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Distinct roles for Sir2 and RNAi in centromeric
heterochromatin nucleation, spreading and
maintenance
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Epigenetically regulated heterochromatin domains govern

essential cellular activities. A key feature of heterochro-

matin domains is the presence of hypoacetylated nucleo-

somes, which are methylated on lysine 9 of histone H3

(H3K9me). Here, we investigate the requirements for

establishment, spreading and maintenance of heterochro-

matin using fission yeast centromeres as a paradigm. We

show that establishment of heterochromatin on centro-

meric repeats is initiated at modular ‘nucleation sites’ by

RNA interference (RNAi), ensuring the mitotic stability of

centromere-bearing minichromosomes. We demonstrate

that the histone deacetylases Sir2 and Clr3 and the chro-

modomain protein Swi6HP1 are required for H3K9me

spreading from nucleation sites, thus allowing formation

of extended heterochromatin domains. We discovered that

RNAi and Sir2 along with Swi6HP1 operate in two inde-

pendent pathways to maintain heterochromatin. Finally,

we demonstrate that tethering of Sir2 is pivotal to the

maintenance of heterochromatin at an ectopic locus in the

absence of RNAi. These analyses reveal that Sir2, together

with RNAi, are sufficient to ensure heterochromatin in-

tegrity and provide evidence for sequential establishment,

spreading and maintenance steps in the assembly of

centromeric heterochromatin.
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Introduction

Chromatin assembly controls vital cellular activities in

eukaryotes. Beyond creating modular DNA–protein scaffolds,

the formation of chromatin domains is essential for accurate

dosage compensation, lineage differentiation, chromosome

compaction and epigenetic imprinting. Assembly of chromatin

domains is thought to be a three-step process: establishment,

spreading and maintenance (Rusche et al, 2003). How-

ever, the molecular mechanisms underlying these distinct

stages remain to be determined. During establishment,

naive chromatin acquires a specific epigenetic signature,

characterized by particular histone post-translational

modifications. This relies on inducers that trigger an altered

chromatin state at specific locations, termed nucleation sites.

Once the initial chromatin modification is established, it can

then spread in cis over several kilobases of DNA, irrespective

of its sequence. Additional factors may be required for the

maintenance of these chromatin domains in the absence of

the inducer (Berger et al, 2009). Heterochromatin domains

inhibit gene expression and consequently tend to be gene-

poor, but they also regulate key cellular processes, including

recombination, DNA repair and chromosome segregation

(Grewal, 2010). In most eukaryotes, large blocks of

heterochromatin are found at centromeres (Buscaino et al,

2010). At these regions, histones are generally hypoacetylated

and specifically methylated on H3K9 (H3K9me). H3K9me

creates a binding site for chromodomain proteins, which

complete the assembly of transcriptionally repressive

chromatin (Rea et al, 2000; Nakayama et al, 2001; Sadaie

et al, 2004). Heterochromatin integrity at centromeres can be

monitored by the transcriptional silencing of reporter genes

inserted next to, or within, centromeric repeats (Muller, 1930;

Allshire et al, 1995; Festenstein et al, 1996).

The fission yeast Schizosaccharomyces pombe provides a

paradigm for dissecting heterochromatin assembly because

heterochromatin is not essential for cell viability and its

minimal architecture closely resembles that of metazoa.

Heterochromatin domains are associated with the S. pombe

centromeres, telomeres and the mating-type locus, and are

necessary for the functional integrity of these loci (Grewal,

2010). At centromeres, outer repeat sequences, composed of

dg and dh elements, are assembled in heterochromatin.

Fragments of the dg element (e.g. L5) are sufficient to form

heterochromatin domains when placed at an ectopic locus

(Partridge et al, 2002; Sadaie et al, 2004; Wheeler et al, 2009).

The DNA sequence of all centromeric dg and dh elements is

almost identical; however, the number and organization of

these repeats vary between the three centromeres (Allshire,

2003). The similarity of centromere repeat sequences

precludes the identification of minimal modules critical for

heterochromatin assembly. These arrays of heterochromatin

surround the central domain where CENP-ACnp1 replaces the

histone H3 and the kinetochore forms. Heterochromatin and

CENP-ACnp1 chromatin are both required to form functional

centromeres (Buscaino et al, 2010; Grewal, 2010).

Fission yeast episomal plasmids require only part of

an outer repeat plus an entire central domain DNA to

form functional centromeres on minichromosomes. Such

minichromosomes provide a powerful tool to dissect the

contribution of dg and dh elements to heterochromatin and
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kinetochore assembly (Baum et al, 1994; Folco et al, 2008).

Moreover, the status of H3K9 methylation on these mini-

chromosomes can be specifically monitored because the

plasmid-borne outer repeat fragment is flanked by unique

plasmid sequences. Mutations of a variety of factors disrupt

heterochromatin integrity on these minichromosomes

resulting in their instability and loss (Folco et al, 2008).

Convergent transcription within the dg and dh elements by

RNA polymerase II (RNAPII) generates double-stranded RNA

(dsRNA) that elicits an RNA interference (RNAi) response

(Volpe et al, 2002; Djupedal et al, 2005; Kato et al, 2005).

Dicer (Dcr1) ribonuclease cleaves these dsRNAs into short-

interfering RNAs (siRNAs) that guide the Argonaute (Ago1)-

containing RITS complex to homologous nascent transcripts

by sequence complementarity (Verdel et al, 2004).

Chromatin-associated RITS recruits the complex containing

the histone H3K9 methyltranferase Clr4 (equivalent to

metazoan Suv39/KMT1) to centromeric repeats (Zhang

et al, 2008). Methylation of H3K9 by Clr4 provides binding

sites for the chromodomain proteins Swi6HP1, Chp1, Chp2

and Clr4 itself resulting in the formation of heterochromatin

(Bannister et al, 2001; Sadaie et al, 2004; Petrie et al, 2005;

Zhang et al, 2008).

The hypoacetylated state of histones that typifies hetero-

chromatin involves three histone deacetylases (HDACs): Clr3,

Clr6 and Sir2 (Grewal et al, 1998; Nakayama et al, 2001;

Shankaranarayana et al, 2003; Freeman-Cook et al, 2005;

Wiren et al, 2005; Yamada et al, 2005; Nicolas et al, 2007;

Sugiyama et al, 2007). Clr3 is a component of the SHREC

complex that physically interacts with the chromodomain

protein Chp2 and Swi6HP1. Clr3 deacetylates histone H3 on

lysine 14 and limits access of RNAPII to centromeres

(Sugiyama et al, 2007; Sadaie et al, 2008; Fischer et al,

2009). The Clr6 HDAC is incorporated into two distinct

complexes that deacetylate several lysines on histone H3

and H4, particularly at the promoters and over the coding

regions of genes (Wiren et al, 2005; Nicolas et al, 2007).

Sir2 belongs to the Sirtuin family of HDACs that

utilize NADþ as a cofactor (Rusche et al, 2003). In vivo S.

pombe Sir2 preferentially deacetylate histone H3K9

(Shankaranarayana et al, 2003; Wiren et al, 2005). Cells

lacking Sir2 display only partial defects in centromeric

heterochromatin integrity and retain Swi6HP1 localization at

centromeres (Shankaranarayana et al, 2003; Freeman-Cook

et al, 2005).

At fission yeast centromeres, telomeres and mating-type

region, RNAi is required to establish heterochromatin (Hall

et al, 2002; Sadaie et al, 2004; Verdel et al, 2004). Although

H3K9me completely covers the centromeric outer repeats,

RNAi and the resulting siRNAs are confined to specific

regions within these repeats (Cam et al, 2005; Buhler et al,

2008; Djupedal et al, 2009; Halic and Moazed, 2010;

Zaratiegui et al, 2011). It is unknown how H3K9me is

established over regions of the outer centromeric repeats

that are not targeted by RNAi. Moreover, at all three

heterochromatin loci, RNAi is partly or completely

dispensable for maintenance of H3K9me (Jia et al, 2004;

Sadaie et al, 2004; Kanoh et al, 2005; Hansen et al, 2006;

Partridge et al, 2007; Halic and Moazed, 2010).

In this study, we set out to uncover the mechanisms

governing the assembly of large chromatin domains.

We demonstrate that heterochromatin is first established at

the siRNA-rich regions over nucleation sites containing

RNAPII activity. Moreover, de novo heterochromatin estab-

lishment assays unearth a role for the HDACs Sir2 Clr3 and

the chromodomain protein Swi6HP1 in, first, initiating the

formation of heterochromatin and, then, in the mechanism

that ‘spreads’ H3K9me from nucleation sites over neighbour-

ing chromatin. Our analyses reveal that once heterochroma-

tin has been established, its propagation is dependent on the

parallel actions of the HDACs Sir2 and Clr3. This newly

identified role for Sir2 in maintaining H3K9me-dependent

heterochromatin is underscored by our finding that tethering

Sir2 next to a heterochromatin nucleation site ensures hetero-

chromatin maintenance in cells lacking RNAi. The HDAC-

dependent pathway uncovered here aids the RNAi pathway

to propagate fully assembled and functional heterochromatin

domains. The analyses presented provide the first clear

evidence for a sequential assembly mechanism required to

form intact heterochromatin domains at centromeres.

Results

Defining heterochromatin nucleation sites within the

centromeric dg elements

Inducers of specific epigenetic states are frequently only

required for the initiation but not for the preservation of

that state (Berger et al, 2009). De novo establishment assays

have previously demonstrated that RNAi is required to

nucleate heterochromatin in fission yeast (Hall et al, 2002;

Jia et al, 2004; Sadaie et al, 2004). At centromeres, genome-

wide analyses have shown that H3K9me covers the entire

outer repeat region, which is composed of dg–dh elements

(Cam et al, 2005; Zaratiegui et al, 2011). In contrast, siRNA

profiling analyses demonstrate that the vast majority of

siRNAs are derived from restricted regions within the dg

and dh elements. We refer to these siRNA hotspots as

‘siRNA-rich’, as opposed to the remaining ‘siRNA-void’

region (Figure 1A and Supplementary Figure S1; (Cam et al,

2005; Buhler et al, 2008; Djupedal et al, 2009; Halic and

Moazed, 2010; Zaratiegui et al, 2011). The restriction of

siRNAs to specific regions suggests that this confined RNAi

activity may create heterochromatin nucleation centres from

which heterochromatin expands. Alternatively, the siRNA-

void regions may nucleate heterochromatin independently of

RNAi. However, understanding the contribution of a

particular centromeric DNA element to heterochromatin

formation is problematic because of the repetitive nature of

outer repeats (Supplementary Figure S2A). Indeed, to date,

all genome-wide chromatin immunoprecipitation (ChIP) ana-

lyses of heterochromatin components in S. pombe only

indicates the average distribution since the signal intensity

is normalized to the number of repeats (Cam et al, 2005;

Zaratiegui et al, 2011). This normalization is performed

because the signal cannot be assigned to any specific dg/dh

element. Furthermore, even PCR primers, designed using the

current genome database, that are predicted to allow the

amplification of products unique to the dg/dh arrangement

at centromere 1 (cen1) can amplify a PCR product from cells

completely lacking cen1 (Supplementary Figures S2A and

B;(Ishii et al, 2008). This suggests that the available

centromeric repeat sequence and organization is inaccurate

and requires further exploration. These considerations

Sir2-mediated heterochromatin assembly
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Figure 1 Heterochromatin establishment over the centromeric dg fragment. (A) Schematic of fission yeast cen1 (right panel), the described P1
promoter (Djupedal et al, 2005) and nomenclature of the different dg fragments analysed in this study (left panel). (B) Colony colour assay to
assess minichromosome stability. Wt cells transformed with MC-dg, L6, L7, L5, L8 and L9 were plated on limiting adenine plates. Red colonies
indicate unstable minichromosomes; white/sectored colonies (white arrows) are indicative of proper segregation at mitosis. (C) Establishment
frequency and loss rate of indicated plasmid-based minichromosomes in wt strain. (D) Quantitative ChIP (qChIP) to detect H3K9me2 levels
associated with MC-dg, L6, L7, L5, L8 and L9 fragments upon transformation into wt or clr4D cells. Specific primers were used to analyse the
enrichment on minichromosome (MC) relative to actin (act1þ ). (E) qChIP to detect RNAPII on L8- and L9-containing plasmids (MC-L8 and
MC-L9) relative to a tRNA gene in wt and clr4D cells. (F) qRT–PCR to detect transcripts originating from the L8 and L9 fragments relative to
act1þ in wt and clr4D cells. (G) Quantitative chromatin immunoprecipitation to detect RNAPII on L5-containing plasmid (MC-L5) relative to a
tRNA gene in wt and clr4D cells. (H) qRT–PCR to detect transcripts originating from the L5 fragment relative to act1þ in wt and clr4D cells.
Error bars in (D) to (H): s.d. of three biological replicates.
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prompted us to use minichromosomes to characterize

specific centromere sequence elements.

Episomal plasmids bearing outer repeat regions plus a

central domain have been shown to assemble functional

centromeres that result in mitotically stable minichromo-

somes (Baum et al, 1994). These plasmids must establish

and maintain heterochromatin, otherwise centromere

function and minichromosome stability is compromised.

A colony colour-sectoring assay is used to monitor plasmid

retention (white) and loss (red). Using this plasmid-based

heterochromatin establishment assay, we directly tested

whether the siRNA-rich region can nucleate heterochro-

matin. Minichromosome plasmids (MC) bearing a full-

length dg or dg fragments were transformed into wild-type

(wt) or clr4 null cells (clr4D, completely devoid of

heterochromatin) (Figure 1A, Supplementary Figure S2C).

As expected, plasmids bearing full-length dg (MC-dg) form

mitotically stable minichromosomes in wt cells (white colo-

nies with red sectors) at a frequency of 6.7% but not in clr4D
cells (red colonies) (Figures 1B and C and Supplementary

Figure S2D). Importantly, the MC-L6 minichromosome, con-

taining the siRNA-rich dg subfragment, established functional

centromeres in wt (9.2%) but not in clr4D cells. In contrast,

MC-L7, which contains only the siRNA-void region, was

unable to establish functional centromeres (0%; Figures 1B

and C and Supplementary Figure S2D).

To further test if plasmid stability correlates with the

establishment of heterochromatin on minichromosomes,

the presence of H3K9 methylation was assessed by ChIP.

Since the minichromosome-borne dg fragments are in a

unique sequence context relative to endogenous repeats,

the dg–plasmid junction can be specifically monitored. In

wt, but not clr4D cells, high levels of H3K9me2 were detected

on MC-dg and MC-L6 (Figure 1D). No H3K9 methylation was

detected on the siRNA-void L7 fragment (MC-L7; Figure 1D).

Thus, the siRNA-rich dg L6 region acts as a nucleation site

that seeds heterochromatin formation. In contrast, the L7

siRNA-void region is unable to establish H3K9me: hetero-

chromatin must spread into these sequences from flanking

nucleation sites.

RNAPII activity defines multiple redundant nucleation

sites within the siRNA-rich region

An RNAPII promoter resides within the L6 fragment of the dg

element (Djupedal et al, 2005; P1, Figure 1A and Supple-

mentary Figure S3). To test the role of this promoter in

heterochromatin establishment, minichromosomes contain-

ing L6 subfragments were tested for their ability to nucleate

heterochromatin (Figure 1A, Supplementary Figure S2C). The

L8 fragment contains the active P1 promoter as confirmed by

RNAPII ChIP and RT–PCR analyses (Figures 1E and F). The

L8 fragment confers mitotic stability in wt (5.3%), but not

clr4D, cells (MC-L8; Figures 1B and C, Supplementary Figures

S2D and S3). In contrast, the L9 subfragment, lacking the P1

promoter TATA box and lacking RNAPII (Figures 1E and F), is

unable to form functional centromeres on minichromosomes

and is thus mitotically unstable (0% MC-L9; Figures 1B and

C, Supplementary Figures S2D and S3).

ChIP analyses confirm that H3K9me can be established by

the L8, but not the L9, subfragment (MC-L8 and MC-L9;

Figure 1D). The L5 subfragment also lacks the P1 promoter

(Figure 1A); however, it attracts high levels of H3K9me2 and

imparts mitotic stability to MC-L5 (Figures 1B–D). ChIP for

RNAPII demonstrated that it is enriched on the L5 fragment in

both wt and clr4D cells (Figure 1G). Furthermore, RT–PCR

and 50 RACE analyses allowed the detection of transcripts that

originate from both strands within the L5 element, thus

revealing the presence of additional RNAPII promoters

(Figure 1G and Supplementary Figure S4A).

The above analyses indicate that the siRNA-rich region (L6)

is modular and contains at least two independent regions

capable of nucleating heterochromatin. Each of these nuclea-

tion sites contains RNAPII promoter activity, suggesting that

localized RNAPII transcription and RNAi activity seed hetero-

chromatin assembly within dg, whereas the siRNA-void

region alone is unable to nucleate heterochromatin.

HDACs and Swi6HP1 are required for the de novo

spreading of a heterochromatin domain

The formation of large heterochromatin domains over an

entire outer repeat suggests a mechanism that promotes its

spreading from siRNA-rich nucleation sites into siRNA-void

regions. To identify components important for establishment

and/or spreading of H3K9 methylation, MC-dg was trans-

formed into wt cells and several mutants known to partially

disrupt heterochromatin (Figure 2A). H3K9me2 ChIP was

performed to assess heterochromatin formation close to the

siRNA-rich nucleation region (PCR R) or near the siRNA-void

region (PCR V) (Figure 2A). High levels of H3K9me were

detected on both regions of the dg element in wt and pst2D
cells (Pst2 is a specific component of HDAC Clr6 complex II;

(Nicolas et al, 2007)), suggesting that Clr6 complex II makes

only a limited contribution to heterochromatin nucleation or

spreading (Figure 2B). However, no H3K9 methylation was

detected on either the V or R regions in cells lacking

Dicer (dcr1D) confirming that RNAi is absolutely required

for targeting heterochromatin to centromere repeats

(Figure 2B). When MC-dg was transformed into cells lacking

either Sir2 or Swi6HP1, a strikingly asymmetric distribution of

H3K9me was evident. H3K9me2 was clearly established over

the nucleation site (R), but not at the siRNA-void region (V).

A similar pattern was also observed in clr3D cells, except that

a low level of H3K9me was detected at the siRNA-void region

(Figure 2B).

Thus, the HDACs, Clr3 and Sir2, along with the architec-

tural component Swi6HP1, are required to spread H3K9

methylation from siRNA-rich nucleation sites into flanking

regions. This supports a model in which the de novo assem-

bly of heterochromatin at centromeres involves a two-step

mechanism: establishment at nucleation sites specified by

RNAi and subsequent spreading mediated by Sir2, Clr3 and

Swi6HP1.

Two distinct types of nucleation sites reside within the

siRNA-rich region of centromere repeats

To further characterize HDACs function in heterochromatin

nucleation and spreading, we analysed the H3K9me pattern

obtained upon introducing different minichromosomes into

sir2D cells. When MC-dg was transformed in wt cells,

H3K9me was enriched on both V and R regions but not

detected at V in sir2D cells, or at V or R regions in clr4D
cells (Figures 3A and B). The L6 subfragment allows H3K9me

on both sides in wt cells; however, in sir2D cells high levels of

H3K9me were detected on the right (PCR R), but not the left

Sir2-mediated heterochromatin assembly
A Buscaino et al
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side (PCR A, MC-L6; Figures 3A and B). The L5 subfragment

displayed a similar pattern as L6, H3K9me was only detected

on the right side in the absence of Sir2 (PCR D, MC-L5;

Figures 3A and B). In contrast, no H3K9me occurred on either

side of the L8 fragment in sir2D cells, even though MC-L8

efficiently attracts H3K9me in wt cells (MC-L8; Figures 3A

and B). Similar dependencies were observed when these

DNA fragments were tested in clr3D and swi6D cells, with

the exception that H3K9me could be established on both

sides of the L5 nucleation region (MC-L5 and MC-L8;

Figure 3C). The defects observed in heterochromatin nuclea-

tion in sir2D, clr3D and swi6D cells is unlikely due to

defective RNAi since centromeric siRNAs are still produced in

these mutants (Buhler et al, 2006; Sugiyama et al, 2007) and

Supplementary Figure S4B). These analyses indicate

that the siRNA-rich region encompasses two distinct

types of nucleation site: the L5 region, which allows H3K9

methylation independently of Sir2 HDAC and Swi6HP1, and

the L8 region, which requires both Sir2 and Swi6HP1 to

form heterochromatin. These different types of nucleation

sites must act together within centromere repeats

providing redundant processes that ensure robust hetero-

chromatin assembly.

Sir2, Clr3 and Swi6HP1 function in parallel to RNAi to

maintain H3K9 methylation and heterochromatin

function on centromere repeats

Heterochromatin domains are required to ensure full centro-

mere function and accurate chromosome segregation (Ekwall

et al, 1995; Bernard et al, 2001; Nonaka et al, 2002; Volpe

et al, 2003). We next investigated whether factors required for

heterochromatin nucleation (i.e., RNAi) and spreading (Sir2,

Clr3 and Swi6HP1) contribute separately to the maintenance

of centromeric heterochromatin.

The silencing of genes placed within centromeric hetero-

chromatin provides a sensitive readout of heterochromatin

integrity (Allshire et al, 1995). In the absence of RNAi

(dcr1D), H3K9me (clr4D) or associated architectural

components, such as Swi6HP1 (swi6D), silencing of an

ade6þ reporter gene within the dg repeat of cen1 (cen1-

dg:ade6þ ) is lost (white colonies; Ekwall et al, 1999).

However, cen1-dg:ade6þ silencing is largely unaltered in

sir2D cells (red colonies), or in cells expressing a partially

defective RNAi component (cid12-ha; subunit of the

RDRC complex; Motamedi et al, 2004). When cid12-ha;

was combined with sir2D or clr3D, a synergistic loss of

cen1-dg:ade6þ silencing was observed (pink/white

colonies; Figure 4A). Moreover, when dcr1D was combined

with sir2D, clr3D or swi6D increased sensitivity to the

microtubule-destabilizing compound thiabendazole (TBZ)

was observed (Figure 4B). Elevated TBZ sensitivity indicates

that centromere function is more defective in these double

mutants. To directly test the contribution of various compo-

nents to heterochromatin-associated centromere function, we

again exploited the minichromosome system. A minichromo-

some bearing full-length dg repeat (MC-dg0 0; Baum et al,

1994) was first transformed into wt cells to establish the

full heterochromatin domain and subsequently it was crossed

into specific mutants (Figure 4C). MC-dg00 centromere func-

tion and H3K9 methylation is retained in wt and in sir2D but

not in clr4D progeny (Folco et al, 2008) and Figures 4D–F).

MC-dg0 0 mitotic stability was reduced, but not obliterated, in

dcr1D and ago1D progeny (Figures 4D and E). In agreement

with this, H3K9me2 was detected on MC-dg0 0, in both dcr1D
and ago1D cells, with higher levels over the siRNA-void

region relative to the siRNA-rich region (PCR V and R;

Figure 4F). In contrast, following its transmission into

dcr1Dsir2D double-mutant cells the MC-dg0 0 completely lost

centromere function (only red colonies; Figures 4D and E).

Moreover, as in clr4D cells, no H3K9me2 was detectable

on either the siRNA-void or -rich regions of the dg element

(PCR V and R; Figure 4F).

Figure 2 Heterochromatin spreading over the centromeric dg fragment. (A) Diagram of procedure to assess heterochromatin establishment on
MC-dg siRNA-rich (R) and siRNA-void (V) regions upon transformation into wt or mutant cells. (B) qChIP to assess H3K9me2 levels associated
with the MC-dg siRNA-rich (R) and siRNA-void (V) regions. Enrichment is shown relative to actin (act1þ ), and normalized to wt. Error bars:
s.d. of three biological replicates.
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These analyses demonstrated that the RNAi pathway

collaborates with the HDACs Sir2 and Clr3, and with

Swi6HP1, to maintain heterochromatin-associated centromere

functions on dg repeats.

We next assessed if RNAi also operates synergistically with

Sir2, Clr3 and Swi6HP1 on endogenous centromere to main-

tain H3K9 methylation. As shown in Figure 4G, H3K9me2

levels are detectable but reduced in dcr1D, ago1D and sir2D
relative to wt cells. However, H3K9me2 was completely lost

from centromeric repeats in both dcr1Dsir2D and dcr1Dswi6D
double mutants while still detected in dcr1Dago1D double-

mutant cells (Figure 4G and Supplementary Figure S4C).

Similarly, H3K9 methylation has been shown to be strongly

reduced at centromeres in dcr1Dclr3D double mutants

(Yamada et al, 2005). H3K9me creates binding sites for the

chromodomain protein Swi6HP1. Immunolocalization

analyses reveal that GFP-tagged Swi6 remains associated

with centromeres in dcr1D and sir2D cells (Ekwall et al,

1999; Freeman-Cook et al, 2005). However, similar to clr4D
cells, in dcr1Dsir2D double mutants the localization of

GFP-Swi6 at centromeres is completely lost (Figure 4H).

This was confirmed by ChIP analyses (Figure 4I).

We conclude that, at centromeres, after the initial establish-

ment of a heterochromatin domain, RNAi becomes dispen-

Figure 3 Heterochromatin nucleation over the centromeric dg subfragments in wt, sir2D, swi6D and clr3D cells. (A) qChIP to assess H3K9me2
levels associated with the right and left sides of indicated MC upon transformation into wt, sir2D and clr4D cells. Enrichment is shown relative
to actin (act1þ ), and normalized to wt. (B) Schematic diagram to summarize MC ability to nucleate heterochromatin in wt and sir2D cells. (C)
qChIP to assess H3K9me2 levels associated with the right and left sides of MC-L5 and MC-L8 upon transformation into wt, clr3D, swi6D and
clr4D cells. Enrichment is shown relative to actin (act1þ ), and normalized to wt. Error bars: s.d. of three biological replicates in (A) and (C).
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Figure 4 Sir2, Clr3 and Swi6HP-1 are required for heterochromatin maintenance in RNAi-compromised cells. (A) Silencing assay at centromere
otr1R(SphI):ade6þ . Left panel: diagram indicating ade6þ reporter gene insertion at dg of cen1. The position of PCR products (p-dg and p-dh) is
also indicated. The primers also hybridize with centromere 2 and 3 (Supplementary Figure S2A). Right panel: serial dilutions of cells were
spotted onto limiting adenine medium. In wt cells, ade6þ is repressed (red colonies); silencing-compromised mutants alleviate the repression
(pink/white colonies). (B) Serial dilutions of cells were spotted onto non-selective (NS) plates or 10mg/ml TBZ-containing medium.
(C) Diagram of procedure to assess the heterochromatin maintenance on minichromosome containing two dg elements (MC-dg0 0) in wt and
mutant cells. R and V indicate regions on minichromosome analysed by qPCR. (D) Colony colour assay to assess minichromosome stability.
Cells containing MC-dg0 0 were crossed into wt and indicated mutants, and plated on limiting adenine plates. Red colonies indicate unstable
minichromosomes; white/sectored colonies indicate stable minichromosomes that are retained at mitosis. (E) Percentage of MC-positive
white/sectored colonies in indicated host strains. (F) qChIP analyses of H3K9me2 levels maintained on MC-dg0 0 following crosses into wt
and indicated mutant strains. Enrichment is shown relative to actin (act1þ ), and normalized to wt. R and V correspond to regions on
minichromosome analysed by qPCR. (G) qChIP analyses of H3K9me2 levels associated with endogenous centromere dh (top; p-dh) and dg
(bottom; p-dg) elements. Enrichment is shown relative to actin (act1þ ), and normalized to wt. (H) Immunofluorescence analysis of GFP-Swi6
in wt or mutant cells. Representative images show staining of GFP-Swi6 (green), CENP-ACnp1 (red) and DNA (DAPI-blue). (I) qChIP analyses
of GFP-Swi6 levels associated with endogenous centromere dg repeats. Enrichment is shown relative to actin (act1þ ), and normalized to wt.
Error bars for (F), (G) and (I): s.d. of three biological replicates.
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Figure 5 Sir2 and Clr3 are essential for propagating H3K9me2. (A) Top: diagram indicating the position of PCR products (p-dg) on cen1.
The primers also hybridize with centromere 2 and 3 (Supplementary Figure S2A). Bottom: serial dilutions of cells were spotted onto limiting
adenine medium. In wt cells, ade6þ is repressed (red colonies); silencing-compromised mutants alleviate the repression (pink/white colonies).
(B) Serial dilutions of cells were spotted onto non-selective (N) plates or 10 g/ml TBZ-containing medium. (C) Northern: unprocessed
otr transcripts in wt, and indicated mutants. Loading control: rRNA. (D) qChIP analyses of H3K9me2 levels associated with endogenous
centromere dg (p-dg) in wt and indicated mutant background. Enrichment is shown relative to actin (act1þ ), and normalized to wt levels.
(E) Northern: centromeric siRNAs in wt, and indicated mutants. Loading control: snoRNA58. (F) qChIP analyses of Swi6HP1 associated with
endogenous centromere dg (p-dg) in wt and indicated mutants background. Enrichment is shown relative to actin (act1þ ), and normalized to wt.
(G) qChIP analyses of FLAG-Sir2 associated with endogenous centromere dg (p-dg) in wt and indicated mutants background. Error bars: s.d. of
three biological replicates in (D), (F) and (G). (H) Immuno-localization analysis of Sir2 and CENP-ACnp1 in wt or sir2D cells. Representative images
show staining of Sir2 (green), CENP-ACnp1 (red) and DNA (DAPI-blue).

Sir2-mediated heterochromatin assembly
A Buscaino et al

8 The EMBO Journal &2013 European Molecular Biology Organization



sable for its retention and that Sir2, Clr3 and Swi6HP1 can

independently propagate the remaining heterochromatin.

Maintenance of H3K9 methylation at centromeres

requires the HDACs Sir2 and Clr3, even in the presence

of active RNAi

Sir2, Clr3 and Swi6HP1 are clearly required along with the

RNAi pathway to maintain centromeric heterochromatin.

However, the two HDACs may act together in the same

pathway or separately.

To distinguish between these two possibilities, we analysed

centromeric heterochromatin integrity in sir2Dclr3D
double-mutant cells. As shown in Figure 5A, silencing of

cen1-dg:ade6þ marker gene was alleviated in sir2Dclr3D
double-mutant cells but not in the correspondent single

mutants. In contrast to sir2D and clr3D single mutants,

sir2Dclr3D double-mutant cells display high TBZ sensitivity

(Figure 5B) suggesting defects in heterochromatin integrity at

centromeres. Indeed, in contrast to the single mutants, long

unprocessed centromeric transcripts accumulate in sir2Dclr3D
double-mutant cells and no H3K9me2 is maintained at

centromeres (Figures 5C and D). This demonstrates that Sir2

and Clr3 promote heterochromatin integrity independently.

High levels of cen-siRNAs are produced in the absence of

Sir2 and Clr3 demonstrating that the presence of one of these

two HDACs is essential for propagating H3K9me2 eventhough

RNAi remains active (Figure 5E). The chromodomain protein

Swi6HP1 physically interacts with Clr3 suggesting that these

two proteins cooperate to maintain heterochromatin (Yamada

et al, 2005). In agreement with this finding, we find that

Swi6HP1 association with centromeric repeats is severely

compromised in clr3D cells (B10% of wt relative to

background in swi6D) while a reduction to only 50 and 40%

occurs in the absence of Dcr1 or Sir2, respectively (Figure 5F).

Sir2 behaviour is distinct. We find that the association

of Sir2 with centromeric repeats does not require Swi6HP1,

the RNAi component Dcr1, or the Clr4 methyltransferase

(Figure 5G). Therefore, Sir2 interacts with centromeric

repeats independently of the other activities that coalesce to

assemble heterochromatin. In addition, Sir2 is also detected

at many other genomic locations that do not assemble hetero-

chromatin (Wiren et al, 2005; Supplementary Figure S4E),

and Sir2 has a diffuse nuclear localization (Figure 5H). These

findings demonstrate that Sir2 and Clr3 contribute to H3K9

methylation maintenance via distinct pathways. We propose

that Sir2 and Clr3 independently suppress transcription ori-

ginating from centromere repeats. In the absence of both

these HDACs, high transcriptional activity prevents H3K9

methylation propagation, even in the presence of active

RNAi.

Sir2 is sufficient to maintain heterochromatin in the

absence of RNAi

Our analyses demonstrate that a HDAC-dependent pathway

acts to maintain heterochromatin in the absence of RNAi. The

L5 fragment of dg mediates heterochromatin assembly when

inserted at an ectopic locus (Partridge et al, 2002; Sadaie et al,

2004; Wheeler et al, 2009, 2012). L5-driven heterochromatin

integrity is partially independent of the HDAC Sir2

(Supplementary Figure S5A).

In contrast, artificial tethering of TetRoff-Sir2 at the ura4

locus (ura4:4xTetO-ade6þ ) is not sufficient to induce

heterochromatin assembly confirming that RNAi activity is

essential for establishing heterochromatin de novo

(Supplementary Figure S5B). To test if the Sir2 HDAC activity

is sufficient to maintain H3K9me in the absence of RNAi, we

artificially tethered Sir2 adjacent to dg-L5 at the ura4 locus

where dg-L5-4xTetO-ade6þ was inserted (Figure 6A). The

dg-L5-4xTetO-ade6þ allowed heterochromatin formation,

as indicated by silencing of the ade6þ (43.7% red/pink

repressed colonies) and high levels of H3K9me2 (Figures

6B–E). However, in cells lacking RNAi (dcr1D), silencing of

ade6þ was alleviated (100% white colonies) and H3K9me2

was lost (Figures 6B–E). Thus, unlike endogenous centro-

mere repeats, silencing of, and the formation of heterochro-

matin at, dg-L5-4xTetO-ade6þ is completely dependent

on RNAi.

Remarkably, in dcr1D cells, the presence of functional

TetRoff-Sir2 allowed silencing (45.6% red colonies) of

L5-4xTetO-ade6þ to persist, whereas it was lost when cata-

lytically inactive TetRoff–Sir2N247A was expressed (Figures 6B

and C). Both the TetRoff–Sir2 and TetRoff–Sir2N247A fusion

proteins were recruited to the TetO sites (Figure 6D).

Furthermore, tethering of TetRoff–Sir2, but not TetRoff–

Sir2N247A, allowed the retention of high H3K9me2 levels in

dcr1D cells (Figure 6E). The fact that the artificial tethering of

Sir2 allows high levels of H3K9me2 in the absence of RNAi

strongly supports the conclusion that Sir2 is necessary and

sufficient for maintaining heterochromatin at centromeres.

We propose that Sir2, Clr3 and Swi6HP1 are components of

an epigenetic memory module that maintains heterochroma-

tin independently of RNAi. RNAi initially acts to target Clr4

activity to centromere repeats. The resulting H3K9 methyla-

tion directly recruits the architectural component Swi6HP1

thereby nucleating heterochromatin. Chromatin-associated

Sir2 HDAC subsequently cooperates with Swi6HP1, and the

associated Clr3 HDAC, to induce and extend a hypoacetylated

chromatin state that is essential for heterochromatin main-

tenance through subsequent cell division.

Discussion

The assembly of large chromatin domains is generally thought

to require: (i) initiation events, that establish the altered state

at specific genomic locations; (ii) spreading, that involves the

outwards expansion of this distinct chromatin state to coat

adjacent chromosomal regions; and (iii) maintenance, to lock

in the established state so that it is propagated long after the

initiator has disappeared (Bonasio et al, 2010). Frequently,

specific nucleation sites serve as entry points for chromatin

modifiers allowing the initial formation of a specialized

chromatin pocket and provide a seed for the subsequent

spreading of the modified state in cis, independently of the

underlying DNA sequence (Talbert and Henikoff, 2006). Here,

we have dissected mechanisms governing centromeric

heterochromatin formation and provided direct evidence to

support the three-step model for the establishment and

propagation of a distinct chromatin state (Figure 7).

Nucleation sites direct the location of centromeric

heterochromatin

We demonstrate that, at centromeres, H3K9 methylation is

first initiated at nucleation sites corresponding to siRNA-rich

segments. siRNAs are generated from non-coding centromeric

Sir2-mediated heterochromatin assembly
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repeat transcripts and act as the inducers that home in on

these sites, presumably by engaging homologous nascent

transcripts. This then triggers the initial H3K9 methylation

events by recruiting the Clr4 methyltransferase.

In other systems, sites of RNA production have also been

shown to act as nucleation sites and non-coding RNAs are

known to be required for the initial recruitment of chromatin

modifiers to specific chromosomal regions (Herr and

Baulcombe, 2004; Wutz, 2011; Conrad et al, 2012). In plants,

production of siRNA can initiate RNA-directed DNA methyla-

tion and transcriptional silencing (Herr and Baulcombe, 2004).

Dosage compensation mechanisms in flies and mammals also

utilize non-coding RNAs to nucleate the recruitment of

chromatin modifiers that equalize the expression of X-linked

genes (Wutz, 2011; Conrad et al, 2012). It is therefore apparent

that the production of non-coding RNAs that recruit chromatin

modifiers is a common feature of nucleation sites. Non-coding

RNAs are well suited for the role as ‘connectors’ between the

genome and chromatin modifiers since they can use their

innate ability to base pair to recognize specific RNA or DNA

sequences.

Centromeric heterochromatin is assembled on multiple,

redundant nucleation sites

Our analyses reveal that a siRNA-rich nucleation site

is modular such that two dg fragments (L5 and L8) allow

Figure 6 Sir2 is sufficient to maintain heterochromatin in RNAi mutants. (A) Diagram of constructs used: the L5-4xTetO-ade6þ reporter is
inserted at the ura4þ locus. TetRoff-2� FLAG-Sir2 is integrated at leu1þ locus. The position of PCR products (BWP100 and TetO) on the
L5-4TetO-ade6þ reporter is indicated. (B) Silencing assay of L5-4�TetO-ade6þ in wt, dcr1D and clr4D cells without any tethered protein (top
panel) or containing TetRoff-2� FLAG-Sir2 (middle panel) and TetRoff-2� FLAG-Sir2N247A (bottom panel). Cells were plated on medium with
limiting adenine. Red/sectored colonies (arrows) indicate silencing of the ade6þ reporter. (C) Quantification of L5-4�TetO-ade6þ silencing
assay. (D) qPCR analyses of TetRoff-2�FLAG-Sir2 and TetRoff-2� FLAG-Sir2N247A levels associated with the L5-4TetO-ade6þ reporter. Enrichment is
shown relative to actin (act1þ ). (E) qChIP analyses of H3K9me2 levels associated with L5-4xTetO-ade6þ reporter. Enrichment is shown relative to
actin (act1þ ), and normalized to wt. Error bars for (D) and (E): s.d. of three biological replicates.
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de novo heterochromatin assembly on minichromosomes.

Interestingly, nucleation by the L5 subfragment depends

on RNAi components, but does not require Sir2, Clr3 or

Swi6HP1. In contrast, the seeding of H3K9 methylation by

the L8 subfragment requires Sir2, Clr3 and Swi6HP1 in addition

to active RNAi. Why do L5 and L8 differ in their requirements

to nucleate heterochromatin? RNAPII associates with both

L5 and L8, and non-coding RNAs are produced from within

both segments (Djupedal et al, 2005) and this study).

However, while a single transcription start site was identified

at the L8 nucleation site (Djupedal et al, 2005), we detected

several transcription start sites originating within the L5

nucleation site suggesting that L5 and L8 contain different

types of promoters. We propose that RNAi-mediated

recruitment of Clr4 histone methyltranferase is sufficient to

repress transcription originating from the L5 element allowing

H3K9me nucleosomes to stably associate with its sequences.

Thus, a small region of heterochromatin is formed even

in the absence of Sir2. In contrast, HDAC-mediated histone

deacetylation would be required, in addition to RNAi, to

efficiently repress transcription originating from the L8

nucleation site. In this case, when Sir2 is absent, the high

transcriptional activity and associated elevated rate of

histone turnover may prevent Clr4 from stably methylating

H3K9 (Figure 7A). In support of this model, Clr3 has

been shown to contribute to the transcriptional repression

of centromeric non-coding transcripts (Sugiyama et al,

2007).

Assembly of specialized chromatin domains often depend

on multiple nucleation sites (Straub and Becker, 2011). Such

redundancy presumably provides general backup mechanisms

ensuring the assembly of such large chromatin domains.

Figure 7 Model for RNAi and HDACs function in the stepwise assembly of centromeric heterochromatin. H3K9 methylation nucleation.
RNAi operates on the siRNA-rich region of the naı̈ve centromeric outer repeat element, where long double-stranded RNAs transcripts
are synthesized by RNAPII. At the nucleation sites, the RNAi response generates siRNAs, which guide the RITS complex to homologous
nascent transcripts via a base-pairing mechanism. This in turn attracts the chromatin modifier Clr4 to methylate histone H3 on residue
lysine 9 (me) on the nucleosomes in the siRNA-rich region. At the L8 nucleation site, HDAC-mediated histone deacetylation is required, in
addition to RNAi, to efficiently repress transcription allowing stable H3K9 methylation. H3K9 methylation spreading. Following nucleation,
Sir2, Clr3 and Swi6 deacetylate nearby nucleosomes allowing methylation of histone H3 by Clr4. Iterative cycles of deacetylation
and methylation result in heterochromatin spreading along the chromatin fibre from the nucleation site. H3K9 methylation maintenance.
Combined RNAi and Sir2 actions maintain the H3K9 methylation state at the centromeric repeats over generations. The Clr3 and Sir2
HDACs reduce transcription and consequently histone turnover cooperating with the RNAi pathway to propagate centromeric hetero-
chromatin.
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The role of Sir2 in extending heterochromatin domains

over entire centromeric repeats

It has been shown previously that the RNAi machinery is

required for heterochromatin maintenance on marker genes

inserted into centromeric repeats suggesting that RNAi activ-

ity is required for heterochromatin spreading on transcrip-

tionally active chromatin (Sadaie et al, 2004). In this study,

we demonstrated that Sir2, Clr3 and Swi6HP1 mediate

heterochromatin spreading from nucleation sites into

flanking endogenous sequences.

Interestingly, in Saccharomyces cerevisiae, Sir2 is also

utilized to spread a distinct type of repressive chromatin

(Rusche et al, 2003). However, S. cerevisiae completely

lacks RNAi, H3K9 methylation and its ligands, the

HP1-related proteins. In this system, the Sir2/Sir3/Sir4

silencing complex is recruited to nucleation sites by DNA-

bound proteins. Sir2 deacetylates lysine 16 on H4 of nearby

nucleosomes to create high-affinity binding sites for Sir3

(Armache et al, 2011). This then allows the Sir2/Sir3/Sir4

complex to spread outwards over neighbouring chromatin

(Rusche et al, 2003). Similar to what has been observed in S.

cerevisiae, it is likely that the mechanism that spreads H3K9

methylation from siRNA-rich nucleation sites into siRNA-void

regions is a self-enforcing process: at nucleation sites,

methylation of H3K9 creates binding sites for the chromodo-

main proteins (such as Swi6 and Chp2) allowing recruitment

of the HDAC Clr3 to centromeric repeats (Sugiyama et al,

2007; Sadaie et al, 2008; Fischer et al, 2009). Clr3 would then

cooperate with chromatin-bound Sir2 to deacetylate nearby

nucleosomes allowing methylation of histone H3 by Clr4.

Iterative cycles of this deacetylation and methylation would

result in heterochromatin spreading along the chromatin fibre

(Figure 7A).

The maintenance of H3K9 methylation in the absence of

RNAi depends on HDACs and Swi6HP1

The maintenance of distinctive chromatin domains is known

to occur even in the absence of initiating events or their

nucleation site (Bonasio et al, 2010). Such propagation repre-

sents the essence of an epigenetically regulated chromatin

domain. In many systems, the inheritance of a chromatin

state is dependent on DNA methylation where a replication-

coupled mechanism allows recognition of hemi-methylated

DNA and methylation of the newly synthesized DNA strand

at the replication fork (Kundu and Peterson, 2009). It remains

less clear how a particular chromatin state can be propagated

in the absence of DNA methylation. Our analyses provide

insights into the mechanism that allows the propagation of

the heterochromatin state in fission yeast, an organism that

lacks DNA methylation.

Fission yeast centromeric heterochromatin is partially dis-

rupted during S phase and RNAi allows the re-establishment

of heterochromatin domains following each round of replica-

tion. It has been proposed that this cyclical disassembly

of heterochromatin allows transient transcription, the gen-

eration of new siRNAs and the subsequent recruitment of

Clr4 in S phase (Chen et al, 2008; Kloc et al, 2008). If this

was the only mechanism for retaining heterochromatin, in

RNAi-deficient cells, H3K9me levels should dramatically

decline within a few divisions due to the progressive

dilution of pre-existing H3K9 methylated nucleosomes

(o1% of wt levels in seven divisions). However, as this

and other studies have shown, H3K9 methylation remains at

centromeres in the absence of RNAi (dcr1D, ago1D; (Sadaie

et al, 2004; Partridge et al, 2007; Halic and Moazed, 2010;

Shanker et al, 2010; Reyes-Turcu et al, 2011). Thus, a parallel

pathway must operate to maintain and propagate H3K9

methylation when RNAi is ablated. Indeed, alternative RNAi-

independent pathways that act to maintain heterochromatin

at the mating-type locus and telomeres have been identified

(Jia et al, 2004; Kim et al, 2004; Kanoh et al, 2005). At

centromeres, it has been suggested that Ago1 is critical to

propagate H3K9 methylation using Dicer-independent centro-

meric small RNAs (primal small RNAs or priRNAs) to recruit

Clr4 in the absence of RNAi (dcr1D) (Halic and Moazed, 2010).

However, we and others have shown that H3K9 methylation

levels are similar in ago1D and dcr1D cells, and even

ago1Ddcr1D double mutants (Shanker et al, 2010; Reyes-

Turcu et al, 2011; this study). This indicates that priRNAs

play a marginal role in maintaining centromeric hetero-

chromatin.

Here, we provide an alternative mechanism for the RNAi-

independent propagation of H3K9 methylation at centro-

meres (Figure 7B). Our analyses show that both Sir2 and

Swi6HP1 act to maintain H3K9 methylation at centromeres in

dcr1D cell.

Moreover, we demonstrate that the artificial recruitment of

Sir2 HDAC activity adjacent to an siRNA-rich nucleating

fragment (L5) allows heterochromatin maintenance in the

absence of RNAi. This strongly supports the conclusion that

Sir2 acts in parallel to RNAi as a maintenance factor for

centromeric heterochromatin.

We propose that following the establishment of a centro-

meric heterochromatin domain, the HDACs Sir2 and Clr3

repress the transcriptional activity of centromeric promoters

by deacetylating histone H3 on lysine 9 and 14. This results in

reduced histone turnover and in the ability to maintain H3K9

methylation in the absence of RNAi. Importantly, we find that

H3K9 methylation cannot be maintained at centromeres in

sir2Dclr3D double mutants, even though they retain active

RNAi. We surmise that in sir2Dclr3D cells higher levels of

centomeric transcription causes elevated rates of histone

turnover preventing the stable methylation of H3K9 on

resident nucleosomes by Clr4.

Other analyses indicate that defective nuclear exosome

function (rrp6D) also results in loss of H3K9me2 from

centromeric repeats in the absence of RNAi (Reyes-Turcu

et al, 2011). Cells lacking both Sir2 and Rrp6 have reduced

H3K9me2, but in contrast to sir2Dclr3D cells, it is not

abolished (Supplementary Figure S5E). This observation

raises the possibility that Sir2 and Rrp6 act together to

maintain H3K9me2 but this requires further investigation to

tease out their relationship.

The analyses presented provide insight into how a distinct

chromatin domain is established, extended and propagated.

The identification of Sir2 as a heterochromatin maintenance

factor in a system that lacks DNA methylation raises the

possibility that Sirtuins in other organisms also contribute

to the propagation of specialized chromatin domains.

Moreover, our approach demonstrates that the comparison

of the histone-modification patterns across chromosomal

domains using both establishment and maintenance assays

will be required to completely decipher the epigenomes of

metazoa.
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Materials and methods

Yeast strains, plasmids and standard techniques
For fission yeast strains, see Supplementary Table S1. Standard proce-
dures were used for bacterial and fission yeast growth, genetics and
manipulations (Moreno et al, 1991). Strains containing minichro-
mosomes were grown in PMG medium (Pombe Minimal Glutamate
medium) lacking adenine and uracil, otherwise strains were grown in
YES medium (yeast extract with supplements). Serial (1:5) dilutions of
cells were spotted onto YES medium containing low adenine, full
adenine with DMSO or TBZ 10mg/ml. Cells were grown at 251C for 5
days. Gene deletions and tagging were carried out by lithium acetate
transformation method (Moreno et al, 1991). Selections were perfor-
med on PMG with according auxotrophy or on YES with appropriate
antibiotic at 321C. The cid12-ha hypomorphic allele was constructed
using a PCR-based module method and contains a 3�HA
(haemagglutinin) moiety at the carboxyl terminus. The ectopic L5
silencing system was modified (Wheeler et al, 2009) by cloning the
L5 fragment with SpeI/ClaI into BW5/6-4TetO plasmid, upstream of 4 of
the dg TetO-ade6þ (described in (Bayne et al, 2010) to generate the
L5-4TetO-ade6þ reporter. PstI-digested plasmid BW5/6-L5-4TetO was
integrated at ura4þ . For pDUAL-TetRoff-2� FLAG-Sir2, sir2þ was
cloned as described previously for the stc1þ gene (Bayne et al, 2010).

Sir2 antibody production
Recombinant Sir2 fragment (amino acids 1–113) fused to GST was
injected into rabbits. The antibodies, obtained following three
injections, were affinity purified on nitrocellulose membrane and
eluted with glycine.

Minichromosome cloning, selection system and stability
The following minichromosomes were used in this study: (i) in Figure 1:
MC-dg (pcc2K0 0; (Baum et al, 1994) contains a 5.6kb outer repeat
sequence corresponding to the dg element; MC-L6 (pLCC2) contains a
3.2kb of dg siRNA-rich fragment; MC-L7 (pLCC1) contains a 2.2kb dg
siRNA-void fragment; MC-L5 (pLCC3-Fragment A) contains 1.6kb of the
dg element; MC-L8 (pLCC7-Fragment E) contains 1.6kb of the dg
element; and MC-L9 (pLCC9-Fragment J) contains 0.6kb of the dg
fragment. To clone MC-L5, MC-L6, MC-L7; MC-L8 and MC-L9, different
dg fragments were amplified with primers (Supplementary Table S2)
bearing BamHI and NcoI sites and cloned into pcc2K0 0 digested with the
same enzymes. (ii) In Figure 2: MC-dg0 0 (pHHcc2; (Baum et al, 1994)
contains two tandemly repeated 5.6kb outer repeat sequence
corresponding to the dg element. All minichromosomes used contain,
in addition to full-length dg element or dg fragments, the fission yeast
centromeric central domain DNA (cc) and the ura4þ and sup3–5
(suppressor of ade6-704) selection systems. Cells without ura4þ

cannot grow on–uracil plates, while ade6-704 cells do not grow without
adenine and form red colonies on 1/10th adenine plates. The sup3-5-
tRNA gene suppresses a premature stop codon in ade6-704, allowing
growth on –adenine plates. Minichromosomes were introduced into S.
pombe by electroporation and transformants were selected by growth
on PMG–ura–ade at 321C for 5–7 days. For quantification Figure 1C:
primary transformants were replica-plated from PMG–ura–ade plates
into YES low ade plates. The number of white colonies (containing
mitotically stable minichromosomes) was counted and expressed as
percentage of the total number of colonies. To confirm that plasmids
were behaving episomally and had not integrated, cells (100–1000) were
plated onto YES 1/10 adenine and allowed to form colonies. Wt strains
containing plasmids typically exhibit 80–90% of white/sectored colo-
nies and samples exhibiting o2% of integrations (i.e., white colonies in
the mutants) were included in the quantification. For quantification
Figure 4E: number of white-sectored colonies (containing episomal
minichromosomes) were counted and expressed as percentage of the
total number of colonies. Completely white colonies were not included
in the quantification because they contain integrated minichromosomes.
Specific strains and primer pairs were used to distinguish dg sequences
on plasmids from those at endogenous centromeres. Primers across the
insertion site in the plasmid only detect the dg of the minichromosomes.

Chromatin immunoprecipitation
Cells were grown at 321C either in YE-rich media. Primary trans-
formants containing minichromosomes were grown in PMG–
ura–ade liquid media. To confirm that plasmids were behaving
episomally and had not integrated, a plasmid stability test was
performed at the time of fixation. Cells (100–1000) were plated onto
YES 1/10 adenine and allowed to form colonies. Samples exhibiting
no integrations were used for ChIP.

ChIP was performed essentially as described (Bayne et al, 2010).
Briefly, for H3K9me2 ChIP, cells were fixed with 1% PFA for 15 min
at room temperature. Cells were lysed using a bead beater (Biospec
Products) and sonicated using a Bioruptor (Diagenode) sonicator
for a total of 15 min (30 s ON and OFF cycle). One microlitre of
H3K9me2 antibody (m5.1.1, (Nakagawachi et al, 2003)); 5ml of GFP
antiserum (Molecular Probes); 5ml of RNAPII 8WG16 antibody
(Covance, MMS-126R); and 1 ml of FLAG antibody (Sigma) were
used for IPs. For Swi6 ChIP, cells were fixed for 30 min at 181C after
a 2 h shift at 181C. Three microlitre of Swi6 rabbit polyclonal
antibody (Thermo Scientific:Ab PA1-4977) was used for IP.

PCR reactions
Primers used are listed in Supplementary Table S2. Real-time PCR
was performed in the presence of SYBR Green on a Roche
LightCycler. Data were analysed with LightCycler 480 Software
1.5.0.39. Relative enrichments were calculated as the ratio of
product of interest to control product (act1þ ) in IP over input,
expressed as percentage of wt. Histograms represent data from three
biological replicates. Error bars: s.d.’s of three biological replicates.

RNA analysis
RT–PCR and 50 RACE–PCR were performed as previously described
(Choi et al, 2011). Northern analysis of centromeric siRNAs and
long non-coding CEN transcripts were performed as described
(Bayne et al, 2010; Buscaino et al, 2012).

Cytology
Immunolocalization was performed as described previously (Bayne
et al, 2010). Cells were fixed with 3.7% PFA for 10 min, plus 0.05%
glutaraldehyde for tubulin staining. Antibodies used were TAT1
anti-tubulin 1:15 (K. Gull), anti-CENP-ACnp1 1:1000 and anti-GFP
1:200 (Molecular Probes); anti-Sir2 1:50 Alexa Fluor 594- and
488-coupled secondary antibodies were used at 1:1000 (Invitrogen).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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