2. As one might expect, as λ0 decreases, the density of the
host population decreases, and a higher rate of horizontal
transmission (λ1) is needed to maintain the parasite.
The symbols in Figure 2 show the boundaries between

parasite persistence and loss obtained from our kinetic

Monte Carlo simulations, for two values of d0, the host
death rate. The fact that these are shifted upwards and
to the right of the mean-field prediction shows that spatial
correlations make it harder to maintain the parasite. It is
also interesting that we obtain different results for the two
different values of d0. This shows that the parameters λ0

and λ1 do not fully determine the phase behaviour of the
system. For fixed λ0 = b0/d0, a higher turnover rate of the
host population (i.e. higher d0 and b0) apparently makes
it harder to maintain the parasite.

In fact the situation is more complex. Figure 3a shows a
more comprehensive investigation of the steady-state par-
asite density 〈σ〉 as a function of the host turnover rate. In
these simulations, we vary b0 and d0 keeping λ0 = b0/d0
fixed. The steady-state density of the host population is
constant, since it depends only on λ0. Remarkably, for
some parameter combinations, the density of the parasite
actually depends non-monotonically on the host turnover
rate. If the host dynamics is slow, increasing the turnover
rate increases the parasite density, while if the host dy-
namics is fast, the parasite density decreases with the
turnover rate.

This dependence of the parasite density on the host
turnover rate is absent in the mean-field theory and must
therefore be a consequence of spatial correlations. To
investigate this, we measure in our simulations the spa-
tial correlations of the parasite density via the function
Ci,j = [〈σiσj〉/〈σ〉] − 〈σ〉. Here, the first term is the con-
ditional probability of finding a parasite at site j given
that there is one at site i, while the second term ensures
that Ci,j → 0 as |i − j| → ∞ (where |i − j| denotes the
distance between sites i and j). We then fit our data to
the functional form Ci,j ∼ e−|i−j|/ξ to extract the spa-
tial correlation length ξ, which can be thought of as the
parasite cluster size. This is shown in Figure 3b. Strik-
ingly, the correlation length is minimal at the turnover rate
where the parasite density is maximal. This makes intu-
itive sense: since horizontal transmission requires contact

0 0.5 1 1.5d
0

0.1

0.4

 <σ>

(a)

1.8

2

ξ

0 1 2 3d
0

0.08

0.12

<σ>

(b)

Figure 3: (a) Parasite density 〈σ〉 as a function of host
turnover rate d0 for fixed λ0 (and hence fixed host den-
sity). Curves top to bottom correspond to (λ0, b1, d1) =
(5, 4, 1),(2.5, 15, 1),(2, 8, 1) and (1.8, 15, 1). (b) Parasite
density 〈σ〉 (triangles, left axis) and spatial correlation
length ξ (squares, right axis) for (λ0, b1, d1) = (1.8, 15, 1).
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between infected and uninfected hosts, minimal spatial
clustering of the parasite population results in maximal
parasite density.

Why should the turnover rate of the host affect the spa-
tial clustering of the parasite? At fast host turnover rates,
we observe in our simulations that local patches of host
organisms rapidly grow from a single seed and vanish by
stochastic extinction, on a faster timescale than that of
horizontal transmission. Because offspring are always of
the same type as their parents, organisms in a single patch
are either all infected or all uninfected. Thus the infected
population is highly clustered, leading to low rates of hori-
zontal transmission and low parasite density. By contrast,
when the host population turnover is slow, the parasite
dynamics constitutes a CP on the effectively frozen, dis-
ordered network of lattice sites that are occupied by host
organisms. This network contains clusters of sites that
may be disconnected, or poorly connected, from the rest
of the host population; this creates the possibility of local,
stochastic parasite extinctions. This is most obviously the
case in the low λ0 regime where the host density is low,
but it is still true for higher host densities. In this regime,
an increase in the host turnover rate serves as a mixing
mechanism, by more homogeneously distributing the host
population and thereby providing greater opportunity for
the parasite to spread.

Thus the nonmonotonic dependence of the parasite den-
sity on the host turnover rate arises from a coupling of the
spatial fluctuations of the underlying host CP to the par-
asite dynamics, and can be viewed as a competition be-
tween the mixing effect of the host birth-death process at
low turnover rates and the population segregation arising
from parent-offspring clustering at high turnover rates.

Multi-level stacked contact processes. – Moti-
vated by natural examples of hyperparasitism, we now in-
vestigate a multi-level stacked CP, where individuals car-
rying a primary infection are susceptible to a secondary
infection, and those with the secondary infection are sus-
ceptible to tertiary infections, and so on. In the M -level
stacked CP, a site is labelled 0 if it is empty, 1 if it contains
an uninfected host, and m = 2, 3, . . . ,M if it contains a
host infected with m− 1 levels of parasites. For example,
a site labelled 2 contains a host infected with only a pri-
mary infection (parasite) while a site labelled 3 contains
a host which is infected with primary and secondary in-
fections (a parasite and a hyperparasite). Note that the
presence of an infection at level m implies the presence
of lower-level infections (e.g. one cannot have a secondary
infection without a primary infection). Figure 4 illustrates
the dynamical processes that can occur in this model. An
empty site may be occupied at rate b0/z by reproduction of
a neighbouring site of any label (top left), or a site labelled
m may be infected at rate bm/z by higher-level parasites
from a neighbouring site with label n > m; its label is
then promoted to n (middle and bottom left). The host
organism of a level m site can die, at rate d0 (top right),

d0

d1

d2

b0

z

b1

z

2b
z

Figure 4: Possible transitions for the multi-level CP, con-
sidering a site with label m = 3. The symbols are as
in Fig. 1; the green circles represent the secondary para-
site. Birth processes are shown on the left. The organism
in question can reproduce into a neighbouring empty site
(top left), transmit its primary parasite to a susceptible
neighbour (middle left - note the secondary parasite is
also transmitted), or transmit its secondary parasite to a
susceptible neighbour (bottom left). Death processes are
shown on the right. These consist of death of the host
(top right), loss of the primary parasite (middle right) or
loss of the secondary parasite (bottom right).

or experience loss of one of its parasites, at rate dn (where
n ≤ m relates to the level of parasite that is lost). When
the latter happens, all higher parasites are also lost and
the site is demoted to level n (middle and bottom right
panels in Fig. 4). The parameters of the model are the
number of levels M , and the set of level-dependent birth
and death rates {b0, . . . , bM−1; d0, . . . , dM−1}.

We first consider the special case where the birth rates
at all levels are equal; bn = b ∀ n. We divide lattice sites
into two sets: sites that have labels greater than or equal
to m (here denoted M+), and sites that have labels less
than m (here denoted M−). An M− site can become
M+ by infection by a neighbouring M+ site: this occurs
at rate b/z regardless of the level of the M+ site. An M+

site can become M− by death of the host or by loss of a
parasite at levels n = 2 . . .m. This occurs at total rate d =∑m−1

ℓ=0
dℓ where the sum is over levels up to m− 1. Thus

the dynamics of the M+ density is exactly equivalent to
that of a standard CP with parameter λeff = b/

∑m−1

ℓ=0
dℓ.

This observation provides us with important insight into
the number of levels that are sustainable in a stacked CP.
For the standard (one-level) CP, a finite density of oc-
cupied lattice sites can only be sustained for λ > λcrit,
where λcrit ≈ 1.649 for a 2D square lattice [3]. In the
stacked CP with equal birth rates we therefore expect
the density of M+ sites, those with label n ≥ m, to be
non-zero only if λeff = b0/

∑m−1

ℓ=0
dℓ < λcrit. Figure 5

shows simulation results for the average density of lat-
tice sites with label n ≥ m, as a function of m, for a
stacked CP with equal birth rates bn = b and death rates
dn = d = 1, for several values of b. By mapping onto a
standard CP with λeff = b/(md), we predict that all lev-
els n ≥ m∗ = ⌈b/(λcritd)⌉ have zero density and are thus
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Figure 5: Density of sites with label m or higher, as a
function of levelm, for a stacked CP with equal birth rates
bn = b and death rates dn = 1. Left to right correspond to
simulations with b = 2,4,6,10 and 15 respectively. Arrows
indicatem∗ = ⌈b/(λcritd)⌉, the boundary for sustainability
as predicted by mapping to the standard CP.

unsustainable. Our simulation results, shown in Figure
5, bear this out: the system indeed only sustains a finite
number m∗ of parasite levels.

Are there any circumstances where a stacked CP can be
sustained for an infinite number of levels? This is indeed
possible if either the birth rate bn increases, or the death
rate dn decreases, sufficiently strongly with n. We first
suppose that the birth rate bn = b is constant but the
death rate decreases by a factor f at successive levels:
dn = fdn−1 = fnd0 where 0 < f < 1. In this case,
the average density of sites with label n ≥ m is given by
that of a standard CP with λeff = b/

∑m−1

ℓ=0
dℓ = b(1 −

f)/ [d0(1 − fm)]. To sustain an infinite number of levels,
we require that λm→∞

eff = b(1−f)/d0 ≥ λcrit, which implies
that f ≤ 1 − (d0λcrit/b). Our simulation results, Fig. 6a,
show that, with d0 = 1 and b = 5, the system indeed
sustains an infinite number of levels for values of f above
the critical value of f ≈ 0.67.

Interestingly, this analysis also shows that, for given
values of b and f , there exists a critical value of the host
death rate d0 which separates regimes where the stacked
CP can and cannot sustain an infinite number of levels.
This is given by d∗0 = b(1 − f)/λcrit. Figure 6b shows,
as a function of d0, the predicted density of sites with
label n ≥ m, as m → ∞: this is given by the density of
a standard CP with λeff = b(1 − f)/d0. The density as
m → ∞ indeed falls to zero at d0 = d∗0.

Finally, we explore briefly the case where, instead of
varying the death rate between levels, we instead increase
the birth rate by a factor 1/f (i.e. set bn = bn−1/f).
In this case the dynamics no longer maps onto that of
a standard CP – but nevertheless, our simulations show
qualitatively similar results (dashed lines in Figure 6a).

The transition to an infinite number of levels of para-
sites that we observe in this model appears to be related
to a transition that occurs in models for the growth of in-
terfaces by deposition of particles on surfaces [14–16]. In
these models, the interface is modelled as a lattice, with

2 4 6 8
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Figure 6: (a) Density of sites with n ≥ m, as a function of
level m, in the stacked CP for decreasing death rates dn =
fnd0, with d0 = 1, bn = 5 (solid lines) and for increasing
birth rates bn = f−nb0, with b0 = 5, dn = 1 (dashed
lines). In the former case, the exact CP predicts a nonzero
density as m → ∞ only for f ' 0.67. (b) Density of
the mth level in the limit m → ∞ with bn = 5, dn =
fnd0, f = 0.75 as a function of host death rate d0 from
simulations (circles) and as predicted by a standard CP
(triangles) with λm→∞

eff = b(1 − f)/d0. The simulation
data is obtained by measuring the plateau values in plots
like panel (a), for m values up to 20. The mapping to a
standard CP predicts that only a finite number of levels
are sustainable for d0 > d∗0 ≈ 0.758.

a given height at each lattice site. According to the bal-
listic deposition rule for surface growth [18], particles fall
onto the lattice from above and only stick if the neigh-
bouring lattice site already contains a particle. In some
models, particles can also desorb from the surface [16]. In
the stacked CP model, we can think of the label m of a
given lattice site as corresponding to the local height of
the interface. The transmission of higher-level parasites
to a site with label m, from a neighbour with n > m then
corresponds to ballistic deposition, while death of a host
and loss of parasites loosely correspond to desorption of
particles. This apparent mapping is intriguing because
these models for surface growth show a roughening tran-
sition [14–16]: when the deposition rate is low, the in-
terface remains smooth, that is, the width of the surface
layer remains finite in the thermodynamic limit, whereas
when the deposition rate is high, the surface layer grows
and roughens over time, that is, arbitrarily large differ-
ences in surface height can arise in the thermodynamic
limit. These two cases correspond to finite and infinite hi-
erarchies of parasites in our stacked CP model. Although
the mapping to the surface growth models is not exact,
one expects to see the same phenomenology, e.g. in terms
of critical exponents, for the transitions. For example a
generic model for coupled directed percolation processes
with unidirectional coupling between adjacent levels [25]
can show a different β exponent at different levels when
the critical points coincide. It would be interesting to see
if this is true for models such as the one described here
which show bidirectional coupling between all levels.
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Discussion. – In this paper, we have presented a sim-
ple model for the dynamics of long-lived infections in spa-
tially structured populations. The model is a stacked con-
tact process (CP), in which the host population undergoes
a standard CP, and a secondary CP representing the par-
asite takes place on the dynamically changing network of
lattice sites occupied by the host. We find that the cou-
pling between the dynamics of the host population and of
the infection leads to non-trivial effects, including a non-
monotonic dependence of the parasite prevalence on the
host population’s turnover rate, for fixed host population
size. This exposes a connection between spatial and tem-
poral scales, since host population turnover affects spatial
clustering of infected organisms which in turn affects the
prevalence of the infection within the population. We have
found that an improved mean-field theory that takes local
correlations into account (the ordinary pair approximation
[19]) fails to reproduce this nonmonotonic behaviour. This
suggests that a deep understanding of the fluctuations in
the host CP is required to predict the steady-state prop-
erties of the parasite population. It will be interesting in
future to investigate how the nature of the CP phase tran-
sition for the infection dynamics is affected by the dynam-
ics of the underlying host population. Since disorder can
alter critical exponents and lead to new dynamics such as
Griffiths phases and activated scaling [20,21], we envisage
that the secondary CP may show fundamentally different
behaviour to the standard CP.
Inspired by natural examples of hyperparasitism, or

“parasites on parasites”, we have also investigated the
properties of a multi-level contact process. For this model,
we show that the average density of the m-th (and above)
level of the stacked CP maps onto that of a standard,
one-level CP, if the birth rates at all levels are equal. We
find that a phase transition separates two very different
behaviours of the model: maintenance of an infinite hier-
archy of levels of parasites, versus collapse to zero density
at a finite number of levels. In light of the link to models
of surface growth it will be interesting to determine more
fully the properties of the parasite maintenance transition
that we observe in the multi-layer stacked CP.
Finally, we note that the stacked CP model also presents

the possibility for a novel study of disorder in contact
processes. Classic models for disordered systems usually
create disorder by removing a fraction of sites from the
dynamics [22] or by allowing different creation or annihi-
lation rates for different sites [23]. This disorder is often
quenched - i.e. time-invariant. In our model, disorder in
the secondary CP (and higher CPs if present) arises nat-
urally from the underlying dynamics of the primary CP,
and can be controlled by varying the rates. This natu-
rally arising disorder is not fixed but varies in time and
space (in a fundamentally different process than the mo-
bile disorder of Ref. [24]). Future studies of the effects of
this natural disorder on the properties of the secondary CP
may uncover new principles of CP dynamics on disordered
lattices.
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