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Abstract. In generic particle physics models, the inflaton field is coupled to other bosonic
and fermionic fields that acquire large masses during inflation and may decay into light
degrees of freedom. This leads to dissipative effects that modify the inflationary dynamics
and may generate a nearly-thermal radiation bath, such that inflation occurs in a warm
rather than supercooled environment. In this work, we perform a numerical computation
and obtain expressions for the associated dissipation coefficient in supersymmetric models,
focusing on the regime where the radiation temperature is below the heavy mass threshold.
The dissipation coefficient receives contributions from the decay of both on-shell and off-shell
degrees of freedom, which are dominant for small and large couplings, respectively, taking
into account the light field multiplicities. In particular, we find that the contribution from
on-shell decays, although Boltzmann-suppressed, can be much larger than that of virtual
modes, which is bounded by the validity of a perturbative analysis. This result opens up new
possibilities for realizations of warm inflation in supersymmetric field theories.
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1 Introduction

Inflation [1] is an extremely successful paradigm providing an elegant solution to the short-
comings of the standard cosmological model, in particular explaining the high degree of
flatness and homogeneity of the observable universe, as well as describing the origin of the
temperature anisotropies observed in the Cosmic Microwave Background and the seeds of
the Large Scale Structure of our universe.

In the traditional picture of inflation, the early universe is dominated by the vacuum
energy of a scalar field φ that slowly rolls down its potential, V (φ). This mimics the effect of
a cosmological constant if the kinetic energy of the inflaton field is negligible, a condition that
is necessarily violated at some point during the evolution of the field towards the minimum of
the potential, thus yielding a finite period of accelerated expansion. This typically requires
a scalar field with extremely weak self-interactions, so that its very flat potential leads to
40-60 e-folds of inflation.

The quasi-exponential expansion redshifts away any matter or radiation present before
the scalar field comes to dominate the energy density:

ρ̇R + 4HρR = 0 ⇒ ρR ∼ e−4Ht , (1.1)

and consequently one needs a mechanism to reheat the cold inflationary universe and provide
an exit into the standard radiation-dominated cosmology. The inflaton field must thus have
some interactions with other fields, which directly or indirectly lead to the production of at
least the Standard Model degrees of freedom and the particles that presumably constitute
the inferred dark matter content of our universe.

These interactions must, however, be sufficiently weak in order to preserve the flatness
of the inflaton potential at the quantum level, which can be achieved by either (fine-)tuning
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the associated couplings or by considering additional symmetries that, in particular, keep
the mass of the scalar inflaton below the value of the Hubble parameter during inflation,
thus ensuring an overdamped evolution. Moreover, when one considers generic couplings to
additional scalar (fermionic) fields of the form g2φ2χ2 (gφψ̄ψ), these fields typically become
heavy during inflation due to the large values of the inflaton vacuum expectation value (vev).
This implies that the decays φ → χχ, ψ̄ψ are generically forbidden in the slow-roll regime,
with reheating of these degrees of freedom occuring naturally only at the end of inflation if
the inflaton vev drops sufficiently.

Interactions with additional scalar fields may also have interesting dynamical conse-
quences, as is the case of hybrid inflation models [2, 3], where negative contributions to the
squared mass of the waterfall field χ, coupled to the inflaton as above, make it tachyonic
at some critical value of φ. Inflation then ends with a phase transition in which the χ field
evolves towards the true minimum of its potential, and in the process it may reheat the
universe if it is coupled to radiation.

Warm inflation [4, 5] (see also [6]) provides an alternative picture of the inflationary
universe, in which particle production is sourced by the rolling inflaton field itself, so that
radiation is not completely diluted away:

ρ̇R + 4HρR = Υφ̇2 ⇒ ρR → Υφ̇2

4H
∼ const. , (1.2)

in the slow-roll regime. Although accelerated expansion only occurs for a sub-dominant
radiation component, ρR ≪ ρφ, it is possible that its temperature exceeds the de Sitter
temperature, T > H, which significantly changes the inflationary dynamics1. On one hand,
the spectrum of primordial density fluctuations is seeded by thermal rather than vacuum
fluctuations of the inflaton field [4, 7–10], which may lead to interesting observational conse-
quences such as the suppression of the tensor-to-scalar ratio and significant deviations from
a gaussian spectrum [11–14]. On the other hand, particle production induces an additional
friction term in the inflaton’s motion:

ρ̇φ + 3H(ρφ + pφ) = −Υφ̇2 , (1.3)

which using ρφ = φ̇2/2 + V (φ) and pφ = φ̇2/2− V (φ) leads to:

φ̈+ 3Hφ̇+ Vφ = −Υφ̇ , (1.4)

where Vφ denotes the derivative of the inflaton potential. This friction then contributes
to overdamp the inflaton’s motion, alleviating the need for very finely-tuned flat potentials
(see e.g. [15]). This may be particularly relevant for supergravity and string theory models
[16, 17], where one typically finds mφ & H, precluding a sufficiently long period of inflation.

We are mainly interested in dissipative effects in the adiabatic regime, where the micro-
scopic particle dynamics is much faster than the evolution of any macroscopic variable, which
typically holds during slow-roll inflation. The calculation of dissipation coefficients in the adi-
abatic regime has been a long studied problem in quantum field theory, starting primarily
with the seminal works in the 80’s of Hosoya and Sakagami [18] for the φ4 interaction (see
also [19]). This was followed by Morikawa [20], who used the Closed Time Path formalism
and obtained an effective Langevin-like equation, including an explicit fluctuation-dissipation

1In this work we will consider a radiation bath that is close to thermal equilibrium, although this need not

be the case in general.
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relation. Fluctuation-dissipation relations emerging from quantum field theory models have
since been examined by several other authors [21–24]. Initially these treatments considered
weak dissipation, leading to an underdamped evolution, although it was subsequently shown
in [25] that strong dissipation with overdamped trajectories could also be achieved. All these
studies were performed in Minkowski spacetime and one of the first to consider dissipation
in curved spacetime was Ringwald [26], with other subsequent treatments such as [27–29].
Dissipation from quantum field theory models has in fact been considered for a variety of
applications beyond warm inflation dynamics, such as phase transitions, heavy ion collisions
and conventional reheating after inflation.

For the reasons described above, the interactions between the inflaton and the radiation
must be sufficiently suppressed to maintain the flatness of the potential, and in particular the
finite temperature of the radiation may induce large thermal corrections to the inflaton mass,
with mφ ∼ T > H. This in fact precludes successful realizations of warm inflation in the
simplest models, with the inflaton coupled directly to light scalars or fermions as described
above, as the additional friction cannot overcome the increase in the inflaton’s mass [25, 30].
This of course assumes these are relativistic degrees of freedom, with T ≫ mχ,ψ, but, as
previously discussed, fields which are directly coupled to the inflaton tend to acquire large
masses during inflation.

This has motivated implementations of warm inflation scenarios in the low-temperature
regime, with T < mχ,ψ (see e.g. [31] for other recent implementations of warm inflation).
In this case the on-shell production of these degrees of freedom is Boltzmann-suppressed, so
that most models in the literature have so far focused on virtual modes, which may still lead
to significant dissipative effects depending on the field multiplicities. In fact, this scenario,
proposed in [32] and suggestively known as the two-stage mechanism, has all the ingredients
of hybrid inflation models, where it is the waterfall field and not the inflaton that interacts
with and may decay into light degrees of freedom. Moreover, it has been shown that the
inclusion of both bosonic and fermionic degrees of freedom in a supersymmetric theory may
help controlling both radiative and thermal corrections to the inflaton potential, despite
supersymmetry being broken by both the finite energy density and the finite temperature
during warm inflation [33].

In this work, we extend earlier computations of the dissipation coefficient Υ in the low-
temperature regime [34, 35] for the case where the fields coupled to the inflaton have an
arbitrary number of possible decay channels, including both on-shell and off-shell produc-
tion. Although most computations have to be performed numerically, our goal is to provide
accurate expressions for Υ that may be used in constructing models of warm inflation, and
determine the associated constraints on the field masses, couplings and multiplicities.

Our work is organized as follows. In the next section we describe the interactions be-
tween the inflaton field, the heavy fields and the light degrees of freedom that make up
the radiation bath. We then discuss the leading thermal corrections to the particle masses,
which may be found in Section 3. In Section 4, we describe the computation of the dissi-
pation coefficient in the low-temperature regime, for both on-shell and off-shell modes, and
find analytical expressions that accurately describe the numerical data in each case. We
summarize our main results and discuss their impact on warm inflation model-building in
Section 5. Three appendices are also included, where we provide more detailed discussions
of some of the results used in our computations.
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2 Supersymmetric model

We consider a generic supersymmetric model with chiral superfields Φ, X and Yi, i =
1, . . . , NY , described by the superpotential [15, 33]:

W =
g

2
ΦX2 +

hi
2
XY 2

i + f(Φ) , (2.1)

where a sum over the index i is implicit. The scalar component of the superfield Φ describes
the inflaton field, with an expectation value φ = ϕ/

√
2, which we assume to be real, and

the generic holomorphic function f(Φ) describes the self-interactions in the inflaton sector.
The structure of the superpotential is quite generic in renormalizable models, following from
the simple assumption that not all degrees of freedom are directly coupled to the inflaton
field, and may for example be naturally implemented in D-brane constructions and related
gauge theories (see e.g. [17] and references therein). The analysis that we will go through
below concentrates mostly on the scalar and fermionic sectors, which are already sufficiently
involved, but we discuss the possibility of embedding this superpotential in a gauge theory
in Section 5.

The Lagrangian density describing the interactions between the inflaton vev and the
scalar components of the superfields X and Yi, denoted by χ and σi, respectively, is given
by:

Lscalar = V (ϕ) +
1

2
g2ϕ2|χ|2 + g

2

√

V (ϕ)
(

χ2 + χ†2
)

+
g2

4
|χ|4 +

+
hi
2

gϕ√
2

(

χσ†2i + χ†σ2i

)

+
hihj
4
σ2i σ

†2
j + h2i |χ|2|σi|2 , (2.2)

where V (ϕ) = |f ′(φ)|2 is the potential driving inflation. Similarly, the interactions involving
the fermionic components ψχ and ψσi and the scalar inflaton are given by:

Lfermion =
gϕ√
2
ψ̄χPLψχ + hiχψ̄σiPLψσi +

hi
2
σiψ̄σiPLψχ + h.c. , (2.3)

where PL = (1 − γ5)/2 is the left-handed chiral projector. Note that for our study of the
dissipative dynamics during inflation we are only interested in the interactions involving
the inflaton vev, but one should take into account that there are also interactions involving
scalar fluctuations about the background value and their fermionic superpartners, although,
for simplicity, we do not write them explicitly in Eqs. (2.2) and (2.3). Also, for the purposes
of this work, we will assume that the couplings g and hi are real, although complex cou-
plings may play an important role in, for example, generating a baryon asymmetry through
dissipative effects during warm inflation [36]. For simplicity, we will also take h = hi for all
light species in our discussion, although our results can be easily generalized to the case of
distinct couplings.

From the interactions shown in Eqs. (2.2) and (2.3), we can see that the fields in the X
multiplet, which are directly coupled to the inflaton in the superpotential, acquire tree-level
masses that are generically large for large values of the inflaton vev. On the other hand, the
fields in the Yi multiplets remain massless at tree-level, although we may in general consider
an additional mass term for these fields as we discuss in the next section. The non-vanishing
potential energy driving inflation breaks supersymmetry, which leads to a mass splitting in
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the scalar sector of the X multiplet:

m2
χR,I

=
g2ϕ2

2

(

1±
√

V (ϕ)

gϕ2

)

,

m2
ψχ

=
g2ϕ2

2
, (2.4)

where χ = (χR + iχI)/
√
2. Due to the smallness of the inflaton self-interactions typically

required for a sufficiently long period of slow-roll inflation and a small enough amplitude for
the spectrum of primordial density perturbations, this splitting may in general be neglected
during inflation. For example, for V (ϕ) = λ2ϕ4, the splitting factor is 1 ± λ/g, with the
primordial spectrum imposing λ ∼ 10−7, so that we generically expect λ ≪ g (see e.g.
[15]). Henceforth we will then consider a common mass mχ = gϕ/

√
2 for all fields in the X

multiplet. If the inflaton vev is sufficiently large, this mass will be above the temperature of
the radiation bath during warm inflation, in which case thermal contributions to the inflaton
potential from χ and ψχ loops are Boltzmann-suppressed, e−mχ/T ≪ 1, and do not destroy
the flatness of the tree-level potential.

This mass splitting may nevertheless be important when computing radiative corrections
to the inflaton potential, and the supersymmetric Coleman-Weinberg potential has been
shown to yield [33]:

VCW =
1

32π2
Str

[

M
4
X

(

ln

(

M
2
X

µ2

)

− 3

2

)]

≃ g2

32π2
V (ϕ) ln

(

m2
χ

µ2

)

, (2.5)

where µ is the renormalization scale and we have taken the leading correction from supersym-
metry breaking. This shows that the leading radiative corrections to the inflaton potential
are logarithmic and hence will not spoil the flatness of the potential for g . 1. Note that
if we consider NX multiplets coupled to the inflaton as in Eq. (2.1), the radiative correc-
tions will be proportional to g2NX , and this may still accommodate a moderately large field
multiplicity without a significant tuning of the coupling constant.

One should also notice that in some cases the mass splitting induced by supersymmetry
breaking may actually become relevant at the end of the inflationary evolution. For example,
for f(Φ) = gM2Φ, we have V (ϕ) ≃ g2M4 and m2

χR,I
= m2

χ ±M2/2, so that the imaginary
component becomes tachyonic for ϕ < M , leading to a phase transition that ends inflation
in the conventional hybrid mechanism.

The superpotential (2.1) is thus a simple generalization of supersymmetric hybrid infla-
tion that allows for an arbitrary inflaton potential and additional couplings of the waterfall
field(s) to other scalars and fermions. These couplings allow for the decays χ→ σσ, ψσψσ and
ψχ → σψσ, as can be easily seen from Eqs. (2.2) and (2.3), and thus allow the waterfall field
and its superpartners to ‘reheat’ the universe after the hybrid transition. Most importantly,
both real and virtual χ and ψχ pairs can be produced by the rolling inflaton field through
non-local quantum effects, and in turn decay into the Yi multiplet particles, leading to dissi-
pative particle production and to the two-stage realization of warm inflation [32], which will
be the main topic of this work.

The interactions in Eqs. (2.2) and (2.3) also lead to scattering processes that help
keeping the light fields in a state close to thermal equilibrium. Although this is not a crucial
assumption for the presence of dissipative effects, it allows one to compute the associated
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dissipative coefficient in terms of the temperature of the radiation and of the field masses
and couplings. In appendix C, we list some of the processes responsible for thermalization of
the σ, ψσ and φ fields and estimate the magnitude of the corresponding thermalization rates.
Our estimates show that the scalar σ fields thermalize more quickly than their fermionic
superpartners for T ≪ mχ, which is a consequence of supersymmetry breaking during warm
inflation. Furthermore, thermalization of the inflaton particle states takes longer due to the
sequestering effect of the two-stage superpotential. However, as scattering rates generically
grow with the temperature, Γi ∼ g2i T for some effective coupling gi, one expects that all
particles may thermalize within a Hubble time for T ≫ H, which we will assume in the
remainder of our discussion.

3 Finite temperature effects

The two-stage interactions between the inflaton and X and Yi fields lead to the formation of
a thermal bath during inflation, and finite temperature effects may thus become important.
Since χ and ψχ acquire large tree-level masses and we assume T ≪ mχ, their contributions
to thermal loop corrections are Boltzmann-suppressed and may be ignored. This precludes
large thermal mass corrections not only to the inflaton field but also to the light σ and ψσ
particles that form the radiation bath.

The masses of both the bosonic and fermionic components of the X multiplet receive
nevertheless corrections from their interactions with the light fields, the leading contributions
corresponding to the first three diagrams in figure 1.

ψχ ψσi
ψχ

σi

χ χ

χχχχ

σi

ψσi

ψσi

σi

σi

Figure 1. Feynman diagrams contributing to the self-energy of the ψχ and χ fields to leading order.

These have been computed in [33] and are identical for both bosonic and fermionic
degrees of freedom. Taking into account our normalization of the couplings in the super-
potential (which differs from [33] by a factor 1/2) and the field multiplicity, this yields the
effective mass:

m̃2
χ = m2

χ +
h2NY

8
T 2 . (3.1)

In particular, this implies that the one-loop effective potential at finite temperature can be
obtained by replacing the tree-level mass by m̃χ in Eq. (2.5). This shows that the leading
thermal corrections to the inflaton potential are logarithmic and that, for T ≪ mχ, they are
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smaller than the zero-temperature radiative corrections induced by the inflaton vev. We will
nevertheless include these corrections in the computation of the dissipation coefficient.

Although the last diagram in figure 1, involving a loop of the light σi scalar fields,
does not yield a T 2 correction, it yields a divergent contribution to the χ mass that can
be reabsorbed by a conventional zero-temperature renormalization procedure. The finite-T
contribution from this diagram was interpreted in [33] as a contribution to the temperature-
dependent coupling g(T ). A closer inspection of this contribution reveals, however, a strong
momentum dependence that goes beyond a simple coupling redefinition and modifies the
two-point function for the χ scalars in a non-trivial way. As we discuss in detail in appendix
A, the full two-point function involves, in particular, a perturbative resummation of higher-
order diagrams of this form, which is only valid in the regime h2NY . 1. Hence, although
thermal mass corrections would not be significant for a large number of decay channels NY ,
this correction places an upper bound on the effective coupling h

√
NY that we must take

into account in computing the associated dissipation coefficient.
In the Yi sector, the light σi scalars also receive thermal corrections from their self-

interactions, while their superpartners only have couplings involving at least one heavy field
and thermal loop contributions are suppressed in this case. The leading diagrams contributing
to the scalar masses are shown in figure 2.

σiσi

σi

σiσi σi

σj

σj

Figure 2. Feynman diagrams contributing to the self-energy of the σi fields to leading order. Note
that the ‘sunset’ diagram on the right gives the leading-order correction involving different light
species.

The leading corrections to the mass of each species σi correspond to the quartic self-
interactions (h2i /4)|σi|4, while the mixing between different species, (hihj/4)σ

2
i σ

†2
j gives rise

to the higher-order ‘sunset’ diagram in figure 2, proportional to h4NY
2. Since we will

consider the regime h2NY . 1, which in turn requires h < 1, it is sufficient to consider the
leading corrections to the light scalar masses, given by [37, 38]:

m2
σ = m2

0 +
h2

12
T 2 + O(h4NY ) , (3.2)

where we have included a possible tree-level mass arising from other potential SUSY breaking
effects. If the light sector includes, for example, the MSSM fields, we expectm0 ∼ 1 TeV ≪ T
for the high temperatures typically involved in warm inflation models [15]. Given that the
leading thermal correction is independent of the field multiplicity, we thus expect mσ ≪ T ,
which we will assume in our discussion below. Furthermore, note that fields can be relativistic
during warm inflation even if their mass is of the order of the Hubble parameter, since T > H,

2Note that the relevant two-point correlation function for a complex scalar is 〈σiσ
†
i 〉, which receives distinct

contributions from the quartic and bi-quadratic interaction terms.
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and in particular the inflaton particle states can be a part of the radiation bath if their thermal
production is efficient (see appendix B).

4 Dissipation coefficient

The coupling between the inflaton and the χ, ψχ fields induces time non-local corrections
to the inflaton effective action which, in the adiabatic regime, where ϕ̇/ϕ,H ≪ Γχ, with the
latter denoting the χ decay width, lead to the effective friction term Υϕ̇ in the inflaton’s
equation of motion (see e.g. [35]). As mentioned above, these dissipative effects are due to
the finite decay width of the X multiplet fields, and correspond to an effective production of
relativistic degrees of freedom, yielding a non-zero imaginary part for the self-energy of the
fields in the Yi sector [39].

The leading contribution to the dissipation coefficient from the complex scalar χ modes
arises at one-loop order, as illustrated in figure 3, and has the following form [35]:

Υ =
4

T

(

g2

2

)2

ϕ2

∫

d4p

(2π)4
ρ2χnB(1 + nB) , (4.1)

where nB(p0) = [ep0/T −1]−1 is the Bose-Einstein distribution and ρχ is the spectral function
for the χ field. One expects the use of thermal distributions to be a good approximation to
the dynamics of scalar fields coupled to a thermal bath in the adiabatic regime Γχ ≫ H, as
discussed in [40–42] (see appendix C).

g2ϕ2

2

g2ϕ2

2

χ

χ

Figure 3. Feynman diagram contributing to the inflaton effective action at leading order.

The spectral function for the χ field entering in Eq. (4.1) corresponds to the fully
dressed propagator, including the effect of their finite decay width into σi particles:

ρχ(p0, p) =
4ωpΓχ

(p20 − ω2
p)

2 + 4ω2
pΓ

2
χ

, (4.2)

where ωp =
√

m̃2
χ + p2 for modes of 3-momentum |p| = p and energy p0. Here we neglect

the contributions of the real part of the χ self-energy and similar radiative corrections to
the |φ|2|χ|2 vertex, which as discussed earlier and detailed in appendix A should hold for
h2NY . 1.

The contribution from the ψχ modes is given by an analogous expression to Eq. (4.1)
with fermionic propagators and the relevant couplings, but has been shown to be suppressed
in the low-temperature regime, T ≪ mχ [35], which is the main scope of this work. Thus,
for the remainder of this work we will focus on the contribution from the χ field to the
dissipation coefficient. It should be noted that the dissipation coefficient receives positive
contributions from both the bosonic and fermionic fields that are directly coupled to the
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inflaton, so that only the time-local radiative corrections can be (partially) canceled by the
underlying supersymmetry of the model. The suppression of the fermionic contribution is
also a symptom of supersymmetry breaking during warm inflation, due to both the finite
inflaton energy density and the finite temperature of the radiation bath.

The decay width of the χ bosons also includes contributions from both the bosonic and
fermionic final states in the Yi multiplets. As we discuss below, the dissipative coefficient
receives contributions from both low-momentum and on-shell modes, and while in the latter
case the bosonic and fermionic branching ratios are identical, for the former the fermionic
decays are negligible (see e.g. [35]). To simplify the computation of the dissipation coefficient,
we will then focus on the bosonic channels, while nevertheless commenting on the effects of
the fermionic ψσ modes where appropriate.

The leading process contributing to the decay width of the χ fields is then the two-body
decay χ → σiσi (and the complex conjugate process), and at finite temperature we include
contributions from both decays and inverse decays, as well as thermal scatterings off particles
in the radiation bath. This has been computed in [35] from the imaginary part of the χ self
energy at one-loop order, yielding:

Γχ =
h2NY

64π

m2
χ

ωp
FT (p, p0) , (4.3)

where

FT (p, p0) =

[

ω+ − ω−

p
+
T

p
ln

(

1− e−
ω+

T

1− e−
ω−
T

1− e−
p0−ω−

T

1− e−
p0−ω+

T

)]

θ
(

p20 − p2 − 4m2
σ

)

+

+

[

T

p
ln

(

1− e−
ω+

T

1− e−
ω−
T

1− e−
p0+ω−

T

1− e−
p0+ω+

T

)]

θ
(

−p20 + p2
)

, (4.4)

with θ(x) denoting the Heaviside function and

ω± =
√

k2± +m2
σ , k± =

1

2

∣

∣

∣

∣

∣

p± p0

(

1− 4m2
σ

p20 − p2

)

1

2

∣

∣

∣

∣

∣

. (4.5)

Note that the factor m2
χ appearing in Eq. (4.3) arises from the fact that the coupling between

the χ and σi fields depends on the inflaton vev, whereas for the physical mass of the heavy
bosons we use the effective mass m̃χ. Also, the first term in Eq. (4.4) corresponds to direct
and inverse decays, while the second term, corresponding to Landau damping, is associated
to thermal scatterings.

From Eqs. (4.1) - (4.3), it is easy to see that the dissipation coefficient depends on
the mass of χ fields, mχ/T , and the effective coupling, h

√
NY , up to an overall rescaling

by the coupling g2. We have integrated Eq. (4.1) numerically for different values of these
parameters, and we show a representative selection of our results in figure 4.

As one can easily conclude from the results shown in figure 4, the dependence on the
effective coupling h

√
NY is non-trivial, exhibiting two distinct behaviors for small and large

couplings depending on the mass of the χ fields. As we will discuss below, these correspond
to two different contributions to the integral in Eq. (4.1) that can be analyzed separately
and, in fact, represent different physical processes.
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Figure 4. Numerical results for the dissipation coefficient as a function of the effective coupling
h
√
NY for different values of mχ/T . These results correspond to mσ/T = 0.01.

4.1 Low-momentum contribution

For larger values of the mass and effective coupling, the main contribution to the dissipation
coefficient comes from virtual χ modes with low momentum and energy, p, p0 ≪ mχ, so that
one can use the approximation (p20 − ω2

p)
2 ≃ m̃4

χ. If, in addition, these modes have a narrow
width and thermal mass corrections can be neglected, Γχ ≪ m̃χ ∼ mχ, the spectral function
takes the simple form ρχ ≃ 4Γχ/m

3
χ and it is easy to see that:

ΥLM

g2mχ
= Ah4N2

Y

(

T

mχ

)3

. (4.6)

The constant can be determined from the numerical data and one obtains A ≃ 1.63 × 10−3

for mσ/T = 0.01, consistently with the results obtained in [34, 35], taking into account our
choice of normalization in Eq. (2.1).

However, as one increases the effective coupling h
√
NY , the finite width of the χ

fields and their thermally-induced mass become larger and modify the dissipation coeffi-
cient. Within the limit of our perturbative analysis, h

√
NY . 1, this is well-described by a

correction of the form:
ΥLM

g2mχ
=

Ah4N2
Y

1 + αh2NY

(

T

mχ

)3

, (4.7)

with α ≃ 0.16 for mσ/T = 0.01. The dependence of the A and α parameters on the mass of
the light fields is illustrated in figure 5 for mχ/T = 50.
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Figure 5. Dependence of the parameters A and α onmσ/T andmχ/T = 50. The solid lines represent
the best fit curve in each case.

The numerical data is then well-described by the following approximate expressions:

A ≃ −4.3× 10−4 ln
(

1− e−
5

2

mσ
T

)

,

α ≃ −0.05 ln
(

1− e−4mσ
T

)

. (4.8)

This allows one to compute the mσ ≪ T limit of the low-momentum contribution to the
dissipation coefficient, which may be written as:

ΥLM ≃ Cφ
T 3

ϕ2
, Cφ ≃ 0.02h2NY . (4.9)

Equation (4.9) is one of the main results of this work, showing that the dissipation
constant grows like Cφ ∝ h2NY for light particles with mass mσ ≪ T , as opposed to the
h4N2

Y -dependence obtained in [34, 35] for finite mσ/T and neglecting finite width effects. As
discussed earlier, a perturbative analysis holds for h

√
NY . 1, so that this yields at most a

dissipation constant Cφ . 1 for a single χ scalar coupled to the inflaton field.

4.2 Pole contribution

The contribution to the dissipation coefficient from real χ modes is generically Boltzmann-
suppressed, so that previous analyses assumed that it only becomes relevant in the high-
temperature limit, T ≫ mχ. However, our numerical results suggest that the Boltzmann
suppression factor e−mχ/T may be compensated by a sufficiently small effective coupling in
the low-temperature regime, so that on-shell modes become the dominant contribution to
the dissipation coefficient, as can be seen in figure 4.

To better understand this, let us expand the spectral function in Eq. (4.2) about its
pole at p0 ≃ ωp, which corresponds to the production of on-shell modes. We then obtain:

ΥP =
2

T

(

g2

2

)2

ϕ2

∫

d3p

(2π)3
1

Γχω2
p

nB(1 + nB) , (4.10)

where nB ≡ nB(ωp). For on-shell χ modes, decays into light scalars and fermions are equally
probable, with partial decay widths given by Eq. (4.3) for p0 = ωp. Although, for simplicity
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of the numerical calculation, we are focusing on the scalar decay modes, it is clear that in
this regime the inclusion of the full decay width will lead to half the dissipation coefficient
computed with only the scalar channels. Other decay channels may become relevant for
small values of h

√
NY , but as discussed in appendix B we expect them to be generically sub-

leading. Furthermore, for on-shell modes, the function in Eq. (4.4) yields, at low-momentum
p and mχ & T , in the limit mσ ≪ T :

F (p, ωp) ≃ 1 + 2e−
1

2

mχ
T + O

( p

T

)2
, (4.11)

which implies that thermal corrections to the decay width are subdominant in this limit.
For p & T thermal corrections may become slightly larger, but as shown in figure 6 they are
generically sub-leading.

mΧ�T=3

mΧ�T=5

mΧ�T=10

0.001 0.01 0.1 1 10 100 1000

1.0

1.5

p�T

FH
p,
Ω

p
L

Figure 6. The decay width function F (p, ωp) for on-shell modes as a function of the 3-momentum for
different values of mχ/T & 1. The solid lines yield the full function while the dashed lines correspond

to the low-momentum approximation F (p, ωp) ≃ 1 + 2e−
1

2

mχ

T .

It is thus a good approximation to use the zero-temperature result for the decay width
Γχ ≃ (h2NY /64π)(m

2
χ/ωp) and the dissipation coefficient reduces to:

ΥP ≃ 32

π

g2

h2NY

(

1

T

)
∫ ∞

0

p2dp

ωp
nB(1 + nB) . (4.12)

Also, for mχ ≫ T , we have, defining x = p/T :

nB(1 + nB) ≃ e−
√
x2+(mχ/T )2 ≃ e−mχ/T e

− 1

2

x2

mχ/T , (4.13)

where the second line follows from the fact that only low-momentum values give a significant
contribution to the integral. Hence, we obtain:

ΥP ≃ 32

π

g2

h2NY
Te−mχ/T I

(mχ

T

)

, (4.14)

where

I(z) =

∫ ∞

0
dx

x2√
x2 + z2

e−
x2

2z ≃
√

πz

2
, (4.15)
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where the last expression gives the leading result for z ≫ 1. We thus obtain the following
expression for the pole contribution to the dissipation coefficient:

ΥP

T
≃ 32√

2π

g2

h2NY

√

mχ

T
e−mχ/T . (4.16)

Figure 7 shows a comparison between the numerical results for the full dissipation coefficient
in the pole-dominated region and the approximate expression derived above. One can see
that Eq. (4.16) is in excellent agreement with the numerical results for mχ/T & 3 and
slightly overestimates the dissipation coefficient for smaller values. This is thus a very good
approximation for practical purposes, since thermal corrections to the inflaton mass are not
significantly suppressed for mχ/T < 3.

0 5 10 15 20
10-10

10-8

10-6

10-4

0.01

1

mΧ�T

Hh
2
N

Y
�g

2
LU
�T

mΣ�T = 0.01

Figure 7. Dissipation coefficient in the pole-dominated regime as a function of mχ/T for mσ/T =
0.01. The points denote the full numerical result and the red line corresponds to the analytical
expression in Eq. (4.16).

One should note that this contribution to the dissipation coefficient is more significant
for small effective coupling, h

√
NY , in which case the χ scalar has a small width. Dissipation

results in an effective friction coefficient only in the adiabatic limit, ϕ̇/ϕ, H ≪ Γχ, so in
constructing models of warm inflation in this pole-dominated regime one must make sure that
this condition is nevertheless satisfied, which is of course a model-dependent issue beyond
the scope of our generic analysis. Also, it has been shown that a full resummation of ladder
diagrams contributing at the same order to the dissipation coefficient is required in this limit,
although this does not generically change its order of magnitude [43]. Furthermore, these
additional contributions to the dissipation coefficient can only make it bigger, since they can
only contribute positively to the dissipation. Therefore, we can also see Eq. (4.16) as a lower
bound for the dissipation coefficient in the pole regime.

4.3 Full dissipation coefficient

The full dissipation coefficient receives contributions from both the low-momentum and near-
pole regions in the (p, p0) plane of the intermediate χ fields and, putting together the results
in Eqs. (4.9) and (4.16) we obtain:

Υ

g2T
≃ 32√

2π

1

h2NY

√

mχ

T
e−mχ/T + 0.01h2NY

(

T

mχ

)2

, (4.17)
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which is valid in the limit mσ ≪ T and for h
√
NY . 1. Note that for multiple fields in the X

sector, with similar couplings, the dissipation coefficient is multiplied by the corresponding
factor NX . The two contributions become comparable for

h
√

NY ≃ 6
(mχ

T

)5/8
e−

1

4

mχ
T . (4.18)

In figure 8 we illustrate the values of the regions in the parameter plane (mχ/T, h
√
NY )

where each contribution dominates the dissipation coefficient, showing that for small (large)
masses and couplings dissipation is dominated by real (virtual) modes.

pole

low-momentum

5 10 15 20 25 30
0

1

2

3

4

5

mΧ�T

h
N

Y

Figure 8. Regions in the plane (mχ/T, h
√
NY ) where the pole and the low-momentum contributions

dominate the dissipation coefficient, with the solid line indicating the value of the effective coupling
at which the contributions are comparable, given in Eq. (4.18).

In figure 9 we compare the numerical results for the dissipation coefficient with the
expression obtained by adding the pole and low-momentum contributions for mσ/T = 0.01
and mχ/T = 20, illustrating the very good agreement between them.
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Figure 9. Comparison between the numerical results and the analytical expression obtained by
adding the low-momentum and pole contributions to the dissipation coefficient for mχ/T = 20 and
mσ/T = 0.01.
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The most interesting result that follows from our analysis is the fact that the contri-
bution of on-shell modes can be several orders of magnitude larger than the contribution
of virtual modes to the dissipation coefficient, in particular given that this has so far been
neglected in the low-temperature regime. This is of course due to the sharp χ resonance
being able to compensate the Boltzmann suppression for any value of mχ/T provided the
effective coupling is sufficiently small. As shown in figure 10, one can easily obtain strong
dissipative effects Υ ≫ H for parameter regimes where 1 . mχ/T . 10 and T > H.

1 10 100 1000
10-15

10-11
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0.001

10

105

mΧ�T

U
�H

g2
T
L h NY = 1

h NY = 0.1

h NY = 0.01

h NY = 0.001

Figure 10. Full dissipation coefficient as a function of mχ/T for different values of the effective
coupling h

√
NY , using the expression inferred from the numerical results in Eq. (4.17).

For a better comparison with results in the literature, we have computed an effective
dissipation parameter Cφ, illustrated in figure 11, by writing the full dissipation coefficient
in the form Υ = CφT

3/ϕ2.
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104
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Figure 11. Effective dissipation parameter Cφ as a function of mχ/T for different values of the
effective coupling h

√
NY , using the expression inferred from the numerical results in Eq. (4.17).

In earlier analyses of the dynamics of warm inflation in the low-temperature/low-
momentum regime (see e.g. [15]), one generically requires Cφ & 106 in order to obtain a
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sufficiently long period of inflation with typical potentials. From our results, this would re-
quire a very large field multiplicity in the X sector for virtual modes, whereas the on-shell
contribution to the dissipation coefficient can easily be of this order for a single field and not
too small effective couplings, as evident in figure 11. Of course the dissipation parameter Cφ
is no longer a constant in this case, but this strongly motivates investigating in more detail
the dynamics of warm inflation in this regime.

5 Conclusion

In this work we have extended earlier analyses of dissipative effects in supersymmetric warm
inflation in the low-temperature regime, mχ . T , to allow for an arbitrary number of decay
channels for the intermediate fields. In agreement with earlier analyses, we find numerically
that the dissipation coefficient Υ arising from the two-stage scalar interactions φ → χ → σi
differs significantly depending on whether the heavy fields χ are produced on- or off-shell,
having determined analytical expressions for Υ in both cases.

Dissipation through virtual low-momentum χ modes is the dominant process for larger
masses and couplings, leading to a dissipation coefficient of the form Υ = CφT

3/ϕ2, with
Cφ = 0.02h2NYNX if we allow for multiple fields in the X sector coupled directly to the
inflaton. This expression holds in the limit mσ ≪ T , which is valid for small Yukawa
couplings h even if the number of Yi species is large, and differs from the one obtained in [35]
for finite mσ/T due to finite width and mass corrections. Most importantly, our analysis is
limited to the regime h2NY . 1, as otherwise radiative corrections to the χ two-point function
cannot be perturbatively resummed. This implies that a large number of light fields does not
necessarily enhance the dissipation coefficient, since the system becomes effectively strongly
coupled and a non-perturbative analysis is required. Since Cφ is independent of the coupling
between the inflaton and the heavy mediators g, it may nevertheless be possible to consider
models with a large number of χ fields, enhancing the dissipation coefficient while keeping
g2NX < 1 such that logarithmic corrections to the inflaton potential can be neglected.

On the other hand, for smaller masses and effective coupling, h2NY ≪ 1, dissipation
is dominated by on-shell χ modes. For mχ ≫ T , the dissipation coefficient is Boltzmann-
suppressed, so that this regime has been largely overlooked in the literature. However, the
χ resonance is very narrow in this regime, producing a strong peak in the momentum distri-
bution that enhances the dissipation coefficient, with Υ ∝ 1/(h2NY ) and given in Eq. (4.16)
for mσ ≪ T . In fact, our results show that the contribution of on-shell modes can be several
orders of magnitude larger than in the low-momentum case, which opens up a new possibil-
ity of constructing models of warm inflation with only a few fields coupled directly to the
inflaton. One must ensure, however, that the system is evolving adiabatically in this regime,
but since

Γχ
H

≃ h2NY

64π

(mχ

T

)

(

T

H

)

, (5.1)

we expect that very small couplings are nevertheless allowed in the low-temperature regime
for T ≫ H. We also note that the full dissipation coefficient is well-described by a sum of
the contributions from real and virtual modes, which become comparable for the values of
the effective coupling and mediator mass given in Eq. (4.18).

While our results provide the basic features of two-stage or catalyzed dissipation in the
low-temperature regime, where thermal corrections to the inflaton potential are suppressed,
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they also suggest other interesting extensions of the basic model. Firstly, it would be interest-
ing to develop techniques to compute the dissipation coefficient for a strongly coupled plasma,
where our perturbative analysis fails but methods based for example on the AdS/CFT con-
jecture [44] may be useful. As we have shown, this may be relevant for systems with a large
number of relativistic degrees of freedom even if individual couplings are small, such as for
example in Grand Unified Theories or multi-brane systems [17]. In this case we expect, for
example, many-body decays to become relevant, enhancing the decay width of the mediators
and possibly the dissipation coefficient in the low-momentum regime, as well as potentially
modifying the dynamics of warm inflation and the associated observables.

Secondly, although for simplicity we have not included gauge fields in our analysis, we
expect that in more realistic models both the mediators and the light degrees of freedom
will carry gauge charges, in particular in realizations of warm inflation in the MSSM or
its extensions. For minimally coupled χ fields, we do not expect direct decays into gauge
fields to be significant, since the only two-body process χ → χγ, although possible at finite
temperature, is suppressed by the large χ mass. Gauge interactions may nevertheless lead to
higher-order decay channels and mediate additional scattering processes, thus enhancing the
thermalization rates that keep particles close to thermal equilibrium. Finally, although this
latter assumption considerably simplifies the analysis, it would be interesting to investigate
the behavior of two-stage dissipative systems with non-thermal distributions, in particular
how the relative contribution of on- and off-shell modes and the overall dissipative coefficient
is modified in such conditions.

Our results have thus open new avenues of research in warm inflation and we hope
that they motivate further research along these lines, both from the model-building and
computational perspectives, as well as in exploring the effects of dissipative dynamics in
other problems in modern cosmology.
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Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

A Radiative corrections to the two-point function

The two-point function for the χ scalar field receives radiative corrections from its interactions
with the fields in the light sectors, and the associated spectral function can be resummed to
yield:

ρχ(p0,p) =
i

−p20 + p2 +m2
χ +Σχ(p)

− i

−p20 + p2 +m2
χ +Σ∗

χ(p)

=
2ImΣχ(p0,p)

[

−p20 +m2
χ +ReΣχ(p)

]2
+ [ImΣχ(p0,p)]

2
, (A.1)

which reduces to the form in Eq. (4.2) if the real part of the χ self-energy can be neglected.
Apart from thermal mass corrections, which we have included in our computation, the χ

– 17 –



self-energy receives contributions from the σ-loops illustrated in the last diagram of figure
1 (bottom right), which grow like h2NY and thus limit the light field multiplicities and
couplings. This contribution is given, in Euclidean space, by:

Σχ(P ) = −2NY

(

h

2
mχ

)2 ∫ d4K

(2π)4
1

K2 +m2
σ

1

(K + P )2 +m2
σ

. (A.2)

While the imaginary part of this diagram yields the scalar decay width in Eq. (4.3), the real
part has been computed at finite temperature in [40, 45] and is given by:

Re[Σχ](p0, p) = −
h2NYm

2
χ

32π2

{[

1

ǫ
− γE + ln

(

4πκ2

m2
σ

)

+ 2 −

− C ln

(
∣

∣

∣

∣

C + 1

C − 1

∣

∣

∣

∣

)

[

θ(p20 − p2 − 4m2
σ) + θ(−p20 + p2)

]

−

− 2C arctan

(

1

C

)

[

θ(−p20 + p2 + 4m2
σ) + θ(p20 − p2)

]

]

−

− 1

p

∫ ∞

0
dk k

n(E1)

E1
ln

(

kp + (p20 − p2)/2 − p20E
2
1

kp − (p20 − p2)/2 − p20E
2
1

)2

×

×
[

θ(p20 − p2 − 4m2
σ) + θ(−p20 + p2)

]

}

, (A.3)

where p = |p|, C = (1 − 4m2
σ/(p

2
0 − p2))1/2 and E1 =

√

k2 +m2
σ. Note that the first three

lines in this expression correspond to the T = 0 divergent contribution, which depends on the
renormalization scale κ, while the final integral yields the finite-temperature contribution.
In the limit mσ ≪ T , this simplifies to yield:

Re[Σχ](p0, p) = −
h2NYm

2
χ

32π2

[

1

ǫ
− γE + 2− π

2
+ ln

∣

∣

∣

∣

4πκ2

p20 − p2

∣

∣

∣

∣

− IT (p0, p)

]

, (A.4)

where the finite temperature contribution is given by the integral

IT (p0, p) =
1

p

∫ ∞

0
dk n(k) ln

(

kp + (p20 − p2)/2 − p20k
2

kp − (p20 − p2)/2 − p20k
2

)2

. (A.5)

Note that the T = 0 divergence is momentum-independent, and therefore we only
need a mass renormalization counterterm, while the momentum dependence yields a finite
wavefunction renormalization. The physical mass of the χ field is then given by

m2
χ,R(κ) = m̃2

χ +Re[Σχ]
T=0(mχ, 0) , (A.6)

where m̃χ includes the T 2-corrections from the scalar tadpole and fermionic diagrams in
figure 1 and is given in Eq. (3.1). Note that the scalar tadpole also contributes to the T = 0
divergence and should formally be included in the renormalization procedure, although this
contribution is absent for mσ ≪ T . The dependence of the physical mass on the scale κ leads
to the usual running of the coupling g according to the Renormalization Group equations.

The T -dependent contribution to the two-point function has been interpreted in [33] as
contributing to the effective coupling g(T ) at finite temperature, having estimated a loga-
rithmic temperature dependence from the integral in Eq. (A.5). Since in the low-momentum
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regime the dissipation coefficient is independent of the value of this coupling, they argued
that this redefinition does not have a significant impact on the computation. However, a
numerical inspection of this integral reveals a much stronger momentum dependence, in par-
ticular in the low-momentum regime, which as we have shown is the dominant contribution
to dissipation for large effective coupling h2NY .

In the low-momentum region, the integral in Eq. (A.5) is larger for p0 . p and well
approximated by the expression:

IT (p0, p) ≃ −4

(

1 + π
T

p

)

cot−1

(

3

2π

p

T

)

. (A.7)

In this case the T -independent contribution is subleading for a broad range of values of the
renormalization scale, so that we have for p . T :

Re[Σχ]
LM

m2
χ

≃ −h
2NY

16

T

p
. (A.8)

Since the form of the spectral function in Eq. (A.1) corresponds to a resummation of 1-
loop contributions of this form, we can use Eq. (A.8) to estimate the regime of validity
of perturbation theory. Although it has a strong momentum dependence, our numerical
computation of the dissipation coefficient in this regime suggests that the largest contribution
to the dissipation coefficient comes from momentum modes p . T , so that we estimate that
perturbation theory breaks down for h2NY . 1. For larger values of the effective coupling,
the χ resonance also becomes broader and we expect the Breit-Wigner form of the spectral
function to be modified. Although the strong-momentum dependence of the self-energy at
finite temperature precludes a more precise estimate of its contribution, we use this result as
a guide to limit the regime of validity of our computation of the dissipation coefficient. In
fact, when including the real part of the self-energy explicitly in the calculation, we observe
deviations from the results presented in this work for h2NY & 1, with negligible changes for
smaller values both in the low-momentum- and pole-dominated regimes.

One should also note that the self-energy receives contributions from higher-order “neck-
lace” diagrams of the form illustrated in figure 12.

+ + ... + ... + ...

n−loops

Figure 12. Necklace-type σ loops contributing to the χ self-energy.

It is easy to see that a resummation of these higher-loop diagrams corresponds to a

geometric series with ratio Σ
(1−loop)
χ /m2

χ, so that our above estimate holds in this case as
well. Furthermore, these diagrams will contribute to the |φ|2|χ|2 vertex, which is crucial for
the dissipative dynamics of the inflaton field, emphasizing the importance of these corrections
at large effective coupling.

Finally, it is worth mentioning that the fermionic loops in figure 1 also contribute
to Re[Σχ] in a momentum-dependent way but, as the fermionic couplings in Eq. (2.3) are
dimensionless, their contribution is proportional to T 2 and hence suppressed in the low-
temperature regime T ≪ mχ.
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B Decay channels

The interactions in Eqs. (2.2) and (2.3) yield multiple decay channels for the heavy χ
scalars and which may contribute to dissipation. In general, we expect two-body decays
into light scalars/fermions in the Y sector to dominate the decay width Γχ, but in the regime
h
√
NY ≪ 1 we should explore the relative contributions of other channels. In this regime,

the leading contribution to the dissipation coefficient corresponds to on-shell χ modes and
finite-temperature corrections to the decay width are negligible, as discussed earlier. Fur-
thermore, since T ≪ mχ, it is sufficient to consider partial decay widths at zero temperature
and momentum. The possible decay channels for on-shell χ bosons are then:

1. χ→ σσ

2. χ→ ψσψσ

3. χ→ σσφ

4. χR → χIφI

5. χR → ψχψφ

Notice that the first three decay channels involve both the real and imaginary parts of
the complex χ scalars, while the last two are only possible due to the mass splitting in the
X sector from SUSY breaking during inflation and involve these components separately. In
order to compute these contributions, it is useful to recall the general expression for scalar
decays into pairs of scalars and fermions, χ → ξ1ξ2 and χ→ ψ1ψ2, which at zero temperature
and for p0 = mχ and p = 0 are given by [35]:

Γ(S)
χ =

g2S
32πmχ

√

1− (m1 −m2)2

m2
χ

√

1− (m1 +m2)2

m2
χ

,

Γ(F )
χ =

g2F
8π
mχ

√

1− (m1 −m2)2

m2
χ

(

1− (m1 +m2)
2

m2
χ

)3/2

, (B.1)

where gS,F are generic couplings. The first two decay modes are then given by, for mσ ≪ T :

Γ(1,2)
χ =

h2NY

64π
mχ . (B.2)

For the third decay channel, the three-body phase space yields a more complicated expression,
but for the case where the inflaton mass can be neglected, which gives an upper bound to
this contribution, we obtain:

Γ(3)
χ =

h2NY g
2

1024π3
mχ , (B.3)

which is naturally suppressed by the three-body phase space factor with respect to the first
two decay channels for g . 1.

The contribution from the channels (4) and (5) is somewhat model-dependent, depend-
ing on the SUSY mass splitting in the X sector and hence the inflaton potential. The decay
channel (4) corresponds to a term in the Lagrangian gχRχIIm[f(φ)], so that the correspond-
ing coupling is generically of the form g4 = λgϕ, where λ is related to the inflaton self-
coupling, up to numerical factors. On the other hand, the coupling determining channel (5)
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is independent of the inflaton potential and given by g5 = g/(2
√
2). If the inflaton/inflatino

masses can be neglected compared to the mass splitting in the X sector, this yields:

Γ(4)
χ =

λ2∆

16π
mχ ,

Γ(5)
χ =

g2∆2

256π
mχ , (B.4)

where ∆ = (m2
χR

−m2
χI
)/m2

χR
and we used mχR

≃ mχ = gϕ/
√
2. From Eq. (2.4), we have

∆ ≃ λ/g up to numerical factors, so that Γ
(4)
χ ∝ λ3 and Γ

(5)
χ ∝ λ2. Both decay channels are

then suppressed with respect to (1,2) for λ≪ h
√
NY .

For example, for a quartic potential V (ϕ) = λ2ϕϕ
4 we have λ = λϕ and ∆ = 2λ/g, with

observational constraints requiring λ ≃ 10−7, as mentioned earlier. This implies that decays
into the Y sector will be dominant down to a very small Yukawa coupling. However, in this
case we have mφI = λϕ > mχR

−mχI
and mψφ

=
√
2λφ > mχR

−mψχ , so that both decays
are actually kinematically forbidden. More generally, since the inflaton mass determines the
slow-roll parameter ηφ =M2

PV
′′/V , these decays are forbidden for ηφ &MP /ϕ, which is the

case of monomial potentials. The relative contribution of these decay channels thus depends
on the particular model of inflation considered, although in general we expect them to be
subdominant due to the smallness of the SUSY mass splitting in the X sector fields.

Finally, it should be mentioned that for off-shell χ bosons one finds additional decay
channels at finite temperature, namely χ→ χσσ, χ → χφφ and χ→ χχχ, which are however
Boltzmann-suppressed for T ≪ mχ.

C Thermalization rates

In computing the dissipation coefficient we have assumed that the relevant bosonic and
fermionic fields are in a nearly-thermalized state. While in a non-expanding universe we
expect interacting fields to eventually reach thermal equilibrium given enough time, in an
expanding universe this requires thermalization processes to be faster than Hubble expansion.
Although a comprehensive analysis of thermal scattering rates is beyond the scope of our
discussion, here we list and estimate the rates for some of the main processes leading to
thermalization of the light fields and also the inflaton particle states, assuming T ≫ mφ.
These are illustrated in figure 13.

For an arbitrary 2 → 2 process involving massless particles, the differential cross-section
is given by [46]:

dσ

dΩ
=

|M|2
64π2s

, (C.1)

where
√
s is the centre-of-mass energy. To estimate the relative magnitude of the different

processes in figure 13, it is sufficient to neglect angular correlations and take typical momenta
and energies, both for external and internal legs, to be of the order of the temperature of the
thermal bath, T ≪ mχ. This yields

σi ∼
|Mi|2
16πT 2

, (C.2)

where Mi is the amplitude of the process. The rate at which a given species is thermalized
is then given by Γi = 〈σiniv〉, and for relativistic particles we have ni = (fiζ(3)/π

2)T 3, with
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Figure 13. Feynman diagrams for scattering processes involving the light fields in the Y sector and
the scalar inflaton.

fi = 2, 3/2 for scalars and fermions, respectively, and v ∼ 1. Taking into account symmetry
factors and initial state spin averages, we then obtain the following estimates for the processes
in figure 13:

Γ(a,b) ∼ 2ζ(3)

π2
h4NY

32π
T ,

Γ(c,d) ∼
3ζ(3)

2π2
h4NY

32π

(

T

mχ

)2

T , Γ(e) ∼
3ζ(3)

2π2
h4NY

4π

(

T

mχ

)4

T

Γ(f) ∼ 2ζ(3)

π2
h4NY

(4π)416π

(

T

mχ

)4

T , Γ(g) ∼
2ζ(3)

π2
h4NY

(4π)42π

(

T

mχ

)8

T (C.3)

This shows that the light σ particles thermalize faster than their superpartners, which in
turn thermalize more quickly than the scalar inflaton particles. This was expected since the
inflaton is sequestered from the light sector in the two-stage mechanism for T ≪ mχ. Given
that all reaction rates are of the form Γi = g2i T all thermalization processes may be efficient
for T ≫ H during warm inflation, even if the effective coupling gi is suppressed (see also [39]
for a detailed discussion of the thermalization process). It may also be possible for additional
light superfields Z with no superpotential couplings to the X sector, e.g. WZ = h′Y Z2, or
for gauge interactions to enhance the thermalization rates of the fields in the Y sector, which
may be important in the small h

√
NY regime, although a detailed analysis of this case is

beyond the scope of the present work.
Note that the mediator fields are kept close to thermal equilibrium via the balance

of decays, inverse decays and Landau damping processes for Γχ ≫ H. This can be seen
explicitly in the Boltzmann equation for the χ field in the absence of dissipation, ṅχ+3Hnχ =
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−Γχ(nχ−nB) [40–42], which holds for all values of mχ/T and for both off-shell and on-shell
modes. Dissipation is, of course, an out-of-equilibrium process, but in the adiabatic regime
where ϕ̇/ϕ, H < Γχ entropy production is sufficiently slow for the system to remain close
to thermal equilibrium at all times, thus justifying the use of thermal distributions in the
computation.
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