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Abstract 

A combination of complementary ligands, p-tert-butylcalix[8]arene (TBC[8]) and phenyl 

salicylaldoxime (Ph-saoH2) have been utilised in the facile synthesis of a Mn
III

Mn
IV

 dimer. Magnetic 

measurements reveal ferromagnetic exchange between the two metal ions. 

 

Introduction 

The synthesis of paramagnetic metal clusters that display interesting magnetic properties is now an 

intensely active area of research. Of particular importance is the sub-field of single molecule 

magnetism.
1a

 Generally SMMs are composed of a polymetallic cluster stabilised by polytopic organic 

ligands. The preparation of such species often relies on the serendipitous assembly of the appropriate 

components, and consequently controlled formation of SMMs remains somewhat elusive.
1b

 As 

chemists we are most interested in the various synthetic factors that govern the nuclearity of cluster 

formation, the resultant topology and the related mechanisms by which the magnetic cluster properties 

can by optimised. A degree of control can be gained by examination of the myriad of literature 

compounds and exploitation of the known coordination modes of the component ligand moieties. The 

choice of ligand is therefore of crucial importance in cluster formation.  

A class of ligand that has recently been exploited in our laboratories, and in others,
2
 in the synthesis of 

magnetically interesting compounds, are the p-tert-butylcalix[n]arenes (TBC[n]) or the related 

calix[n]arenes (C[n]) (Fig.1A). C[n]s are cyclic polyphenolic macrocycles that adopt well defined 

conformations as a consequence of hydrogen bonding interactions between phenolic hydroxyl 

groups.
3
 The cone conformer of TBC[4] was identified as an attractive molecule for binding a 

transition metal or lanthanide ion, and it was proved thus with the isolation of a series of 

[Mn
III

2Mn
II

2(TBC[4])2] SMMs (Fig. 1B).
2b,c

 Further investigations yielded [Mn
III

4Ln
III

4(C[4])4] cages 

that are magnetic refrigerants or SMMs depending on the lanthanide employed;
2d,e

 other important 

examples being the mixed metal [Fe
III

2Ln
III

2(TBC[4])2]
2f

 and the octahedral [Ln
III

6(TBC[4])2] 

complexes.
2g

 Recently a ferromagnetic [Mn5] cluster, [Mn
III

3Mn
II

2(TBC[4])2(hmp)2] (Hhmp = 2-

(hydroxymethyl)pyridine),
2h

 has been synthesised using complementary ligands that each display 

well-defined coordination motifs. 

In contrast to the (now) many examples of metal clusters supported by TBC[4], the corresponding 

chemistry of magnetically interesting metal clusters supported by its larger octameric analogue is less 

developed,
4
 despite TBC[8] (Fig. 1A, n = 8) also being a readily accessible synthetic target. A survey 

of the Cambridge Structural Database (CSD) for TBC[n] and at least one transition metal found ~450 

hits for TBC[4], but only ~20 hits for TBC[8]. This may in part be due to the additional 
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conformational flexibility of the larger calixarene, meaning that controlling these systems is 

inherently more difficult. 

 

 

Figure 1. A) Generic C[n] structure. B) Structure of a [Mn
III

2Mn
II

2(TBC[4])2] SMM. C) Structure of 

R-saoH2 and the triangular [Mn
III

3O(N-O)3]
+
 fragment it normally stabilises (D).  Colour code: C grey; 

O red; N blue; Mn purple.  

 

A second class of ligand extensively employed in the synthesis of paramagnetic metal clusters are the 

derivatised salicylaldoximes (R-saoH2, Fig. 1C),
5
 which tend to assemble M(III) ions into structures 

based upon the triangular [M
III

3O(R- sao)3]
+
 motif (Fig. 1D). A salient feature of the Mn(III) 

chemistry is that the pairwise magnetic exchange is dependent upon the relative twisting of the Mn-N-

O-Mn moiety, and this is controlled by the nature of the R-substituent on the oximic carbon atom.
6
 

Disruption of the formation of [Mn
III

3O(R-sao)3]
+
 building blocks by addition of 

complementary/competing co-ligands should therefore lead to a diverse range of molecules with 

fascinating structural and magnetic properties.
2h

 Indeed, herein we report a rare example of an oxime-

bridged manganese dimer housed inside a TBC[8] scaffold, assembled from the complementary 

ligands Ph-saoH2 and TBC[8]. 

Reaction of Mn(NO3)2·4H2O, TBC[8] and Ph-saoH2 in a basic solution of DMF/MeOH produces 
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black crystals of [Mn
III

Mn
IV

(TBC[8]-4H)(Ph-sao)(-OMe)(dmf)2]·5dmf,  (1·5dmf; Figure 2), upon 

standing over several days.‡ The crystals were found to be in a triclinic cell and structure solution was 

performed in the space group P-1.  

 

 

Figure 2. A) Single crystal X-ray structure of 1. B) Magnetic core and coordination spheres of Mn 

atoms in 1. Non-coordinating solvents and hydrogen atoms are omitted for clarity. Colour code: C 

grey; O red; N blue; Mn purple. 

 

The metal core of 1 is composed of one Mn
3+

 (Mn1) ion and one Mn
4+

 (Mn2) ion. Mn1 exists in a 

distorted octahedral geometry with the equatorial sites occupied by a TBC[8] oxygen atom (O1), the 

Ph-sao
2-

 phenolic oxygen and oximic nitrogen atoms (O12 and N3) and a m-bridging methoxide 

oxygen (O11, Mn1-O11-Mn2 = 99.8˚). The axial sites of Mn1 are occupied by a m-bridging TBC[8] 

phenolic oxygen atom (O2; Mn1-O2-Mn2 = 92.3˚) and a coordinated dmf ligand (O10). These atoms 

define the Jahn-Teller axis which deviates somewhat from linearity (O2-Mn1-O10 = 165.8˚). The 

coordination sphere of the octahedral Mn2 is occupied by six oxygen atoms: three TBC[8] phenolic 

oxygen atoms, O3, O4 and the m-bridging O2, one coordinated dmf O-atom (O9), a -methoxide 

(O11) and the oximic oxygen atom (O13). The six Mn2-O bond distances lie in the range 1.847 Å - 

1.981 Å.
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The TBC[8] ligand adopts a conformation that may best be described as a “halfway house” between a 

double-cone and a pleated-loop, wherein three phenol moieties of the TBC[8] ligand adopt a cone 

orientation (O1, O7 and O8) whilst the other five resemble a regular pleated loop. The combination of 

the metal dimer and co-complexed oxime prevents full adoption of either common TBC[8] 

conformation, which we assume would be  sterically disfavoured. Two non-coordinated dmf ligands 

reside in the resulting partial cavities and various CH··· interactions occur between the dmf ligands 

and the aromatic systems of the phenol rings of TBC[8]. In the first instance (pleated-loop cavity) the 

dmf ligand is fully ordered and the interaction between the C36-C41 centroid and H11E is 3.220 Å. 

The second cavity (partial cone) bound dmf ligand is disordered over two positions and thus the two 

CH··· interactions are different (2.778 Å and 3.162 Å). The Ph-sao
2-

 ligand orients itself so that the 

phenyl substituent is arranged nearly coplanar and slightly offset with one of the TBC[8] phenyl 

components (dihedral angle of 7.67˚) indicating a ··· interaction, albeit the centroid (C15-C20) to 

centroid (C99-C104) distance is reasonably long (4.125 Å). In addition a CH··· interaction (2.996 Å) 

exists between an aromatic proton of the oxime phenyl substituent and the centroid of an adjacent 

TBC[8] phenyl ring. In 1 the TBC[8] ligand is tetra-anionic and four hydrogen bonds exist between 

the hydroxyl groups of the calixarene lower rim with OH···O distances in the range 1.794 Å – 1.922 

Å. Analysis of the extended structure of 1 reveals that numerous intermolecular interactions are 

present. In particular a close contact is observed between the C15 – C20 centroid of one aromatic ring 

and a methyl group proton (H91A) of a neighbouring molecule (CH··· 2.588 Å). In addition 

CH···contacts exist between one of the co-crystallised dmf ligands and an aromatic  system. Once 

more the dmf is disordered and has been modelled over two positions, each with half occupancy, and 

relevant contacts of 2.836 Å and 2.977 Å.  

A search of the CSD for oxime-bridged transition metal dimers reveals around 200 species, only 5 of 

which comprise two Mn atoms, with the latter all containing a different oxidation state distribution of 

manganese ions than in 1; Mn
II

2,
7a

 Mn
II
Mn

III7b
 and Mn

III
2.

7c,d,e
 Complex 1 is therefore the first reported 

Mn
III

Mn
IV

 oxime-bridged dimer.  

Solid state dc magnetisation measurements were performed on 1 in the temperature range 290 - 5 K in 

a field of 0.1 T. The χMT value (Fig. 3A) of ~4.7 cm
3
 K mol

-1
 at 290 K is close to the spin-only (g = 

2.00) value expected for one Mn
3+

 ion and one Mn
4+

 ion of 4.875 cm
3
 K mol

-1
. The value increases 

with decreasing temperature to a maximum value of 7.6 cm
3
 K mol

-1
 at 18 K, before dropping to a 

value of 7.4 cm
3
 K mol

-1
 at 5 K. This behaviour is indicative of the presence of intramolecular 

ferromagnetic exchange between the two metal ions, with the low temperature maximum in χMT close 

to that expected for an isolated S = 7/2 ground state (7.875 cm
3
 K mol

-1
). The data can be fitted (solid 

red line in Fig. 3A) to a simple isotropic Hamiltonian (H = -2JS1·S2) to afford J = +9.81 cm
-1

 with g = 

1.99. In addition intermolecular interactions were taken into account in the frame of mean-field 
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theory, by use of the Curie– Weiss temperature, θ. A Curie-Weiss constant of θ = -0.27 K, was 

necessary to reproduce the small drop of the χMT product below ~18 K. In order to determine the 

ground state spin, magnetisation data were collected in the ranges 1.8 – 7 K and 1 - 7 T. The data 

were fitted (solid red lines in Fig. 3B) to a Zeeman plus axial zero-field splitting Hamiltonian (Eqn 

(1)), assuming only the ground state is populated, affording S = 7/2, g = 1.99 and Dcluster = -0.91 cm
-1

. 

Ac magnetisation measurements were performed on 1 in the 1.8 – 10 K range in a 3.5 G ac field 

oscillating at 50 – 1000 Hz. The in-phase (not shown) and out-of-phase (Fig. S1) signals show 

frequency-dependent behaviour below T  4 K indicative of the onset of slow magnetic relaxation, 

but no peaks. The presence of an out-of-phase signal is diagnostic of single-molecule magnetism 

(SMM) behaviour and is caused by the inability of 1 to relax quickly enough, at these temperatures, to 

keep up with the oscillating field. 

 

 

Figure 3. A) Plot of MT versus T for 1 in 290 - 5 K the temperature range, in an applied field of 0.1 

T. B) Reduced magnetisation (M/N versus H/T) data in the 1.8 - 7 K temperature range and 1 - 7 T 

field range. The solid red lines are the best-fit of the data. See text for details.

  (1) 

In conclusion we have shown that by using a combination of Ph-saoH2 and TBC[8] the first example 

of an oxime-bridged Mn
III

Mn
IV

 dimer has been synthesised. Magnetic studies reveal the metal ions to 

be ferromagnetically coupled and the compound to be a single-molecule magnet.  

SgBSSSDH Bz
ˆ)3)1(ˆ( 2 
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Notes and references 

‡Synthesis of [M
III

Mn
IV

(TBC[8]-4H)(Ph-sao-2H)(2-OMe)(dmf)2]·5dmf, 1: TBC[8] (0.1 g, 0.08 

mmol), Ph-sao (0.03 g, 0.15 mmol) and Mn(NO3)2·4H2O (0.08 g, 0.31 mmol) were dissolved in a 

mixture of MeOH (6 cm
3
) and DMF (6 cm

3
) and stirred for 10 min. Et3N (0.1 cm

3
, 0.8 mmol) was 

added and the reaction stirred for a further hour. Large black crystals suitable for single crystal 

diffraction studies were obtained in excellent yield (~80%) after slow evaporation of the mother 

liquor over several days. Elemental analysis calcd (%) for C123H169N8O18Mn2 (2157.54): C 68.47, H 

7.90, N 5.19; found: C 68.18, H 7.86, N 5.02. Crystal data for 1 (CCDC 914769): C123H169Mn2N8O18, 

M = 2157.54, Black Block, 0.40  0.30  0.30 mm
3
, triclinic, space group P-1 (No. 2), a = 

16.3209(8), b = 19.3140(10), c = 21.1033(10) Å, = 79.558(2), = 68.960(2), = 70.483(2)°, V = 

5837.8(5) Å
3
, Z = 2, Dc = 1.227 g/cm

3
, F000 = 2314, Bruker X8 Apex II CCD Diffractometer, MoK 

radiation, = 0.71073 Å,  T = 100(2)K, 2max = 52.0º, 85230 reflections collected, 22692 unique (Rint 

= 0.0443). Final GooF = 1.085, R1 = 0.0604, wR2 = 0.1630, R indices based on 16034 reflections with 

I >2(I) (refinement on F
2
). 
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