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Abstract   

We present new space geodetic data indicating that the present slip rate on the Hunter 

Mountain-Panamint Valley fault zone in Eastern California (5.0±0.5 mm/yr) is significantly 

faster than geologic estimates based on fault total offset and inception time. We interpret this 

discrepancy as evidence for an accelerating fault and propose a new model for fault initiation 

and evolution. In this model, fault slip rate initially increases with time; hence geologic 

estimates averaged over the early stages of the fault's activity will tend to underestimate the 

present-day rate. The model is based on geologic data (total offset and fault initiation time) 

and geodetic data (present day slip rate). The model assumes a monotonic increase in slip rate 

with time as the fault matures and straightens. The rate increase follows a simple Rayleigh 

cumulative distribution. Integrating the rate-time path from fault inception to present-day 

gives the total fault offset.  

 

1. Introduction 

The processes and rates of fault zone evolution are poorly understood, but have 

important implications for the mechanical nature of faults, seismic process and hazard, and 

regional tectonics. Fault slip rates averaged over different time spans may help define and 

perhaps understand this evolution. However, before this can be realized, we need to better 

understand the various sources for discrepancies between rates spanning different times.  For 

large offset, mature fault zones such as the Carizzo segment of the San Andreas fault in 

central California, geodetic rates averaged over decadal time scales, and geologic rates over 

longer time scales, are usually very similar (Sieh and Jahns, 1984; Lisowski et al., 1991; 

Dickinson, 1996; Meade and Hager, 2005; Liu-Zeng et al., 2006; Schmalzle et al., 2006). 

However, for other fault zones, discrepancies between geodetic and geologic rates are often 

observed, and have led to suggestions of complex behavior such as slip pulses, strain waves, 



and possible relations to earthquake clusters and other non-linear spatial-temporal 

deformation processes (Meade and Hager, 2005; Marco et al., 1996; Rockwell et al., 2000; 

Peltzer et al., 2001; Bennett et al., 2004; Friedrich et al., 2004; Oskin and Iriondo, 2004; 

Dolan et al., 2007; Oskin et al., 2008).  

There are additional confounding factors. For example, geological rate estimates are 

minimum estimates, because the feature used to define fault offset formed some unknown 

time prior to fault initiation. These rates therefore tend to be slower than geodetic estimates. 

On the other hand, geodetic estimates are model-dependant, requiring some knowledge of 

crustal rheology and earthquake history before the near-field strain rates can be used to 

estimate a reliable far field (i.e. long term) slip rate. Errors in the input model can lead to 

biased rate estimates (Dixon et al., 2003; Johnson et al., 2007). 

Another explanation for discrepancies between geologic and geodetic rates may apply 

to some young fault zones, (i.e., those which have not reached a steady-state slip rate). A new 

fault by definition must experience a finite period of acceleration, during which rate 

differences over different time spans are expected. However, it has been difficult to document 

this phenomenon due largely to data limitations. A rigorous definition of mature and 

immature faults is also lacking. 

Here we present new space geodetic data describing recent motion across the Hunter 

Mountain–Panamint Valley fault zone, one of several active fault zones within the Eastern 

California Shear Zone (Figure 1). We interpret our geodetic results in the context of newly 

available constraints on the initiation age of the Hunter Mountain fault (Lee et al., 2009).  

Our data indicate that present-day motion across the Hunter Mountain fault is significantly 

faster than available geologic estimates. We suggest that this is a consequence of the fault’s 

relative youth, and slip acceleration over the last few million years. Our findings have 

important implications for understanding the time scales and processes by which faults 



straighten and simplify with time, and for interpretation of fault slip rate data and some rate 

discrepancies.  

 

2. Geologic Background and Previous Work 

The Eastern California Shear Zone (ECSZ) represents a zone of significant right 

lateral shear in western North America, accommodating ~20-25% of Pacific-North America 

motion (Lee et al., 2009; Dokka and Travis, 1990a; Dokka and Travis, 1990b; Savage et al., 

1990; Sauber et al., 1994; Dixon et al., 2000; Miller et al., 2001; Bennett et al., 2003; Frankel 

et al., 2007) (Figure 1). Most of the remaining motion is accommodated by the San Andreas 

Fault. North of the Garlock fault and south of the Mina deflection, the ECSZ represents the 

eastern boundary of the rigid Sierra Nevada block, accommodating northwest translation of 

the block relative to the interior of the Basin and Range, presumably in response to northwest 

Pacific plate motion (Dokka and Travis, 1990b). In this region, the ECSZ includes three and 

perhaps four active, sub-parallel fault zones: the Owens Valley-White Mountain fault zone to 

the west, the Death Valley-Furnace Creek-Fish Lake Valley fault zone to the east, and the 

central Hunter Mountain-Panamint Valley fault zone, the focus of this study (Figure 1). The 

State Line fault, east of the Death Valley-Furnace Creek fault zone, may also be active, 

accommodating a small amount of motion at present, although it has been more active in the 

past (Guest et al., 2007). 

The ECSZ is a relatively young feature, and is an excellent “natural laboratory” for 

studying fault initiation and evolution; Dokka and Travis (1990a; 1990b) estimated that 

ECSZ activity began in the eastern Mojave Desert between about 6 Ma and 10 Ma. Wernicke 

and Snow (1998) document a change in Sierra Nevada motion relative to stable North 

America, from westerly between 16 Ma and 10 Ma, to northwest or north-northwest 

beginning about 10 Ma, presumably marking the initiation of ECSZ motion. Atwater and 



Stock (1998) document a change in Pacific plate motion relative to North America at around 

8 Ma, from WNW to NW. Reheis and Sawyer (1997) suggest that right lateral motion on the 

Fish Lake Valley fault, the northern continuation of the Death Valley-Furnace Creek fault 

zone, also began about 10 Ma (bracketed between 11.9 Ma and 8.2 Ma).  Stockli et al (2003) 

place the initiation of strike slip motion in Fish Lake Valley at 6 Ma.  All of these studies are 

thus broadly consistent with initiation of the ECSZ between about 6 Ma and 10Ma. Du and 

Aydin (1996) suggest that the ECSZ acts as a “strain bypass” related to formation of the 

Transverse Ranges and the “big bend” of the San Andreas fault, associated with the inland 

jump of the plate boundary to its current position in the Gulf of California beginning about 

5.5 Ma (Atwater, 1989; Oskin et al., 2001).  Hence ECSZ activity may have accelerated after 

5.5 Ma.  

Pacific-North America plate motion has remained essentially constant for the last few 

million years (DeMets and Dixon, 1999; Sella et al., 2002). This represents the kinematic 

boundary condition for the ECSZ. However, significant rate differences for different time 

intervals are possible for individual ECSZ faults. Faults within the ECSZ are constantly 

evolving, perhaps in response to westward migration of the shear zone (Dokka and Travis, 

1990a; Dokka and Travis, 1990b; Stockli et al., 2003; Dixon et al., 1995; Calzia and Ramo, 

2000; Jones et al., 2004; McQuarrie and Wernicke, 2005).  

Initiation Age, Total Offset and Geologic Rate. The Hunter Mountain fault is 

kinematically linked to more northerly striking normal faults to the north (Saline Valley fault 

zone, bounding the east side of the Inyo Mountain) and south (Panamint Valley fault, 

bounding the east side within Panamint Valley, and Ash Hill fault, within the valley, Figure 

1).  The age of fault initiation is bracketed between 2.8 Ma and 4.0 Ma (Lee et al., 2009; 

Burchfiel et al., 1987; Hodges et al., 1989). The latter age represents the youngest age of 

Pliocene basalts offset by the fault; fault initiation is reckoned to occur sometime after basalt 



eruption. The basalts are not found in low-lying Panamint Valley, but only on surrounding 

hills, and hence erupted prior to valley formation. More recent work (Lee et al., 2009) 

suggests a 2.8 Ma initiation age, based on zircon and apatite U-Th/He thermochronometry 

from the east side of the Inyo Mountains. These data indicate more rapid uplift and 

exhumation of the Inyo Mountains after 2.8 Ma, suggesting initiation of the Saline fault (and 

by implication the Hunter Mountain-Panamint Valley fault zone) at that time.  We use this 

age in the subsequent discussion.  

The total offset of the Hunter Mountain fault can be estimated from offset of the 

Hunter Mountain pluton, the width of Panamint and Saline Valleys in a direction parallel to 

the Hunter Mountain fault, and piercing points associated with Miocene-Pliocene age basaltic 

volcanics that ring northern Panamint Valley. A widely quoted estimate (9.3 ±1.4 km; 

(Burchfiel et al., 1987; Sternloff, 1988)) is based on the intersection of the steep southeastern 

contact of the Hunter Mountain batholith and the nearly horizontal unconformity at the base 

of Miocene-Pliocene volcanics; displacement of this feature across the Hunter Mountain fault 

is mainly horizontal, consistent with strike slip motion.    

Published geologic slip rates for the Hunter Mountain-Panamint Valley fault are of 

two types.  First, detailed studies of offset alluvial fans and young drainage channels allow 

definition of Pleistocene or Holocene-averaged rates, ranging from 2.4 to 4 mm/yr (Zhang et 

al., 1990; Oswald and Wesnousky, 2002). Second, long term average rates defined over the 

entire time span of fault activity are defined by dividing total offset (9.3 km) by the fault 

initiation age. Using the most recently published age (2.8 Ma; Lee et al., 2009) obtain 3.3 

±1.0 mm/yr. This rate by definition is less than the present day rate if the fault is accelerating 

(Figure 2). In general, we expect that geologic rates averaged over Holocene time should be 

similar to present day geodetic rates, unless there is complex temporal behavior, or 

earthquake cycle effects bias the geodetic measurement (Dixon et al., 2003; Johnson et al., 



2007), or if the fault is spatially complex and some deformation is missed in the geologic 

study (Lee et al., 2001). South of the Hunter Mountain fault, deformation may be partitioned 

between the Panamint Valley fault, a shallow, west dipping oblique slip fault that crops out 

on the east side of the valley, and more steeply dipping or vertical right lateral strike slip 

faults to the west, within the valley, such as the Ash Hill fault (Densmore and Anderson, 

1997; Walker et al., 2005). Geologic studies on individual faults in Panamint Valley may 

therefore yield rates that are low compared to the entire deforming zone that includes the 

paired normal fault – strike slip fault system, or to the Hunter Mountain fault to the north, 

where deformation is more focused (Figure 3a).  

 

3. Space Geodetic Data 

We processed 44 Synthetic Aperture Radar (SAR) images from the European Space 

Agency satellites ERS1/2 acquired between 1992 and the end of 2000 to produce a ground 

velocity map in the radar line-of-sight direction (LOS) spanning most of the ECSZ 

(Gourmelen et al., 2010). SAR Interferometry (InSAR) data has been used in a number of 

tectonic studies, including measurement of co-seismic (Massonnet et al., 1993), interseismic 

(Fialko, 2006), and postseismic (Gourmelen and Amelung, 2005) deformation.  In this paper, 

we apply the Small BAseline Subset (SBAS) Interferometry technique to obtain a time series 

of ground displacement. The SBAS technique has been widely applied in the last few years 

(Lundgren et al., 2001; Berardino et al., 2002; Lanari et al., 2004; Gourmelen et al., 2007). 

SBAS relies on multiple (in this case more than a hundred) conventional interferograms with 

small spatial and temporal baseline, reducing long spatial wavelength noise, and allowing 

investigation of low slip rate faults. Details of the processing approach can be found in 

Gourmelen et al. (2010). The linear least squares component of the time series (analogous to 



a stack of the time series) is shown in Figure 3a. The corresponding velocity profile across 

the Hunter Mountain fault is shown in Figure 3b. 

We also process available GPS data in the region, generating an independent surface 

velocity profile for comparison to the InSAR data. We use the GPS velocity field of 

Schmalzle (2008) that is composed of continuous and campaign GPS data in the Western 

United States provided by Southern California Earthquake Center (SCEC), Basin and Range 

GPS Network (BARGN), Southern California Continuous GPS Network (SCIGN), Plate 

Boundary Observatory (PBO) GPS network, the United States Geologic Survey (USGS), and 

the University of Miami Geodesy Lab (UMGL). Data span from 1994 to 2008. A subset of 

data are used in a formal inversion procedure (Ward, 1990) to derive site velocities relative to 

the Central Basin and Range (see Table 5.2 in Schmalzle (2008)) which is believed to be 

relatively stable compared to areas to the east and west (Dixon et al., 1995) and provide a 

geologically reasonable reference to discuss ECSZ velocities. All sites in the subset are 

continuous with a minimum of 2.3 years of data collected but most sites have at least 8 

years. Velocities with respect to the Central Basin and Range progressively increase from 

east to west, with the largest velocity gradient in the ECSZ west of the Panamint Valley – 

Hunter Mountain fault trace (Schmalzle, 2008). A GPS velocity profile across the Panamint 

Valley portion of the fault, about 30 km south of the InSAR profile, is shown in Figure 4.   

 

4. Models for Fault Slip Rate Evolution.   

Pioneering analogue experiments in clay- and sand-box models by Tchalenko (1970) 

first demonstrated the tendency of faults to simplify with time, with initial offset 

accommodated by highly distributed deformation, and overall slip resistance decreasing with 

increasing offset as the fault zone becomes focused on a central, narrow shear zone.  On a 

similar spatial scale, Bodin et al. (1994) showed that creepmeter measurements of slip 



amplitude were generally larger than measured feature offsets, even when the creepmeter 

spanned just a few meters on either side of the active fault strand.  On the scale of a single 

fault segment, Fialko (2005) note that the immature fault associated with the Bam earthquake 

has a significant co-seismic slip deficit in the upper crust compared to slip at depth, attributed 

to distributed deformation in the upper few km of crust.  Bennet et al (1995) note a similar 

upper crustal slip deficit for the 1992 M 6.1 Joshua Tree earthquake, at the southern end of 

the ECSZ. On the scale of multi-segment fault zones, aftershock distributions associated with 

the Landers earthquake in the Mojave Desert (Liu et al., 2003) and paleoseismic work in the 

Central Nevada Seismic Belt (Bell et al., 2004) illustrate the tendency of immature faults to 

exhibit multiple overlapping or en-echelon active fault strands. With time, as total offset 

increases, these faults will presumably simplify their geometry (Wesnousky, 1988).  

Fault zone evolution from the beginning of a fault’s active period to “middle age” 

may be described in terms of slip rate as a function of time, with the fault beginning at a 

condition of zero offset and zero slip rate. Offset and slip rate then increase until steady state 

is reached, whereafter offset increases at a uniform rate and slip rate remains constant.  

Figure 2 presents three simple possible models of slip rate evolution leading to similar 

total offset but different slip rate histories. Through geodetic data we can infer the present day 

rate, and geological data can give rates averaged over various time intervals, in principle 

placing some constraints on the rate-time path. Few studies have considered the fact that, for 

faults in which initiation age is known, the three key data defining fault evolution (present 

rate, total offset, and initiation age) are not independent:  the integral of a given rate-time 

path, beginning at zero rate at fault initiation age, and ending with the present-day rate, yields 

the total fault offset. If the latter parameter is known from geologic studies, then integrating 

possible rate-time paths provides a useful (though non-unique) model test.    



A simple Rayleigh cumulative distribution provides a conceptually simple model for 

non-linear fault evolution with some physical basis. The Rayleigh distribution is a subset of 

the Weibull distribution, often used to model failure in complex systems, including fracture 

propagation in brittle materials (Kurth and Cox, 1985). The Rayleigh distribution is the 

simplest Weibull distribution, defined by a single parameter, S, the Rayleigh scale parameter. 

We imagine that prior to fault development, a large number of randomly oriented pre-existing 

fractures exist in the upper crust. As the proto-fault is stressed, the probability of these 

fractures slipping initially increases. As this occurs, properly oriented fractures fail repeatedly 

and lengthen, eventually coalescing to produce a through-going fault. At this point, overall 

stress is reduced, decreasing the probability of additional fractures being exploited. The rate 

of fracture exploitation follows a Rayleigh distribution, increasing rapidly from the fault 

initiation time, with a peak determined by S, and then decaying. Fault slip rate is related to 

the cumulative displacement on the individual fractures, initially increasing rapidly, and then 

more slowly, finally reaching a constant maximum rate. Hence the fault slip rate as a function 

of time, R(t), follows a cumulative Rayleigh distribution, scaled by the stationary (final) rate, 

Rf :  
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The slip rate is zero at t=t0, increasing monotonically to Rg at t=0 (t is reckoned negative 

before present).  At t = 0, the present day geodetic rate Rg is: 
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(1) then becomes: 
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S is the time of peak acceleration of slip rate and can be estimated from the known total fault 

offset by integrating (3). At this time the rate, Rs is close to one half its final value, and 

accumulated offset is Ds. 

 

5. Geodetic Slip Rates 

The new InSAR data document a remarkable zone of high velocity gradient across the 

Hunter Mountain fault. In contrast, most other active ECSZ faults imaged in this data set 

exhibit low velocity gradients in the immediate vicinity of the fault, consistent with strain 

accumulation patterns around faults with larger locking depths of 10-20 km, the typical range 

of locking depths in this region (Meade and Hager, 2005; Miller et al., 2001; McClusky et al., 

2001). For a series of sub-parallel strike slip faults that are relatively closely spaced, the 

corresponding overlapping strain fields have made it challenging to estimate independent slip 

rates from geodetic data; while the summed slip rate across the entire shear zone is well 

constrained, the individual fault rates are not.  Because of this high velocity gradient (and the 

implied shallow locking depth), the new InSAR data provide an opportunity to estimate the 

velocity of the Hunter Mountain fault, independent of the strain effects from the adjacent 

Owens Valley and Death Valley-Furnace Creek fault zones. 

While areas to the south (Panamint Valley) and north (Saline Valley) of the Hunter 

Mountain fault undergo oblique slip with a component of extensional motion, the section of 

the fault imaged by InSAR is believed to be a simple strike slip fault with little vertical 



motion. We assume a simple strike slip fault model with no vertical motion, converting the 

satellite LOS range change (a scalar quantity) into purely horizontal motion. We then use a 

simple elastic screw dislocation model (Weertman and Weertman, 1964), and solve for best 

fitting slip rate (4.9 ± 0.8 mm/yr) and locking depth (1.9 ± 0.4 km) (Figure 3c; Gourmelen et 

al., 2010); the error estimate represents the 2-sigma interval. The data are well fit with this 

simple model, and no distributed deformation or additional faults are indicated.  

Further south, across the Panamint Valley fault, we determine the Panamint fault slip 

rate from the GPS dataset using a coupling model, with an elastic layer over a viscoelastic 

half space (Savage and Lisowski, 1998). This model explicitly accounts for earthquake cycle 

effects for the San Andreas, Owens Valley, Panamint Valley and Death Valley faults and the 

ductile rheology of the lower crust/upper mantle to a first approximation. Model parameters 

are listed in Table 1, details are given in Schmalzle (2008). The GPS determined fault slip 

rate is 5.1±0.5 mm/yr of fault-parallel motion, with negligible fault-normal motion.  

The GPS rate is essentially identical to the InSAR-based estimate; hereafter we use 

the linear combination of the two estimates (5.0±0.5 mm/yr). This rate is significantly faster 

than available geologic estimates, including the Holocene estimate (Lee et al., 2009; Oswald 

and Wesnousky, 2002) at 95% confidence (Figure 5). While the uncertainties for the geologic 

estimates may be underestimated (Zechar and Frankel, 2009), there does appear to be a 

systematic difference between all the available geologic estimates and the new geodetic 

estimates. 

 

6. Geodetic locking depth 

The shallow locking depth across the Hunter Mountain fault is highly unusual, and we 

lack a good explanation. Perhaps it is related to the elevated geothermal gradient associated 

with the nearby Coso geothermal field (Figure 3a; Gourmelen et al., 2010).  Monastero et al 



(2005) suggest that Coso represents a nascent metamorphic core complex, with a significant 

shallowing of the brittle-ductile transition, a mechanical boundary in the crust closely related 

to locking depth. Alternately, it may reflect the kinematics of the Hunter Mountain Fault, 

which can be considered a short transfer fault linking oblique-extensional low angle normal 

faults to the north (Saline Valley) and south (Panamint Valley). The Panamint Valley fault is 

inferred to have a very shallow decollement depth (less than 1 km) based on the depth of 

alluvial fill in the valley (Burchfiel et al., 1987; Hodges et al., 1989). This shallow 

decollement may influence the mechanical behavior of the connecting Hunter Mountain fault. 

Perhaps listric motion on the Panamint Valley fault also promotes nascent metamorphic core 

complex formation and shallowing of the brittle-ductile transition. 

 Long-term fault slip rate estimates based on geodetic data can be sensitive to 

earthquake cycle effects and assumed crustal rheology, which affect the pattern of strain 

accumulation near the fault (Dixon et al., 2003). However, the high velocity gradient we 

observe across the Hunter Mountain fault with InSAR, and implied shallow locking depth, 

means that the slip rate estimate is not sensitive to details of the rheological model. Our 

estimate of the slip rate of the Hunter Mountain fault is based on the assumption that the fault 

moves only horizontally. GPS vector data 30km to the south, across the Panamint Valley-Ash 

Hill fault zone, provide an opportunity to test this and other assumptions in the InSAR-based 

rate estimate. Here, we observe more typical locking depths (10-20 km) and the slip rate we 

obtain is sensitive to the details of the rheological model.  

 

7. Hunter Mountain Fault slip evolution  

A simple model of constant slip rate since the time of initiation at 2.8 Ma, and 

satisfying the present day slip rate of 5 mm/yr would lead to a total fault offset of 14 km, 

significantly higher than the mapped value of 9.3±1.4 km.  



A simple model involving a linear increase in slip rate through time from zero to 5.0 

mm/yr at present (our new geodetic result), predicts the correct total offset of 9.3 km if the 

fault initiates at 3.7 Ma; the inferred acceleration in slip rate is ~ 1.3 mm/yr per million years. 

However, this model is not consistent with the younger (2.8 Ma) age for fault initiation (Lee 

et al., 2009); for a fault beginning at zero rate at this younger time, increasing linearly to the 

present rate of 5.0 mm/yr, total offset is 7.0 km, significantly less than the mapped value, 

9.3±1.4 km. 

We suggest that the Hunter Mountain-Panamint Valley fault zone illustrates the 

process of fault acceleration and simplification. Figure 5 shows two growth curves following 

a Rayleigh distribution for the Hunter Mountain fault that bracket the range of plausible 

values for inception time and are consistent with the measured geodetic rate.  Both give total 

offset of 9.3 km.  For the 2.8 Ma inception time (our preferred model), Ds is ~0.5 km. Faults 

with offset much less than this can be considered immature, while faults with offset much 

more than this can be considered mature. By this definition, the Hunter Mountain-Panamint 

Valley fault can be considered mature. 

 

8. Discussion 

While there are many possible sources of fault slip rate discrepancies, we suggest that 

the various rate estimates that characterize the Hunter Mountain fault over different time 

spans are best considered in the context of a model for a relatively young fault that is 

undergoing (or has recently undergone) rapid acceleration and evolution. Many authors have 

discussed the processes by which faults mature. As total offset increases, asperities and other 

frictional barriers to slip are reduced, segment length increases, en-echelon segments 

straighten and join, and the fault generally simplifies, reducing resistance to slip (Tchalenko, 

1970; Wesnousky, 1988; Stirling et al., 1996).  Ben-Zion and Sammis (2003) describe this as 



an inevitable consequence of strain weakening rheology, common in crustal materials. 

Presuming a constant tectonic driving force, as slip resistance decreases, the fault will 

accelerate to some steady state slip rate, and remain in that state until the tectonic driving 

force changes. With less than 10 km of total offset, the Hunter Mountain fault may not have 

achieved this mature state, or achieved it only recently. Presumably it experienced a period of 

geometric simplification and acceleration after 2.8 Ma.  

In general, fault evolution may be considered a balance between local frictional 

conditions, resisting motion, and regional tectonic conditions, promoting motion. Our model 

simplifies this complex topic, dealing only with the initial growth phase of fault evolution, 

where the tendency to straighten and simplify with increasing offset lowers slip resistance; 

the “death” phase, associated with changing tectonics, is ignored. Many faults will never 

reach Rf, because of changing kinematic boundary conditions; changing plate configuration 

may require formation of new faults and abandonment of existing faults. Even if a mature 

fault reaches Rf, some distributed, off-fault deformation may still occur, unrecorded by 

geologic estimates of offset on the main fault trace. Perhaps this is why the Holocene rate on 

the Carrizo segment of the San Andreas Fault (34 mm/yr; Liu-Zeng et al., 2006) is slightly 

lower than the geodetic rate (36 mm/yr; Schmalzle et al., 2006). While the two values overlap 

within current uncertainties, future studies may show this small difference to be real.  

Given rapid growth of the Hunter Mountain fault after 2.8 Ma, it is interesting to 

speculate concerning its influence on adjacent ECSZ faults. Our model, as well as previous 

studies (Tchalenko, 1970; Wesnousky, 1988; Stirling et al., 1996) predicts increasing 

geometric simplification of fault zones with time. Thus, it might be expected that the ECSZ 

will also simplify, with one fault (perhaps the Hunter Mountain-Panamint Valley fault) 

becoming dominant. Several authors have speculated that the ECSZ has accelerated in the 

last few million years, e.g., in response to the post 5.5 Ma inland jump of the Pacific-North 



America plate boundary, or due to post-3.5 Ma crustal delamination that led to Sierra Nevada 

uplift (Jones et al., 2004). In this case, the Hunter Mountain-Panamint Valley fault may have 

accommodated most of the acceleration.  

 

9. Conclusions  

Knowledge of a fault’s total offset and initiation age, combined with an accurate 

estimate of the present-day rate from geodesy, yield useful constraints on fault growth and 

evolution. For the Hunter Mountain-Panamint Valley fault, available geologic data (fault 

inception time between 4 and 2.8 Ma, total offset of 9.3 km) and geodetic data (present day 

rate of 5.0 +/-0.5 mm/yr) are satisfied with a simple model of fault acceleration and 

evolution. In this accelerating fault model, the geodetic rate estimate is invariably faster than 

long-term geologic rate estimates.  
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Figures 

 

Figure 1:  Map of major geological features in study area. Red dots indicate location of 

named fault, FZ is fault zone, SAF is San Andreas Fault. Blue box: location of Figure 3a. 

“Radar Track 442” indicates location of InSAR data in Figures 3. The two white dashed lines 

mark the southern and northern limits of the GPS used in our analysis. The faults are from the 

USGS Quaternary fault database (U.S. Geological Survey, New Mexico Bureau of Mines and 

Mineral Resources and Nevada Bureau of Mines and Geology, 2006). The map has been 

created using the SRTM topography. 



 

 

Figure 2: Three conceptual rate-time paths for a young, accelerating fault, all with the same 

total offset, defined by the integral of the rate-time function (area under the curves).  Rg is the 

geodetic rate, Ra is the average rate since fault inception.  In cases b (linear growth) and c 

(Rayleigh growth), Rg is exactly twice as fast as Ra, while in case a (instantaneous growth), Ra 

and Rg are equal.  Knowledge of Rg, age and total offset provides a way of distinguishing 

among the different growth models. 



 

Figure 3: InSAR surface displacement map and fault slip rate modeling for the Hunter 

Mountain fault (modified from Gourmelen et. al. (2010))  a) InSAR based Line of Sight 

(LOS) velocity map for the ECSZ, based on data acquired between 1992 and 2000. Red oval 

marks coseismic plus post-seismic displacement associated with the 1993 M 6.1 Eureka 

Valley earthquake (Peltzer and Rosen, 1995). Yellow box shows location of profile in Figure 

3b. F is Fault, FZ is Fault Zone. Faults are from the USGS quaternary fault database (U.S. 

Geological Survey, New Mexico Bureau of Mines and Mineral Resources and Nevada 

Bureau of Mines and Geology, 2006).   b) Line Of Sight displacement along A-A’ (Figure 

3a). Strain accumulation model in red, assuming a vertical fault, with locked (solid line) and 

freely slipping (dashed line) segments (inset). Note high strain rate near fault, corresponding 

to shallow locking depth. Best-fit slip rate is 4.9 +/- 0.8 mm/yr assuming pure strike slip in 

the strike direction of Hunter Mountain Fault. c) Model parameters  (Brooks and Frazer, 



2005), for the model in Figure 3b showing tradeoff between slip rate and locking depth. 

Unlike models with deeper locking depth, there is little tradeoff between slip rate and locking 

depth. 

 

 

 

Figure 4: GPS profile, perpendicular to the plate motion direction, across the Owens Valley 

fault (OVF), Panamint Valley fault (PVF), and the Death Valley fault (DVF), GPS velocities 

relative to central Basin and Range.  The solid line is a best-fit viscoelastic coupling model.  

Modified from (Schmalzle, 2008).  



 

 

Figure 5: Rate estimates for the Hunter Mountain - Panamint Valley fault for various time 

periods, and corresponding growth models.   Estimated uncertainty shown by error bars or 

vertical box dimensions. Light gray (Zhang et al., 1990) symbol is obtained by projecting 

horizontal slip rate of the Panamint Valley segment onto the Hunter Mountain fault; note that 

the Ash Hill fault is not included here because its relation with the Panamint Valley fault is 

unclear and because its slip rate of 0.3 mm/yr over the last 4 Ma (Densmore and Anderson, 

1997) does not impact on our conclusions. Shaded rectangles represent geologic rate and 



uncertainty (vertical axis) and age range of the rate estimate (horizontal axis); a) based on 9.3 

+/- 1.4 km offset and post 4.0 Ma faulting (Burchfiel, et al. 1987, Hodges, et al. 1989, 

Sternloff. 1988); b) based on Saline Valley reconstruction with 4.6 km of post-1.4 Ma offset 

(Sternloff, 1988); c) based on Lee et al. (2009).  Curves show two possible Rayleigh models 

yielding total offset of 9.3 km: Beginning at 4 Ma (Burchfiel, et al. 1987, Hodges, et al. 1989) 

(S equals 1.9 Ma); Beginning at 2.8 Ma (Lee, et al. 2009) (S equals 0.7 Ma).  

 

Tables 

 

 Rate (mm/yr) Earthquake 

Recurrence (yrs) 

Last Earthquake (yr 

A.D.) 

Owens Valley Fault 0.96 1955 1870a 

Panamint Valley Fault 5.14 500 b 1841 

Death Valley Fault 2.88 1000 c 1619 

San Andreas Fault 36.00 200 1857 

 

Table 1: Average low misfit solution for viscoelastic models of Schmalzle (2008), profiles 

50-120. a) Date of last earthquake on Owens Valley fault. b) Oswald and Wesnousky (2002).  

c) Klinger (2001). Italicized numbers are varied for best fit. 
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