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a  b  s  t  r  a  c  t

A  simple,  sensitive  and  robust method  to  extract  tamsulosin  from  human  serum,  and  quantify  by  liquid
chromatography–tandem  mass  spectrometry  (LC–MS/MS)  was  developed  and  validated  and  is applicable
as  a measure  of  compliance  in  clinical  research.  Tamsulosin  was  extracted  from  human  serum  (100  �L)
via liquid–liquid  extraction  with  methyl  tert-butyl  ether  (2 mL)  following  dilution  with  0.1  M  ammonium
hydroxide  (100  �L),  achieving  99.9%  analyte  recovery.  Internal  standard,  d9-finasteride,  was  synthesised
in-house.  Analyte  and internal  standard  were  separated  on  an Ascentis® Express  C18  (100  mm  × 3 mm,
2.7  �m) column  using  a  gradient  elution  with  mobile  phases  methanol  and  2 mM  aqueous  ammonium
acetate  (5:95,  v/v).  Total  run-time  was  6 min.  Tamsulosin  was  quantified  using  a triple  quadrupole  mass
spectrometer  operated  in  multi-reaction-monitoring  (MRM)  mode  using  positive  electrospray  ionisa-
tion.  Mass  transitions  monitored  for quantitation  were:  tamsulosin  m/z  409  →  228  and  d9-finasteride
m/z  382  →  318, with  the  structural  formulae  of  ions  confirmed  by  Fourier  transform  ion  cyclotron  reso-
nance  mass  spectrometry  (within  10 ppm).  The  limit  of quantitation  was  0.2 ng/mL,  and  the  method  was
validated  in  the  linear  range  0.2–50  ng/mL  with  acceptable  inter-  and  intra-assay  precision  and  accuracy
and  stability  suitable  for  routine  laboratory  practice.  The  method  was  successfully  applied  to  samples
taken  from  research  volunteers  in  a clinical  study  of benign  prostatic  hyperplasia.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Benign prostatic hyperplasia (BPH) is a highly prevalent dis-
order in older men  which causes lower urinary tract symptoms
and in severe cases can lead to urinary retention and renal tract
complications [1]. Tamsulosin (Fig. 1) is an �1 adrenergic antag-
onist, targeting uro-specific �1A and �1D receptors, and is an
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important therapy for many BPH patients [2]. In clinical studies
of response to pharmacological intervention establishing compli-
ance with study medication is important. Traditional methods of
establishing compliance such as a ‘pill count’ at the end of a study
can be complemented by measurement of drug in serum.

Tamsulosin levels in those treated with the 0.4 mg modified
release formulation are reported to be between 11.8 ng/mL [3]
and 16.1 ng/mL [4] after a single dose, and 10 ng/mL after 21 days
dosing [5]. Measurement of tamsulosin levels has been reported
from plasma by HPLC [6,7], LC–MS [8] and LC–MS/MS [3,9–12],
with key features of these methods described in Table 1. HPLC
alone precludes additional specificity and sensitivity afforded by
its use in conjunction with mass spectrometry, and in all assays
described requires undesirably large (1–1.5 mL)  sample volumes.
While LC–MS methods have been described, it is now increasingly
recognised that tandem mass spectrometry (such as LC–MS/MS)
with the monitoring of 2 mass transitions is the gold standard of
analyte measurement. Electrospray ionisation has been used more
commonly, but atmospheric pressure ionisation (APCI) was  used
successfully, by Qi et al. [9]. The combination of an LC–MS/MS
approach, minimal sample volume, simple extraction method and
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Fig. 1. Chemical structures and proposed fragmentation patterns for analyte and internal standard. Accurate masses shown for analyte quantifier and qualifier ions were
confirmed to within 10 ppm of their theoretical monoisotopic mass. (A) Structure and proposed fragmentation pattern for tamsulosin. (B) Structure and proposed fragmen-
tation  for d9-finasteride. (C) Proposed mechanism for fragmentation of d9-finasteride into quantifier ion. From the charged radical parent ion a single deuterium shifts in
a  concerted transfer of 2 electrons from the deuterated tert-butyl amine to the amide nitrogen with loss of neutral d8-2-methylpropene (shown). A single electron radical
transfer  is also possible.

excellent analyte recovery was not achieved in any published
method (Table 1). Therefore, we sought to develop an assay to
measure tamsulosin from human serum with a simple extraction
method, excellent analyte recovery and sufficient sensitivity to
allow use of small sample volumes.

2. Experimental

2.1. Reagents and standards

All solvents were HPLC grade and chemicals were from
Sigma–Aldrich (Dorset, UK) unless otherwise stated. The inter-
nal standard, d9-finasteride was synthesised in house (see
Section 2.3). Sources of other chemicals were as follows: tamsu-
losin hydrochloride (AK Scientific, Mountain View, USA), water

and ammonium hydroxide (35%, v/v) solution (Fisher Scientific,
Loughborough, UK), methanol (VWR, Lutterworth, Leicestershire,
UK), 4-aza-5�-androstan-1-en-one-16�-carboxylic acid (APAC
pharmaceutical, LLC, Columbia, USA), and 2-amino-2methyl-d3-
propane-1,1,1,3,3,3-d6 (CDN isotopes Inc., Quebec, Canada).

2.2. Biological samples

Pooled male human serum (collected from healthy men  aged
17–45 years on no medications) was  purchased (TCS Biosciences,
Buckingham, UK) for use as blank matrix in method development,
validation and standard curves (referred to as “drug-free serum”).
For method application, serum was  collected from 3 male subjects
who had received at least 3 months of treatment with tamsulosin
MR 0.4 mg  daily (Synthon Hispania, Sant Boi de Llobregat, Spain).
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Serum was  also analysed from 3 male subjects not receiving tamsu-
losin. All biological samples were collected with informed consent
with local regulatory and ethical approval and stored at −80 ◦C until
analysis.

2.3. Selection of internal standard and synthesis of d9-finasteride

In the absence of a commercially available stable isotope
labelled internal standard, compounds tested as potential internal
standards were trichlormethiazide, ketoconazole, phthalylsulfathi-
azole (QMX Laboratories, Essex, UK) and d9-finasteride.

Synthesis of d9-finasteride was adapted from the gen-
eral amide formation coupling reported by Rasmusson et al.
[13]. 4-Aza-5�-androstan-1-en-one-16�-carboxylic acid (97%
pure, 200 mg,  0.63 mmol) and 2-amino-2methyl-d3-propane-
1,1,1,3,3,3-d6 (342 �L,3. 24 mmol) were used as starting materials
to obtain 191 mg  of crude material (80% yield) after work-up. 50 mg
were purified by flash chromatography on an Isolera Biotage system
(5% isopropanol-95% DCM, SNAP silica cartridge (25 mg), 254 nm)
to yield 31 mg  of pure d9-finasteride. The final compound was char-
acterised by 13C NMR  (d4-MeOH, Bruker AV400 NMR  spectrometer).
13C NMR  signals matched most of those of a finasteride standard
(Fig. 2C). Characteristically the 28.7 ppm signal for the 3 primary
(CD3)3CN carbons was  absent and the 51.1 ppm signal for the qua-
ternary (CD3)3CN carbon was less intense than in the finasteride
reference material.

2.4. Instrumentation

Chromatographic separation was performed on a Waters
AcquityTM UPLC system (Manchester, UK), and detection for quan-
titative analysis was  performed on an ABSciex QTRAP® 5500 mass
spectrometer (Warrington, UK), with nitrogen as the source and
collision gas. The system was  operated using Analyst® Software
version 1.5.1. For confirmation of structural formulae of proposed
fragment ions, electrospray-Fourier transform ion cyclotron reso-
nance mass spectrometry (FT-ICR-MS) was performed using a 12
T SolariX dual source (ESI/MALDI) system (Bruker Daltonics, MA,
USA), operated with SolariX control version 1.5.0 (build 42.8) soft-
ware.

2.4.1. Analytical, chromatographic and mass spectrometric
conditions

Chromatographic separation was  achieved on an Ascentis®

Express C18 column (100 mm × 3 mm,  2.7 �m,  Sigma–Aldrich,
Dorset, UK), protected by a BDS Hypersil C18 guard cartridge
(10 mm × 3 mm,  3 �m;  Thermo Electron, Hemel Hempstead, UK).
Column and autosampler temperatures were maintained at 40 ◦C
and 10 ◦C, respectively. Elution was  achieved at a flow rate
of 0.35 mL/min (initial backpressure of approximately 145 bar),
using a gradient from 5:95 (methanol:aqueous ammonium acetate
(2 mM),  pH 7.38), with an initial hold of 0.5 min  followed by a linear
increase in organic mobile phase to 95:5 at 2.5 min, which was sus-
tained for a further minute (until 3.5 min) before re-equilibration,
with a total run-time of 6 min. Retention times for analyte and
internal standard were approximately 3.5 and 4 min respectively.

The mass spectrometer was  operated in positive electrospray
ionisation (ESI) mode, with curtain gas 25 psi, collision gas medium,
spray voltage of 5 kV, source temperature 550 ◦C, and source gases
both set to 55 psi. Multiple reaction monitoring of the analyte
transitions (collision energy, cell exit potential, declustering poten-
tial (all V)) were m/z 409 → 228 (33, 20,141 V; quantifier), m/z
409 → 200 (45, 16, 141 V; qualifier) and internal standard transi-
tions m/z 382 → 318 (31, 12, 96 V; quantifier) and m/z  382 → 314
(39, 14, 96 V; qualifier) was performed. The quantifier and qualifier
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Fig. 2. (A) d9-Finasteride DQ135 13C NMR  (126 MHz, CDCl3) ı = C-20: 172.29, C-3: 167.09, C-1: 151.71, C-2: 122.30, C-5: 59.56, C-14: 57.29, C-17: 55.48, C-22: 50.63, C-9:
47.47,  C-13: 43.97, C-10: 39.27, C-12: 38.16, C-8: 35.22, C-7: 29.33, C-6: 25.55, C-15: 24.15, C-16: 23.12, C-11: 21.13, C-18: 13.13, C-19: 11.76. Assignation was carried out based
on  previously published data [16]. A reference sample of finasteride scanned on the same instrument gave the same signals, apart from the presence of the intense tert-butyl
CH3  signal at 28.7 ppm. cps, counts per second. (B) Product ion spectra for protonated tamsulosin in electrospray ionisation mode, with m/z 228 and 200 selected as quantifier
and  qualifier ions respectively. (C) Product ion spectra for protonated d9-finasteride in electrospray ionisation mode, with m/z 318 and 314 selected as quantifier and qualifier
ions  respectively. Product ion spectra for both tamsulosin and d9-finasteride were collected under the following conditions: declustering potential 119 V, collision energy
35  V, cell exit potential 16 V.

transitions were selected as those with the greatest signal-to-noise
ratios.

2.4.2. Fourier transform ion cyclotron resonance mass
spectrometry (FTICRMS)

Analyte and internal standard were directly infused separately
(20 ng/�L) in acetonitrile: 0.1% trifluoroacetic acid in water (60:40,
v/v). Ions were detected between m/z  250 and 1500, yielding a 1
Mword time-domain transient. Ions of interest were isolated for
20 s prior to collision-induced dissociation (CID) experiments. CID
was carried out using 35 eV as the collision energy.

2.5. Extraction method

As tamsulosin is not present endogenously, it was  appropriate
to optimise and perform this assay in the biological matrix, serum.
Extraction efficiency was compared between different extraction

methods attempted and the most effective was  selected. Repeti-
tions (n = 6) were performed to ensure reproducibility.

Tamsulosin (1 mg)  and d9-finasteride (1 mg)  were dissolved
separately in methanol (1 mL)  and stored at −20 ◦C. Stock solutions
(10 �g/mL in methanol) of tamsulosin and d9-finasteride (inter-
nal standard) were prepared and stored at −20 ◦C. Standards of
lower concentration were prepared on the day of analysis by serial
dilution of the stock solutions.

Serum (100 �L) was dispensed into a glass tube, and d9-
finasteride (1 ng) added (as 10 �L of 100 ng/mL solution). NH4OH
(0.1 M,  100 �L) was added and samples mixed (5 min, 100 rpm).
Analyte and internal standard (IS) were extracted via a liquid–liquid
extraction with methyl tert-butyl ether (MTBE; 2 mL). Following
mixing (5 min, 100 rpm), and centrifugation (1791 g, 4 ◦C, 10 min),
the organic layer was  transferred to another glass tube. Extracts
were reduced to dryness under oxygen free nitrogen (40 ◦C) and
the residue reconstituted in mobile phase (100 �L, methanol:2 mM
ammonium acetate, 5:95). Injection volume was 10 �L.
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2.6. Assay validation

2.6.1. Recovery
Recovery was calculated by expressing the mean of the inte-

grated peak areas from extracted standards, as a percentage of the
mean integrated peak area from post-spiked standards. This was
performed in 6 replicate samples of drug-free serum enriched with
analyte (1 ng) and internal standard (1 ng).

2.6.2. Assessment of ion suppression
Effect of the biological matrix (human serum) on ionisation effi-

ciency was assessed in replicates of 6 by post-spiking extracts of
drug-free serum with tamsulosin (1 ng), and the response com-
pared to standards (1 ng) dissolved directly in mobile phase.

2.6.3. Specificity
Analyte specificity was ensured to avoid potential interferences

by other endogenous components in serum. Extracted drug-free
serum analysed using the described method was checked for inter-
ferences at or close to the expected retention times for tamsulosin
and d9-finasteride. Additional analyte and internal standard speci-
ficity was ensured with measurement of quantifier and qualifier
ions. Acceptable quantifier:qualifier ratios in biological samples
were those within 20% of the mean ratio seen in standards.

2.6.4. Limit of detection (LOD)
Limits of detection (LOD) were determined by analysing solu-

tions prepared by serial dilution of analyte and internal standard
stock solutions (0.1–0.3 ng/mL), with the LOD corresponding to the
quantity of analyte generating a peak with signal-to-noise ratio
(SNR) of approximately 3.

2.6.5. Lower limit of quantitation (LLOQ)
Lower limit of quantitation (LLOQ) following extraction was

determined by extracting analyte and internal standard from serum
at amounts approximating LOD (0.02 ng), 2× LOD (0.04 ng), and
4× LOD (0.08 ng), corresponding to concentrations of 0.2 ng/mL,
0.4 ng/mL and 0.8 ng/mL respectively. The LLOQ was  defined as
the amount where the relative standard deviation of the mean
(RSD), in replicates of 6, was ≤20%, where RSD (%) = standard devi-
ation/mean × 100.

2.6.6. Linearity
A standard curve was generated by adding d9-finasteride (1 ng)

to drug-free serum and increasing amounts (0.02, 0.1, 0.2, 0.5,
1, 2, 3, 4, 5 ng) of tamsulosin (corresponding to a concentration
range of 0–50 ng/mL). Peak areas of quantifier ions of tamsu-
losin and d9-finasteride were integrated and a calibration curve
constructed (peak area ratio of tamsulosin:d9-finasteride versus
amount of tamsulosin). Regression lines of best fit were constructed
and deemed acceptable if the regression coefficient, r, was  >0.99.
Weightings compared were none, 1/x and 1/x2 to improve accuracy
and precision at the lowest concentrations and to afford intercepts
as close to zero as possible.

2.6.7. Accuracy and precision
The intra-assay accuracy and precision were determined in a

standard curve with 4 points of the standard curve (LLOQ, low, mid,
high points) prepared in replicates of 6 (standard concentration:
0.2, 1, 20, 50 ng/mL). The inter-assay accuracy and precision were
determined from 6 standard curves prepared on 6 independent
occasions. Replicate peak area ratios were interpolated onto the
matched calibration line to yield calculated amounts. The precision
was calculated as the % RSD of the calculated values, and % accu-
racy was calculated as the measured value/theoretical value × 100.
Injector precision was assessed by injecting the same standards as

above 6 times on the same day. Precision and injector variability
were also assessed in a volunteer sample.

2.6.8. Stability
Stability was  assessed by reinjection of a calibration curve and

patient sample after 24 h in auto-sampler (10 ◦C), and then again
following 28 day storage (−20 ◦C). Storage conditions giving no
greater that 10% change in response were accepted. Samples (n = 5)
were subject to one freeze–thaw cycle and concentrations quanti-
fied before and after this process.

3. Results and discussion

3.1. Method development

3.1.1. Optimisation of mass spectrometric conditions
The mass of ions formed was  determined by direct infusion

into the ion source and the most abundant ions undergoing transi-
tions to abundant product ions were selected for use in subsequent
analysis as quantifier ions (following confirmation that they were
also associated with the best signal-to-noise ratios in biological
extracts). To provide additional specificity, the second most abun-
dant product ion was  used as the qualifier ion. Tamsulosin ionised
efficiently under positive electrospray ionisation conditions, yield-
ing the mono-protonated molecular ions with m/z  409.1. Mass
spectrometric source conditions (curtain gas, collision gas, spray
voltage, source temperature, source gases) and MS/MS  parameters
(mass transition, collision energy, cell exit potential, decluster-
ing potential) were then optimised for tamsulosin. The MS/MS
spectrum is presented in Fig. 2A and is similar to those reported
previously using both electrospray and APCI [9,11,12]. The identity
of the fragment ions of tamsulosin were confirmed by FT-ICR-MS,
with mass accuracy of ±10 ppm from theoretical monoisotopic
masses (Fig. 1), corroborating the proposal by Matushima et al.
[10]; loss of the 2-(o-ethoxyphenoxy)-ethyl amine moiety, yield-
ing m/z 228 and m/z 200 corresponding to the 2-methoxy-5-methyl
benzene-sulfonamide moiety.

3.1.2. Selection of internal standard
In the absence of a commercially available stable-isotope

labelled tamsulosin, trichlormethiazide (reported by [13]) and
further structurally similar compounds (ketoconazole and phtha-
lylsulfathiazole) were explored as potential internal standards.
However, while extraction efficiency of trichlormethiazide was
reproducible, extraction of ketoconazole and phthalylsulfathiazole
required pre-extraction pH modification that differed from the con-
ditions optimised for tamsulosin. In addition, these compounds
exhibited very poor ionisation efficiency in positive ESI mode and
indeed were better suited to ionisation in negative mode; however
analysis of tamsulosin in negative ion mode was not sufficiently
sensitive for clinical samples. While switching between positive
and negative ionisation modes is possible, this approach was  not
pursued.

While testing methods of analysis of drugs used to treat benign
prostatic hyperplasia, it was  noted that finasteride was  well suited
as an internal standard. While lacking in structural similarities
to tamsulosin, it exhibited very similar behaviour throughout
the analytical process, including extraction efficiency, ionisation
and detection. The internal standard ultimately selected was d9-
finasteride (Fig. 2C), rather than finasteride, due to the possibility
of patients being co-prescribed this drug along with tamsulosin.
The transitions monitored for analysis of d9-finasteride were m/z
382–318 and m/z 382–314 and the fragmentation pattern con-
firmed by FT-ICR-MS (Figs. 1 and 2C). Analyte and internal standard
were well resolved chromatographically (Fig. 3). In the future,
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Fig. 3. (A) Representative mass chromatograms of quantifier mass transitions for
analyte, tamsulosin, 20 ng/mL (upper panel) and internal standard, d9-finasteride,
10 ng/mL (lower panel) from spiked extracted serum. (B) Representative mass chro-
matograms of tamsulosin (quantified as 17.1 ng/mL; upper panel) extracted from a
patient sample enriched with internal standard, d9-finasteride (10 ng/mL; lower
panel). The patient had received tamsulosin (0.4 mg  daily) for 90 days. (C) To assess
specificity, the method was  applied to serum from patients not receiving tamsulosin
(n  = 3) with representative chromatograms shown (mass transition of tamsulosin
(upper panel), d9-finasteride lower panel)). cps, counts per second.

however, stable-isotope labelled tamsulosin would be preferred if
available.

3.1.3. Chromatographic conditions
The addition of ammonium acetate to the aqueous mobile

phase, in contrast to acidic modifiers, consistently gave increased
peak areas for tamsulosin. Mobile phases containing methanol
yielded better peak shape than acetonitrile. Chromatographic con-
ditions, including flow rate and temperature optimised initially
for tamsulosin were suitable for elution and detection of d9-
finasteride. Representative chromatograms show tamsulosin and
d9-finasteride from standard solutions (Fig. 3A) and from a patient
sample spiked with internal standard (Fig. 3B).

One of the challenges faced during development of the assay was
achieving symmetrical chromatographic peaks, a common problem
with basic analytes such as tamsulosin. Tamsulosin has a secondary
amine group with a pKa of 8.4 and problems with peak tailing
have been encountered by other researchers [8], typically requiring
modification of the pH or buffering of the mobile phase. The addi-
tion of formic acid as a mobile phase modifier has been reported to
be helpful [3], however on our chromatographic system, similarly
to Choi et al. [12] who used ammonium formate, buffering rather
than acidic modifiers yielded larger peak areas for tamsulosin.

Using the Ascentis column, trials of several aqueous mobile
phases demonstrated the superiority of buffering with ammo-
nium acetate for peak shape and area of both analyte and internal
standard. This achieved a pH of 7.38 at which approximately 90% of
tamsulosin would be ionised, enhancing the intensity of mass spec-
trometric response. Varying concentrations of ammonium acetate
showed 2 mM (pH 7.38) to be the optimum in terms of analyte peak
area, while still retaining consistency in chromatographic response.
Higher concentrations of ammonium acetate were associated with
poorer peak areas, which could be attributed to the formation of
ammonium adducts and associated ion suppression. Inconsistency
in retention time was seen with lower (1 mM,  0.5 mM)  concen-
trations of ammonium acetate, suggesting insufficient buffering
capacity to overcome the silanol interactions. The addition of the
stronger base triethylamine (TEA) has been reported to reduce peak
tailing [8], however an improvement was  not seen in our hands.

Under the final conditions selected, a total run-time of 6 min
allowed high sample throughput. While shorter run-times of
2–3 min  are described with isocratic methods [3,9,10,12], when
attempted, these isocratic methods resulted in broad and tailing
peaks, with decreased selectivity [14]. A shorter run time with
gradient elution was not possible due to incomplete column re-
equilibration. This could be addressed using UPLC columns in
future.

3.1.4. Extraction
While a proportion of the analyte added was recovered fol-

lowing extraction by most methods tested (based on literature
summarised in Table 1), the key developmental difficulties were
maximising recoveries, while ensuring reproducibility. Several
extraction methods were compared during method develop-
ment including liquid–liquid, supported liquid, and solid phase
extraction. Upon initial testing and as with others, liquid–liquid
extraction (LLE) methods were taken forward as efficient recov-
ery was  achieved and the other techniques did not offer sufficient
advantage, either in increased recovery or less ion suppression, to
justify the additional expense. As in other publications, a notable
feature was  the need for pre-extraction pH modification with basic
modifiers such as NaHCO3 [8,10], Na2CO3 [6,9] or NaOH [3]. With-
out modifying the pH of samples prior to extraction there was
unacceptably high variability and poor recovery with all types
of extractions in replicate sample, probably a reflection of tam-
sulosin being partially ionised at neutral pH. The strongest base
tested, ammonium hydroxide with a pH of 10.9, provided the
best response in terms of peak area and consistency with accept-
able RSDs between replicate samples for both analyte and internal
standard.

Several extraction solvents were compared including ethyl
acetate and hexane which gave poor and inconsistent recovery,
diethyl ether and dichloromethane which gave consistent but very
poor recovery. Following method optimisation (solvent type, pro-
portions, multiples of extraction), excellent recovery and consistent
responses were achieved with a liquid–liquid extraction with 20
volumes MTBE, to 1 volume sample, following mixing with 0.1 M
ammonium hydroxide solution. Using this approach, analyte recov-
ery was 107.4% (RSD 11.6%) and internal standard recovery was
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Table  2
Summary table of precision and accuracy data, demonstrating acceptable intra-assay precision and accuracy to limits of 0.2 ng/mL. Inter-assay precision became acceptable
at  low point (1 ng/mL) as defined U.S. FDA guidance [17]. RSD, relative standard deviation.

Intra-assay (n = 6) Inter-assay (n = 6)

Concentration found
(mean ± SD, ng/mL)

Precision (% RSD) Accuracy (%) Concentration found
(mean ± SD, ng/mL)

Precision (% RSD) Accuracy (%)

LOQ (0.2 ng/mL) 0.18 ± 0.02 11.1 89.4 0.21 ± 0.07 36.1 103.3
Low  (1 ng/mL) 1.1 ± 0.09 7.9 111.4 1.1 ± 0.08 7.4 100.5
Mid  (20 ng/mL) 22.8 ± 2.9 12.9 114.1 23.2 ± 2.7 11.8 104.3
High  (50 ng/mL) 45.7 ± 3.8 8.3 91.5 49.0 ± 1.8 3.8 96.8
Patient sample 17.8 ± 0.97 5.5 18.1 ± 1.0 5.6

93.3% (RSD 6.3%), an improvement on all previous reported meth-
ods.

3.2. Assay validation

Results from assay validation of LLE are summarised in Table 2.

3.2.1. Ion suppression
The presence of matrix did not significantly affect the intensity

of response of tamsulosin (94.7% response, RSD 7.8%).

3.2.2. Specificity
Analyte specificity was ensured through monitoring of both

quantifier and qualifier mass transitions by LC–MS/MS. Metabolites
of tamsulosin [10,15] would be anticipated to generate differ-
ent precursor ions and mass transitions from their parent drug.
Extracted drug-free serum had no interfering peaks at, or close to,
the retention times of tamsulosin or d9-finasteride (Fig. 3C).

3.2.3. Limits of detection (LOD)
Corresponding to a signal:noise ratio of 3, the LOD of tamsulosin

was 1.28 pg on column (0.13 ng/mL) and that of d9-finasteride was
1.46 pg on column (0.15 ng/mL).

3.2.4. Lower limit of quantitation (LLOQ)
The intra-assay LLOQ following extraction for tamsulosin was

2 pg on column (0.2 ng/mL, RSD 11.1%).

3.2.5. Linearity
The standard curve was linear in the range 0.2–50 ng/mL with

an average r value of 0.9952 (n = 6) with 1/x  weighting applied, and
average intercept of 0.001 (n = 6). The mean equation of the regres-
sion line derived from 6 replicates was y = 0.01690x − 1.2 × 10−3

with regression coefficients in the range 0.991–0.999.

3.2.6. Precision and accuracy
Intra- and inter-assay accuracy and intra-assay precision were

acceptable (<20% RSD for precision and 80–120% accuracy) at the
LLOQ, and inter-assay precision was acceptable from the 1 ng/mL
(RSD 7.9%). Above these values, variability relating to precision
(RSD) and accuracy was <15% and were therefore acceptable.
Results are summarised in Table 2.

3.2.7. Stability
Acceptable autosampler and extract storage stability were

demonstrated (Table 3). Data collated from standard curve and
patient samples reinjected after 24 h in the autosampler (10 ◦C)
were unchanged, with a relative response (stored/original) of
100.3%. Extracts reinjected following storage at −20 ◦C for 28 days
had 93.9% response compared to the original run. Concentrations
of tamsulosin following one freeze–thaw cycle were not different
from those measured at the outset, on average 104% (relative mean
error 7.9%) of the original value.

Table 3
Calculated concentration of tamsulosin in patient sample, demonstrating acceptable
stability at 10 ◦C for 24 h (in the autosampler) and at −20 ◦C for 28 days.

Initial run After 24 h in
autosampler

After 28 days
stored at −20 ◦C

Relative
response

17.1 ng/mL 17.2 ng/mL 100.3%
17.9  ng/mL 16.8 ng/mL 93.9%

3.2.8. Injector reproducibility
Acceptable reproducibility upon repeat (n = 6) injections of stan-

dards and sample was demonstrated with RSDs of: LOQ (0.2 ng/mL)
6%, low (1 ng/mL) 3%, mid  (20 ng/mL) 2%, high (50 ng/mL) 3%,
patient sample 1%.

4. Method application

The method was applied to samples from men who  had received
treatment with tamsulosin MR  0.4 mg  daily (n = 3), where concen-
trations of 16.7–36.1 ng/mL were quantified using 100 �L serum.
These were within the quantitation limits of the assay. As 0.4 mg
daily is the maximum dose of tamsulosin prescribed in routine
clinical practice, this assay is applicable to BPH studies where tam-
sulosin levels would be measured. In serum obtained from men
who had not received tamsulosin treatment (n = 3), analyte was not
detected (Fig. 3C).

5. Conclusions

MS  has proven the best method for analysis of tamsulosin, with
several methods reported which are suitable to detect the drug in
clinical samples. However the method reported here offers distinct
advantages in terms of the small sample volume required (100 �L),
permitted by a lower limit of detection (0.13 ng/mL). This reflects
both efficient recovery and also the superior sensitivity of the QTrap
5500 instrument. Sample preparation was  simple and economi-
cal, and overall this assay presents a combination not previously
achieved. This may  be of additional use in future studies where
analysis of free and bound fraction may  be desired, since tamsulosin
is highly protein bound (with �1-acid glycoprotein) [10].

Expected concentration of tamsulosin fell within the linear
range of the standard curve. Validation steps demonstrated the
assay to be applicable to normal laboratory practice and the assay
was successfully applied to samples taken from research volunteers
treated with tamsulosin. The use of d9-finasteride as an internal
standard suggests this method may be easily adapted to also mea-
sure finasteride. This would be particularly useful in other clinical
studies in BPH where finasteride and tamsulosin are often used in
different treatment groups, or administered as combination ther-
apy.
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