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Dangerous reference graphs and semantic paradoxes

Landon Rabern∗, Brian Rabern†, Matthew Macauley‡

28 June 2012
(Forthcoming in the Journal of Philosophical Logic)

Abstract. The semantic paradoxes are often associated with self-reference or referential circularity. Yablo
[1993], however, has shown that there are infinitary versions of the paradoxes that do not involve this form of
circularity. It remains an open question what relations of reference between collections of sentences afford the
structure necessary for paradoxicality. In this essay, we lay the groundwork for a general investigation into the
nature of reference structures that support the semantic paradoxes and the semantic hypodoxes. We develop
a functionally complete infinitary propositional language endowed with a denotation assignment and extract
the reference structural information in terms of graph-theoretic properties. We introduce the new concepts of
dangerous and precarious reference graphs, which allows us to rigorously define the task: classify the dangerous
and precarious directed graphs purely in terms of their graph-theoretic properties. Ungroundedness will be shown
to fully characterize the precarious reference graphs and fully characterize the dangerous finite graphs. We prove
that an undirected graph has a dangerous orientation if and only if it contains a cycle, providing some support for
the traditional idea that cyclic structure is required for paradoxicality. This leaves the task of classifying danger for
infinite acyclic reference graphs. We provide some compactness results, which give further necessary conditions
on danger in infinite graphs, which in conjunction with a notion of self-containment allows us to prove that
dangerous acyclic graphs must have infinitely many vertices with infinite out-degree. But a full characterization
of danger remains an open question. In the appendices we relate our results to the results given in Cook [2004]
and Yablo [2006] with respect to more restricted sentences systems, which we call F-systems.

Keywords: Paradox, Hypodox, Reference structure, Circularity, Ungroundedness, Yablo’s paradox, Liar para-
dox, Graph theory, Dangerous, Precarious, F-system, Kernel.

The semantic paradoxes are often associated with self-reference or referential circularity.
Yablo [1993]1, however, has shown that there are infinitary versions of the paradoxes that do
not involve this form of circularity.2 The attempts to purge the semantic antimonies by banning
self-reference or by constructing sophisticated hierarchies only eliminate the class of paradoxes
that rely on the circular reference structures—if cyclical reference is not essential to the semantic
paradoxes, then the acyclical paradoxes remain unscathed. It remains an open question what
relations of reference between collections of sentences afford the structure necessary for para-
doxicality. Since “circularity” has traditionally been assumed to be essential, this issue has been
underrepresented in the literature on truth and semantic paradoxes3—but it is clear that no
such theory can lay claim to comprehensiveness until this question is answered. The resolution
of this general question, then, has great import for philosophical and mathematical accounts of
truth.
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brian.rabern@gmail.com
‡ Department of Mathematical Sciences, Clemson University, Clemson, SC 29634. email: macaule@clemson.edu
1 An early version of Yablo’s ω-paradox can be found in Yablo [1985], p. 340.
2 Priest [1997] argues that Yablo’s paradox actually does involve a form of circularity. Cook [2006] argues that

the (original) quantificational version of Yablo’s paradox does indeed involve this form of “circularity” but Cook
insists that this kind of circularity (which Cook [2006] classifies as “weak fixed point circularity”) is ubiquitous
in the language of arithmetic and therefore should not be thought of as the “culprit” involved in the paradox.
Cook [2006], then, goes on to show how to get rid of this weak form of circularity by moving to an infinitary
language—these are constructed by replacing universal quantification with infinite conjunction. The existence of
fixed points, in this sense, seems to be an artifact of encoding the paradox in a language that is too weak to
support genuine infinitary constructions (e.g. the language of arithmetic)—in this way the only resource available
is “potential infinities” in the form of recursive definitions that are circular by their very nature. By Yablo’s
paradox we mean the infinitary version that does not involve (strong or weak) “fixed point circularity”.

3 Although some preliminary investigations into paradox supporting structures have been conducted in Yablo
[1982], Yablo [1993], Yablo [2006] and Cook [2004] on a special class of restricted languages (see Appendix D).
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In this essay, we lay the groundwork for a general investigation into the nature of reference
structures that support the semantic paradoxes (e.g. the Liar and Yablo’s paradox) and the
semantic hypodoxes (e.g. the Truth-teller). To this end, in section 1 we develop a functionally
complete propositional language endowed with reference structure, which provides the sentence
systems that are susceptible to paradox (hypodox). For a given sentence system we demonstrate
how to extract the reference structural information in terms of graph-theoretic properties and
introduce the notions of dangerous and precarious reference graphs (section 2). This allows us
to rigorously define the task: classify the dangerous and precarious directed graphs purely in
terms of their graph-theoretic properties.

We make some significant progress towards this goal. Some interesting and useful danger
(precarity) preserving operations are discussed in section 3, including subdivision, smooth-
ing, and unwinding. In section 4 we introduce the notion of “ungroundedness”,4 which will
be shown to fully characterize dangerous finite graphs and fully characterize the precarious
reference graphs. Since there are acyclic infinite reference configurations, which in spite of their
ungroundedness, are unable to support paradoxes, it seems that the essential nature of paradox
supporting reference patterns is characterized neither in terms of circularity nor ungroundedness.
Nevertheless, in section 6 we also prove that an undirected graph has a dangerous orientation if
and only if it contains a cycle. So there remains some sense in which cyclic structure is required
for paradoxicality—this result requires further philosophical interpretation.

This leaves us the task of classifying danger for infinite acyclic reference graphs. In
section 5 we provide some compactness results, which give further necessary conditions on
danger in infinite graphs. Using the compactness results in conjunction with a notion of self-
containment we prove that dangerous acyclic graphs must have infinitely many vertices with
infinite out-degree. Overall we issue an interesting set of necessary and sufficient conditions on
the danger of infinite reference graphs. But a full characterization of danger remains an open
question.

In the appendices we tie up some loose ends, including appendix D, where we relate
our results to some similar results given in Cook [2004] and Yablo [2006] with respect to more
restricted sentences systems, which we call F-systems.

1. A functionally complete language of paradox

For each set of sentence names S, we will introduce an infinitary propositional language LS
which is functionally complete (i.e. expressively adequate in the sense that for every function
g : {0, 1}S → {0, 1} there is a sentence of LS that expresses g). We will then endow LS with a ref-
erence structure by adding a layer of arbitrary denotation relations between the sentence names
(i.e. the proposition letters) and the formulae of LS. These propositional languages endowed
with denotation relations will provide all the complexity needed for our general investigation
into the nature of paradox (hypodox) supporting reference structures.

1.1. Syntax for LS

For a set of sentence names S (of arbitrary cardinality) we define a language LS as follows. LS
contains the sentence names S, the nullary operators > and ⊥, the unary operator ¬, a binary
operator ∧ and the operator

∧
. The collection S+ of well-formed sentences of LS is given by

the following definition.

− Both > and ⊥ are sentences.

− For each α ∈ S, α is a sentence.

4 See Herzberger [1970], p. 150, Kripke [1975], p. 693.
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− If φ is a sentence, then ¬φ is a sentence.

− If φ and ψ are sentences, then φ ∧ ψ is a sentence.

− If I is an infinite set and {φi}i∈I is a sequence of sentences, then
∧
i∈I φi is a sentence.5

− Nothing else is a sentence.

Notice that we have defined a language LS for any given set of sentence names S. We will
often speak as if there is one language LS but bear in mind that we are really talking about
every language LS, unless otherwise stated.

We also define some shorthand for the language to ease our exposition. For sentences φ
and ψ in S+ , let φ∨ψ be shorthand for the sentence ¬(¬φ∧¬ψ). Additionally, if I is an infinite
set and {φi}i∈I is a sequence of sentences, we write

∨
i∈I φi as shorthand for ¬

∧
i∈I ¬φi.

1.2. Semantics for LS

It will help our exposition here and throughout the remainder of the paper, if we setup a way
of speaking in the metalanguage which mirrors our language LS.6 So let’s introduce operations
on the model-theoretic domain for our language by bestowing {0, 1} with the usual boolean
algebra structure. That is, for x, y ∈ {0, 1},

− ¬x =

{
0 if x = 1

1 if x = 0
,

− x ∧ y =

{
1 if x = 1 and y = 1

0 otherwise
,

− x ∨ y = ¬(¬x ∧ ¬y).

Additionally, for any set I and sequence {xi}i∈I with xi ∈ {0, 1} we let
∧
i∈I xi be 1 if each

xi is 1 and zero otherwise. Similarly to x ∨ y, we put
∨
i∈I xi = ¬

∧
i∈I ¬xi.

Now we define the compositionally determined truth-value of any sentence of LS relative to
an interpretation of the sentence names. Let a truth-value assignment be a function v from the
sentence names S to {0, 1}. Then for all χ ∈ S+ we define JχK(v) for a truth-value assignment
v as follows:7

− J>K(v) = 1,

− J⊥K(v) = 0,

− For all α ∈ S, JαK(v) = v(α),

− For all φ ∈ S+, J¬φK(v) = ¬JφK(v),

− For all φ, ψ ∈ S+, Jφ ∧ ψK(v) = JφK(v) ∧ JψK(v).

5 Our proof of functional completeness will show that we would still get a functionally complete language if
we placed the restriction |I| ≤ 2|S| on I.

6 In particular, by using the same symbols in the object and metalanguage, manipulations are easier to follow
since the basic equivalences that are true look like they should be true. We do respect the distinction between the
metalanguage and the object language throughout, but we’ve tried to not be overly pedantic. Our hope is that
this strategy reduces the cognitive work for the reader, without causing undue confusion. Additionally, in our
judgment this convention makes the presentation much more aesthetically pleasing.

7 Read “JχK(v)” as “the truth-value of χ relative to assignment v”.
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− If I is an infinite set and {φi}i∈I is a sequence of sentences
q∧

i∈I φi
y

(v) =
∧
i∈I JφiK (v).

Let VS be the set of all truth-value assignments on S. For χ ∈ S+, we write JχK for χ’s
associated function from VS to {0, 1} (we also call this the function induced by χ).

1.3. Functional completeness of LS

LS lacks both truth and falsity predicates and first-order quantification but, in the relevant
sense, there is nothing that cannot be expressed in the language. To see that adding the truth
and falsity predicates (say T and F) would not increase expressive power, note that in the pairs
(T(α), α) and (F(α) , ¬α) the sentences induce the same function from truth-value assignments
to {0, 1} as their respective pair-mate. Given that the size of the set of sentence names S can
have arbitrary cardinality and that there is no restriction on the length of sentences in S+,
the addition of first-order quantifiers would also not add expressive power. Those are intuitive
reasons why our expressive power would not be increased by the addition of these familiar
devices. Now we prove that LS is in fact expressively adequate.

Lemma 1. For any function g from VS to {0, 1} we have a sentence ζg ∈ S+ such that JζgK = g.

Proof. Let g be a function from VS to {0, 1}. First, if g is a constant function, put ζg = > if
g maps everything to 1 and ζg = ⊥ if g maps everything to 0. Otherwise, the strategy is to
first decompose g using Kronecker’s δ function and then exhibit subsentences which induce the
simple parts of g. From these subsentences we then construct the desired complex sentence.
Recall that Kronecker’s δ is a function of two arguments (in this case two truth-assignments),
which outputs 1 if the arguments are identical and 0 otherwise. So for r, v ∈ VS,

δrv =

{
1 if r = v

0 if r 6= v
.

Notice that for every r ∈ VS

g(r) =
∨
v∈VS

δrvg(v).

since for every v distinct from r, δrvg(v) = 0 and when v just is r, δrrg(r) = 1g(r) and g(r)
plus a bunch of 0’s still equals g(r). In the equation above g(v) only makes a difference when
it equals 1, so we can restrict our focus to the v’s where g(v) = 1. Let C = {v ∈ VS | g(v) = 1}.
Now for each r ∈ VS, we see that

g(r) =
∨
v∈C

δrv.

Thus it will be sufficient to construct, for each v ∈ C, a sentence χv such that JχvK(r) = δrv
for each r ∈ VS.

For v ∈ VS and α ∈ S, let

h(v, α) =

{
α if v(α) = 1

¬α if v(α) = 0
.

Then, for v ∈ C, define

χv =
∧
α∈S

h(v, α).
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Note that for every v ∈ C and for every r ∈ VS, JχvK(r) = δrv, since by design JχvK(r) = 1 iff
r = v. We have already established that for all r ∈ VS

g(r) =
∨
v∈C

δrv,

so it follows that for all r ∈ VS

g(r) =
∨
v∈C

JχvK(r).

Thus we may let ζg be the sentence ∨
v∈C

χv.

1.4. Denotation assignments and paradoxicality

Thus far we have defined an expressively adequate infinitary propositional language LS. But
clearly something is lacking, since nothing yet models the notions of “reference”, in the sense
of “self-reference”.8 So we cannot construct paradoxes in LS. Consider the normal statement of
the liar sentence:

(1) This sentence is not true.

Sentence (1) “references” itself since the complex demonstrative ‘this sentence’ contained
therein refers to sentence (1).9 We have no such resources in LS. We have formulae like ¬α but
there is no way to link α with ¬α. Another common way to state the liar paradox is as follows.

L: L is not true.

The colon is to be read as “refers to” or “denotes”, so that ‘L’ denotes the sentence ‘L is not
true’—just as ‘this sentence’ denotes sentence (1) above. If ‘L’ denotes the sentence ‘L is not
true’, then L = ‘L is not true’—compare: if ‘Cicero’ denotes Tully, then Cicero = Tully. This,
then seems to be the natural language phenomenon we need to model. We need to define a
relation on LS between the sentence names S and the sentences S+. And the relation should, in
fact, be a function, since we do not want sentence names to denote multiple sentences. Let’s call
this a “denotation” assignment, even though it needn’t be thought of in terms of the members
of S denoting sentences—it is just an arbitrary mapping from S to S+, which models the natural
language phenomenon.10

8 For a paradigmatic example of self-reference consult Rabern et al. [forthcoming], footnote 8.
9 We should flag that the phrase “what a sentence refers to” is often used in two distinct ways. The sense in

which the Liar sentence “refers” to itself should not be confused with claims about what the reference of the
Liar sentence is, in the sense of its “extension” in a truth-conditional semantics. The Liar sentence “refers” to
itself due to it containing a referential device (name, demonstrative, etc.) which refers to (designates) the Liar
sentence. Everything we say here is consistent with the Fregean doctrine that sentences refer to (designate) their
truth-values—the sentence ‘A ∧ ¬A’ refers to das Falsche but references A.

10 Given the way we have set things up the elements of S play two important roles that may seem to be in
conflict: (i) they are genuine sentences (and arguments to the truth-value assignment v) and (ii) they are “names”
of sentences, in the sense that the denotation function d maps them to sentences in S+. If the atomic sentences
(i.e. the elements of S) “denote” sentences, then we might expect that they should “denote” themselves. But
given our setup an atomic sentence not only can fail to “denote” itself it can “denote” any sentence whatsoever
(including its own negation).
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Definition 1. A denotation assignment is a function d from S to S+.

There is another feature of “reference”, which we must also account for. If ‘Atticus’ refers to
the sentence ‘Aardvarks swim’, then Atticus is a true sentence if and only if ‘Aardvarks swim’
is a true sentence. The liar paradox rests on this type of inference, e.g. when we assume that L
is true and then infer that the sentence ‘L is not true’ is true, this is justified by the assumption
that ‘L’ denotes ‘L is not true’. In general, then, our denotation assignment constrains which
truth-value assignments are acceptable—the only acceptable assignments are the ones that
assign to a sentence name a value identical to the truth-value of the sentence it denotes.

Definition 2. A truth-value assignment v is acceptable on S relative to d if and only if for
every α ∈ S, v(α) = Jd(α)K(v).

With a denotation assignment layered on top of our language LS, we can construct paradoxes.
For example, if we let S = {L} and d(L) = ¬L, then for any acceptable truth assignment v we
have

v(L) = J¬LK(v) = ¬JLK(v) = ¬v(L).

This is a contradiction. L relative to d is our formal representation of the liar paradox.11

Notice that here the things that are paradoxical are not just sentences of LS but sets of sentences
of LS relative to a denotation assignment—we call these pairs (S, d) sentence systems.

Definition 3. The sentence system (S, d) is paradoxical if there is no acceptable truth-value
assignment on S relative to d.

For another example, consider Yablo’s paradox.12. Let S = {Y1, Y2, Y2, . . . } and for each
Yk ∈ S, let d(Yk) =

∧
j>k ¬Yj . Then every sentence Yk says that every subsequent sentence is

false:

d(Y1) = ¬Y2 ∧ ¬Y3 ∧ ¬Y4 ∧ · · ·
d(Y2) = ¬Y3 ∧ ¬Y4 ∧ ¬Y5 ∧ · · ·
d(Y3) = ¬Y4 ∧ ¬Y5 ∧ ¬Y6 ∧ · · ·

...

The set of sentences {Y1, Y2, Y2, . . . } are paradoxical relative to d. If v is an acceptable truth
assignment, then

The framework in Cook [2004] has the potential conceptual advantage in that the expressions that do the
“denoting” are not genuine sentences of the formal language—they are simply names of sentences that can occur
as syntactic constituents of sentences. So if a sentence name α is a name of a sentence but α itself isn’t a sentence
then we should not expect that it denote itself.

This, however, introduces a conceptual oddity of its own. On this setup sentence names will also play two
important roles: (i) they are names of sentences and (ii) they are “truth-evaluable” expressions. One might think
that if a sentence name is not a genuine sentence then it is not truth-evaluable—names are not true or false.

We could make our presentation more in line with the strategy of Cook [2004] without endangering any
of the results. We would simply need to introduce a truth predicate T and have our atomic sentences be of the
form pT(α)q, for all α ∈ S. We would thereby downgrade the elements of S from their sentential status. And the
necessary equivalence in truth-value between every α ∈ S and its corresponding sentence T(α) would ensure that
nothing of mathematical import is impacted (although the proofs would become significantly more complicated
and messy). But given the equivalence we find it desirable to use the simplified formulation.

11 Whereas the common representation of the liar is “L: L is not true”, we have “d(L) = ¬L”. It should be
noted that our denotation function d plays an analogous role to the relation given by “:” in the more common
formulations.

12 See Yablo [1993].
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v(Yk) = J
∧
j>k

¬YjK(v) =
∧
j>k

J¬YjK(v) =
∧
j>k

¬JYjK(v) =
∧
j>k

¬v(Yj).

In particular, for each k,

v(Yk) = ¬v(Yk+1) ∧
∧

j>k+1

¬v(Yj) = ¬v(Yk+1) ∧ v(Yk+1) = 0.

Thus, 0 = v(Y0) =
∧
j>0 ¬v(Yj) =

∧
j>0 ¬0 = 1. A contradiction.

There is another class of self-referential puzzles, which don’t come out as paradoxical on
these definitions. Consider the sentence that says of itself that it is true (i.e. the truth-teller).
We represent this as the sentence system S = {T} and d(T ) = T . For any truth assignment v
we have

JT K(v) = v(T ).

So any truth assignment is acceptable. But is the correct assignment v(T ) = 1 or v(T ) = 0?
The problem is that nothing decides one truth assignment over the other. Unlike a paradox
where we are pulled in both directions, here we are pulled in neither direction. We will call such
situations hypodoxical, since here the truth-value is underdetermined.13

In the case of the truth-teller, the reference structure employed (i.e. self-reference), was
the same as the one employed in the liar paradox. But it could be that the reference structures
that support paradoxes are fundamentally different from those that support hypodoxes, so it is
desirable to pull these notions apart.

Definition 4. The sentence system (S, d) is hypodoxical if there is more than one acceptable
truth-value assignment on S relative to d.

1.5. Duals of paradox and hypodox

Cook [2004] demonstrates how to turn a paradox given in terms of conjunction and a falsity
predicate into a paradox given in terms of disjunction and a falsity predicate.14 We provide
a direct generalization of this for our more expressive languages. Anytime we have a paradox
(hypodox) we can construct a dual of the paradox (hypodox) with isomorphic reference relations.
To define this notion of dual precisely we first need to introduce notation for substitution.

Definition 5. Let S be a set of names and let ψ ∈ S+. Let {(αi, γi)}i∈I ⊆ S × S+ such that
the αi are pairwise distinct. We write ψ [αi ⇒ γi | i ∈ I] for the sentence obtained from ψ by
replacing each αi with γi.

15

For example, for {(A1, B1 ∧B2), (A2,¬A2)} ⊆ S× S+, (A1 ∧ (¬A1 ∨A2)) [Ai ⇒ Bi | i ∈ I] =
((B1 ∧B2) ∧ (¬(B1 ∧B2) ∨ ¬A2)).

Definition 6. For a sentence system (S, d) the dual denotation assignment d∗ on S is given by
d∗(α) = ¬d(α)[β ⇒ ¬β | β ∈ S].

It is not difficult to check that v is an acceptable truth assignment on S with respect to d if
and only if v∗ defined by v∗(α) = ¬v(α) is an acceptable truth assignment on S with respect to
d∗.

13 We adopt the term “hypodox” from Eldridge-Smith [2008]. Cook [2004] uses the term “indeterminate” for
the analogous notion with respect to F-systems.

14 See Cook [2004], p. 771-772. Cook limits his focus to languages with conjunction and a falsity predicate (i.e.
what we call F-systems; see Appendix D)

15 We will abuse this notation slightly in places by writing d(α)[β ⇒ w] to represent replacing all occurance of
β with w even when w is not in S+.
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For an easy example consider Jourdain’s paradox. Let S = {J1, J2} and let d be such that
d(J1) = ¬J2 and d(J2) = J1. So J1 says that J2 is false and J2 says that J1 is true. There is no
acceptable truth assignment for the system (S, d), since for any acceptable truth assignment v
we have

v(J2) = JJ1K(v) = v(J1) = J¬J2K(v) = ¬JJ2K(v) = ¬v(J2).

Thus,

v(J2) = ¬v(J2).

Then by definition 6 the dual of Jourdain’s paradox is given by the following:

d∗(J1) = ¬d(J1)[β ⇒ ¬β | β ∈ S] = ¬(¬¬J2),

d∗(J2) = ¬d(J2)[β ⇒ ¬β | β ∈ S] = ¬(¬J1).

We see that there is also no acceptable truth assignment for the system (S, d∗), since for any
acceptable truth assignment v we have

v(J2) = J¬(¬J1)K(v) = v(J1) = J¬(¬¬J2)K(v) = ¬JJ2K(v) = ¬v(J2).

And again,

v(J2) = ¬v(J2).

2. Reference graphs and danger

With the addition of denotation assignments we now have the ability to represent paradoxes
in LS by sentence systems (S, d). Since our overall aim is to study the “reference structures”
that support paradoxes, we need a way of extracting reference structural information from
sentence systems. Looking at an example provides guidance on how to go about extracting this
information.

Consider again Jordain’s paradox, where S = {J1, J2} and d is such that d(J1) = ¬J2 and
d(J2) = J1. What is the reference structure supporting this paradox? Intuitively, J1 references
J2 and J2 references J1, so that there is a pattern of cyclic reference.

J1 J2

Figure 1. The reference structure of Jourdain’s paradox.

As a first pass at defining the reference structure we might simply use the inputs and outputs
of the denotation assignment. But we immediately see that this is incorrect. On this approach
there would be no sense in which J1 references J2—it would only reference ¬J2. And if J1
referenced ¬J2, then there would be no cyclic reference, since the denotation assignment doesn’t
map ¬J2 anywhere. Instead we should say that it is in virtue of the denotation assignment
mapping J1 to the sentence ¬J2, that J1 references J2. This motivates the following definition.

Definition 7. We say that a sentence name α ∈ S references a sentence name β ∈ S with
respect to a denotation assignment d if the name β occurs as a syntactic constituent of d(α).

8



With this definition of referencing in play the “reference structure” of any given sentence
system (S, d) is best encoded as a directed graph in the following manner.16

Definition 8. Let S be a set of sentence names and d a denotation assignment. The reference
graph GS,d is the directed graph with vertex set S and an edge from α ∈ S to β ∈ S if and only
if α references β.

For example, we can now represent the reference graph of the Liar paradox as the self-loop,
since d(L) = ¬L and L occurs as a syntactic constituent of ¬L.

L

Figure 2. The Liar graph.

In Yablo’s paradox every sentence Yi denotes a sentence which has all the sentences names
Yj , for j > i, as syntactic constituents. So we get the result that in the reference graph every
sentence name references every “later” sentence name.

Y1 Y2 Y3 Y4 Y5

Figure 3. The Yablo graph.

We’d like to provide necessary and sufficient conditions for paradox (hypodox) supporting
reference graphs. For a reference graph to “support” a paradox (hypodox) we mean that there
is at least one paradoxical (hypodoxical) sentence system (S, d) with that reference structure.
So the self-loop is paradox and hypodox supporting since the reference graph of both the Liar
paradox and the Truth-teller hypodox are isomorphic to the self-loop. This notion of paradox
and hypodox supporting graphs is the central concern of this essay. We call paradox supporting
graphs dangerous and hypodox supporting graphs precarious.

Definition 9. We call a directed graph G dangerous if there exists a paradoxical sentence system
(S, d) such that G is isomorphic to GS,d.

Definition 10. We call a directed graph G precarious if there exists a hypodoxical sentence
system (S, d) such that G is isomorphic to GS,d.

The problem that guides our investigation, then, is this.

Problem. Classify the dangerous (precarious) directed graphs.

3. Danger preserving operations

As a first theoretical step toward solving this problem it is useful to find some basic graph
operations that preserve danger (precarity). Having these operations at our disposal allows
us to separate the wheat from the chaff by reducing complex graphs to simpler—yet still

16 A directed graph is just a binary relation on a certain domain, i.e. a directed graph G is a pair (V,E) where
E is a set of ordered pairs of elements from V . For the basics of graph theory see Diestel [2010]. We will do our
best to not assume that the reader is familiar with graph-theoretic terminology but a quick review of the basics
may prove helpful.
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dangerous (precarious)—graphs. In this way we can identify the salient properties and gain
a better understanding of the space of dangerous (precarious) graphs. We will make use of
these operations throughout the essay to help generate new paradoxes from old ones, find
counterexamples to conjectures, and for proving the later theorems.

3.1. Important graph-theoretic notions

Here we must introduce some essential graph-theoretic notions. One important concept is that
of a vertex’s neighbors. In a directed graph each vertex has both (i) an associated set of vertices,
which are the vertices it points to, (ii) and an associated set of vertices, which are the vertices
that point to it. We call these a vertex’s out-neighbors and in-neighbors, respectively.

Definition 11. Let G be a directed graph. We write N+
G (v) for or the set containing exactly the

vertices x in G such that there is an edge from v to x (v’s out-neighbors) and N−G (v) for the set
containing exactly the vertices x in G such that there is an edge from x to v (v’s in-neighbors) .

v

Figure 4. N−G (v) in red and N+
G (v) in green.

Another important notion is that of a subgraph. Intuitively, a subgraph of a graph is some
“part” of the graph. But there are different ways to take a part of a graph. You can either take
a subset of the vertex set and thrown out some of the edges therein or take a subset of the
vertex set and retain all the edges therein. The first is the general notion of a subgraph (i.e.
part) and the latter is the more specific concept of an induced subgraph (i.e. whole part). More
precisely these are defined as follows.

Definition 12. Let G be a directed graph. A subgraph H of G is a directed graph with vertex
set V (H) a subset of V (G) and edge set E(H) a subset of E(G) such that if xy ∈ E(H), then
x, y ∈ H. An induced subgraph H of G is a subgraph of G such that if x, y ∈ H and xy ∈ E(G),
then xy ∈ E(H). For A ⊆ V (G) we write G[A] for the induced subgraph of G with vertex set A.

d

b

e

c

f g

h i

a
d

b

e

c

f g

h i

a
d

b

e

c

f g

h i

a

Figure 5. A directed graph G, a subgraph of G with vertex set {c, e, f, g, h, i} and the graph G[c, e, f, g, h, i].

Now we turn to the danger preserving operations.
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3.2. Subgraphs

It seems that a graph should be dangerous (precarious) if and only if some part of it is. We
can prove that this is indeed that case. The forward implication is obvious and the reverse
implication is proved by assuming that a subgraph of a graph is dangerous (precarious) and
then demonstrating a procedure to construct an extended denotation assignment to the whole
graph while preserving danger (precarity).

Lemma 2. Let G be a directed graph. Then G is dangerous (precarious) if and only if some
subgraph of G is dangerous (precarious).

Proof. Since G is a subgraph of itself, the forward implication is immediate. For the reverse
implication, let H be a subgraph of G that is dangerous (precarious). View V (H) as a set of
sentence names and let d be a denotation assignment on V (H) such that (V (H), d) is paradoxical
(hypodoxical) and H = GV (H),d.

We construct a denotation assignment d′ on V (G) by employing “junk conjunctions” Jx = ⊥∧∧
y∈N+

G (x) y, for each x ∈ V (G). The denotation assignment d′ assigns to x a sentence containing

its junk conjunction—it is clear that this gets the referencing right, but the junk sentences
must be added in such a way that they have no impact on the acceptability of truth-value
assignments. For x ∈ V (G), let

d′(x) =

{
d(x) ∨ Jx if x ∈ V (H)

Jx if x 6∈ V (H)
.

Then, by construction, G = GV (G),d′ and (V (G), d′) is paradoxical (hypodoxical). Hence G is
dangerous (precarious).

For an example, consider the following version of Curry’s paradox. Put S = {A,B}, d(A) =
¬A ∨B and d(B) = ⊥. The reference graph of (S, d) is given in Figure 6. By Lemma 2, we can
determine that this graph is dangerous prior to considering Curry’s paradox, since it has the
self-loop as a subgraph.

AB

Figure 6. The Curry graph.

Above we added junk conjunctions, which did the trick because they established the right
reference relation while not affecting the acceptability of truth-assignments on the sentence
system. They were able to do this because on every truth-assignment they got the same value,
i.e. they were constant. We would also like to be able to remove constant junk from a sentence
system, thereby eliminating certain reference relations without affecting the acceptability of
truth-assignments.

For example, for the system S = A and d(A) = A ∧ ¬A we can modify d to d′(A) =
⊥ thereby removing the reference relations without affecting the acceptability of truth-value
assignments. If this procedure is carried out for all the constant junk in a sentence system, we
will say that the system is junk-free.17 Let’s define this notion and prove a lemma, while we are
on the topic of “junk”.

Definition 13. A sentence system (S, d) is junk-free if and only if for every α ∈ S, if d(α) 6∈
{⊥,>}, then there exist truth assignments v0, v1 on S such that Jd(α)K(v0) = 0 and Jd(α)K(v1) =
1.

17 Note that a system that is junk-free may still include “junky disjuncts” such as in the right disjunct of
B ∨ (A ∧ ¬A). Junk-free sentence systems are merely free of constant junk.

11



Since removing junk does not affect the acceptability of truth-assignments on a system, the
removal of junk preserves the paradoxicality (hypodoxicality) of a sentence system.

Lemma 3. Let the system (S, d) be paradoxical (hypodoxical). Then there is a denotation as-
signment d′ on S such that (S, d′) is junk-free, paradoxical (hypodoxical) and GS,d′ is a subgraph
of GS,d.

Proof. Assume (S, d) is paradoxical (hypodoxical). Let J be the set of α ∈ S such that there is
tα ∈ {0, 1} so that Jd(α)K(v) = tα for each v ∈ VS. For each α 6∈ J , let d′(α) = d(α) and for
α ∈ J , let

d′(α) =

{
⊥ if tα = 0

> if tα = 1
.

Then, by construction, (S, d′) is junk-free, paradoxical (hypodoxical) and GS,d′ is a subgraph
of GS,d.

3.3. Smoothing and subdividing

For a sentence system (S, d), intuitively, we can “simplify” it to the system (S′, d′) by picking
some α ∈ S, replacing every occurance of α with d(α) and then removing α from S. Doing
so gives rise to an additional danger preserving operation on graphs. This is supported by the
following lemma.

Lemma 4. Let S be a set and let ψ ∈ S+. Let v be a truth-value assignment on S. Let
{(αi, γi)}i∈I ⊆ S × S+ such that the αi are pairwise distinct. If v(αi) = JγiK(v) for each i ∈ I,
then

Jψ [αi ⇒ γi | i ∈ I]K (v) = JψK(v).

Proof. This is immediate from the definition of the semantics.

Now consider a pair (S, d) and α ∈ S such that α does not occur as a constituent of d(α).
Let S′ = S−{α} and for β ∈ S′ let d′(β) = d(β) [α⇒ d(α)]. Then d′ is a denotation assignment
on S′. Given a truth assignment v on S, let v′ be v restricted to S′. Then, by Lemma 4, v is
acceptable on S relative to d if and only if v′ is acceptable on S′ relative to d′. Thus the following
“smoothing” operation leaves dangerous graphs dangerous and precarious graphs precarious.

Definition 14. Let G be a directed graph. Let y ∈ V (G) such that yy 6∈ E(G). The smoothing of
G at y is the graph H with V (H) = V (G)−y and E(H) = E(G−y)∪{ab | a ∈ N−(y), b ∈ N+(y)}.

c d

y

a b

(a)

c d

a b

(b)

Figure 7. A graph and its smoothing at y.

The reverse operation of introducing a new name doesn’t behave nicely in general, but it
does in a few interesting special cases. One is that of a subdivision.
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Definition 15. Let G be a directed graph. A subdivision of G is a graph formed by replacing
each edge xy of G with a path pxy from x to y. Note that we allow pxy to be length 1; that is,
pxy = xy.

x

(a)

x y

(b)

x y

z

(c)

Figure 8. The Liar graph and two subdivisions.

Lemma 5. A subdivision of a directed graph G is dangerous if and only if G is.18

Proof. First, assume G is dangerous and let d be a denotation assignment on V (G) such that
G = GV (G),d and (V (G), d) is paradoxical. Let H be the subdivision of G where each edge
xy ∈ E(G) is replaced with the path pxy from x to y. Say the vertices of pxy in order are

x = z1xy, z
2
xy, . . . , z

kxy
xy = y. Define a denotation assignment d′ on V (H) by

d′(w) =

{
d(w)[y ⇒ z2wy | wy ∈ E(G)] if w ∈ V (G)

zj+1
xy if w = zjxy for xy ∈ E(G), j ≥ 2.

By construction we have H = GV (H),d′ . Now we will show that H is paradoxical with this
denotation assignment. Assume not and let v′ be an acceptable truth assignment on V (H) with
respect to d′ and let v be v′ restricted to V (G). Then for each xy ∈ E(G) and 2 ≤ j < kxy we

have Jd′(zjxy)K(v′) = Jzj+1
xy K(v′). Hence v′(z2xy) = Jd′(z2xy)K(v′) = Jd′(y)K(v′) = v′(y) since v′ is

acceptable. Thus for w ∈ V (G), by Lemma 4, we have v(w) = v′(w) = Jd′(w)K(v′) = Jd(w)[y ⇒
z2wy | wy ∈ E(G)]K(v′) = Jd(w)K(v′) = Jd(w)K(v). Whence v is acceptable on V (G) with respect
to d. This contradicts the fact that G is dangerous.

The other direction is very similar, basically we smooth at all of the subdivision vertices. We
omit the proof to avoid unnecessary tedium.

We should mention here that the fact that subdivision preserves danger entails that danger
is preserved under homeomorphisms and thus that being dangerous is a topological property of
directed graphs. The terms “homeomorphism” and “topological property” are usually applied
topological spaces and in particular undirected graphs. Even though a directed graph is not a
topological space, the straightforward generalization of the definitions gives a useful concept.

Definition 16. Two directed graphs G and H are homeomorphic if some subdivision of G is
isomorphic to some subdivision of H.

Lemma 6. If G and H are homeomorphic directed graphs, then G is dangerous if and only if
H is dangerous.

Proof. Assume G and H are homeomorphic directed graphs and let G′ and H ′ be subdivisions of
G and H respectively such that G′ is isomorphic to H ′. The lemma follows by applying Lemma
5 to G and G′ and to H and H ′.

18 This also holds for precarious graphs but we omit the proof here as it turns out to be quite nasty to write
down—and in any case follows trivially from the later results about precarity and groundedness (see Theorem
11). Similar remarks apply to precarity’s status as a topological property.
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3.4. Unwinding

We give a construction that turns any finite paradoxical sentence system into an infinite acyclic
paradoxical sentence system.19 Following Cook [2004], we call this construction unwinding the
paradox (see Figure 9).20 Cook gives a nice description of the philosophical import of unwinding.

The notion of unwinding sheds considerable light onto the relevance of Yablo’s paradox
to debates regarding the connections between paradox and circularity. Prior to Yablo’s
discovery, semantic paradox was thought by most to be inextricably linked to circularity.
Post Yablo, however, it is fair to say that most philosophers of language and logic think of
the infinite non-circular construction as an isolated curiosity. Unwinding finite paradoxes,
however, demonstrates that infinite non-circular constructions can be associated with each
instance of a wide class of circular finite paradoxes. As a result, we might be forced to
reconsider the assumption that circularity has any fundamental connection to the logical
and philosophical problems associated with truth.21

In what follows we show that an infinite non-circular construction can be associated with
each finite paradox. More precisely, we show that from any finite paradoxocial (hypodoxical)
sentence system we can get an infinite acyclic paradoxocial (hypodoxical) sentence system that
is paradoxical (hypodoxical) for essentially the same reason.

Definition 17. Let G be a finite directed graph and let < be a total order on V (G). Define
an ordering on V (G) × N by (x1, i) < (x2, j) if and only if i < j or i = j and x1 < x2. The
unwinding of G is the graph with vertex set V (G)×N with an edge from (x1, i) to (x2, j) if and
only if x1x2 ∈ E(G) and (x1, i) < (x2, j). We denote the unwinding of G with respect to the
ordering < by u<(G).

Figure 9. The 3-cycle and its unwinding at various stages.

19 Note that Cook’s 2004 proof of his unwinding theorem regarding F -systems works for unwindings of infinitary
systems as well as finitary ones. The proof strategy used here does not extend to the unwinding of all infinitary
systems—the cases where it would fail in the infinite case are related to the discussion of the elimination of
self-reference (and the Uniformity Constraint) in Schlenker [2007].

20 Cook [2004] attributes the basic idea of “unwinding” to Thomas Bolander who we know (from personal
communication) also has some unpublished results on the graph-theoretic nature of paradox supporting structures.
We in turn owe the idea of unwinding to Bolander via Cook [2004].

21 Cook [2004], p. 772.
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Lemma 7. Let G be a finite directed graph and let < be a total order on V (G). Then u<(G) is
acyclic.

Proof. Assume there is a directed cycle in u<(G) with vertices (x1, i1), (x2, y1), . . . , (xk, ik), (x1, i1).
Then by the definition of the edge set of u<(G), we have (x1, i1) < (x2, y1) < · · · < (xk, ik) <
(x1, i1), a contradiction. Hence there is no directed cycle.

Lemma 8. Let G be a finite directed graph and let < be a total order on V (G). Then G is
dangerous (precarious) if and only if u<(G) is dangerous (precarious).

Proof. Let d be a denotation assignment on V (G). Define a denotation assignment d′ on V (G)×N
as follows. For x ∈ V (G) and k ∈ N, put

Tx,k = d(x) [t⇒ (t, k + 1) | t ≤ x] [t⇒ (t, k) | t > x] .

That is, in the sentence d(x), we replace each t ∈ V (G) which is at most x with (t, k + 1) ∈
V (G)×N and then replace each each t ∈ V (G) which is greater than x with (t, k) ∈ V (G)×N.
This gets the referencing to match the unwinding graph.

Now for (x, k) ∈ V (G) × N, let d′((x, k)) =
∧
j≥k Tx,j . Then, by construction, GV (G)×N,d′ =

u<(G).
We first show that if G is not dangerous (precarious) then u<(G) is not dangerous (precar-

ious). Assume G is not dangerous (precarious). Let v be an acceptable truth assignment on
V (G) with respect to d. Define a truth assignment v′ on V (G)×N by setting v′((x, k)) = v(x).
Then

Jd′((x, k))K(v′) =
∧
j≥k

JTx,jK(v′)

=
∧
j≥k

d(x)
[
t⇒ v′((t, k + 1)) | t ≤ x

] [
t⇒ v′((t, k)) | t > x

]
=
∧
j≥k

d(x) [t⇒ v(t) | t ≤ x] [t⇒ v(t) | t > x]

=
∧
j≥k

Jd(x)K(v)

= Jd(x)K(v)

= v(x)

= v′((x, k))

Hence v′ is acceptable with respect to d′. Hence u<(G) is not dangerous. To see that u<(G) is
not precarious, note that if v1 and v2 are distinct acceptable truth assignments on V (G), then
v′1 and v′2 are distinct as well.

Now for the other direction, assume that u<(G) is not dangerous (precarious). Let v′ be an
acceptable truth assignment on V (G)× N with respect to d′.

We claim that for each x ∈ V (G), we have v′((x, k1)) = v′((x, k2)) for all k1, k2 ∈ N. Let
x ∈ V (G). Assume v′((x, k)) = 1 for some k ∈ N and let j ≥ k. We have 1 = v′((x, k)) =
Jd′((x, k))K(v′) = Jd′(x, j) ∧

∧
k≤i<j Tx,iK(v

′). Hence v′(x, j) = Jd′(x, j)K(v′) = 1. Hence for each

x ∈ V (G) we have Mx ∈ N such that either v′((x, j)) = 1 for all j ≥ Mx or v′((x, j)) = 0 for
all j ∈ N. Since G is finite, we can define M = maxx∈V (G)Mx. To get a contradiction, assume
there is some y ∈ V (G) and k ∈ N such that v′((y, k)) 6= v′((y,M)). Then from the above we
know that k < M , so we may let (z, j) be the maximum such pair. But by the definition of
d′, the constituents of d′((z, j)) are only pairs (x, i) with (x, i) > (z, j). By the maximality of
(z, j) we have v′((x, i)) = v′((x,M)) for any such (x, i). Hence v′((z, j)) = Jd′((z, j))K(v′) =
Jd′((z,M))K(v′) = v′((z,M)) which is the desired contradiction. This proves the claim.
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Define a truth assignment v on V (G) by letting v(x) = v′((x, 0)) for each x ∈ V (G). This
assignment is acceptable with respect to d since

v(x) = v′((x, 0))

= Jd′((x, 0))K(v′)

=
∧
j≥0

Jd(x)[t⇒ (t, j + 1) | t ≤ x][t⇒ (t, j) | t > xK](v′)

=
∧
j≥0

d(x)[t⇒ v′((t, j + 1)) | t ≤ x][t⇒ v′((t, j)) | t > x]

=
∧
j≥0

d(x)[t⇒ v′((t, j)) | t ≤ x][t⇒ v′((t, j)) | t > x]

=
∧
j≥0

d(x)[t⇒ v′((t, 0)) | t ∈ V (G)]

= d(x)[t⇒ v′((t, 0)) | t ∈ V (G)]

= Jd(x)K(v).

Thus G is not dangerous. By our claim above, different acceptable truth assignments on
V (G)× N will give different acceptable truth assignments on V (G). Hence G is not precarious
either.

4. Groundedness

Herzberger [1970] introduced a notion of “groundlessness” which was meant to capture the
way in which some sentences “suffer from unconsummated reference much like the bureaucratic
regress in which each clerk endlessly refers you to the next clerk to settle your accounts”.22

Herzberger’s idea was that each sentence has a “domain”, where this is understood as the set
of things it is about. And some sentences have domains that include sentences, whose domain
include sentences, etc. If this chain of aboutness never ends then the sentence is groundless.

The relation between a sentence S and its domain D(S) is sensitive to some of the same
factors that are operative in general set theory. In case some members of D(S) themselves
are sentences, they in turn will have their own domains, which collectively can be designated
D2(S): the aggregate of the domains of all sentences in the domain of S. And it can happen
that some members of D2(S) are sentences, and so on. Any sentence for which this process
fails to terminate will be called “groundless”: ‘S is groundless’ abbreviates ‘for each integer
k, Dk(S) is nonempty’.23

Herzberger relies on the intuitions of “aboutness” to give content to D. With our technology
we can make the idea of a sentence domain precise. For a given sentence system (S, d) we
can understand the domain of a sentence name α ∈ S, D(α) = N+(α) (i.e. the set of α’s
out-neighbors). In general we can define Dk(α) for each k as follows:24

D0(α) = {α},

For k ≥ 1, Dk(α) = N+(Dk−1(α)).

22 Herzberger [1970], p. 150. Of course, Kripke [1975] also makes use of and rigorously defines a notion of
“groundedness” but Kripke’s definition is tied up with his definitions of jumps and fixed-points, so its much easier
to see that Herzberger’s definition is an ancestor of our definition here.

23 Herzberger [1970].
24 Or as: Dk(α) = N+(N+(N+ · · ·N+(α))), where the N+ is iterated k times.
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Metaphorically, if a sentence is “grounded” then that excludes the ability to start at it and
walk along references forever. And this is clearly the notion that Herzberger is trying to capture
with “groundlessness”.

Definition 18. For a system (S, d) and α ∈ S, α is Herzberger-groundless if and only if for
each k, Dk(α) is non-empty.

0 1

1

2

1

2

3

1

2

3

4

1

2

3

4

5

123456

1
2

3
4

5
6

7

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 10. The black hole graph.

His definition, however, only captures this idea if sentences are restricted to finite length.
When we are dealing with sentences of infinite length, then there are sentences, which are
Herzberger-groundless, but which don’t involve cycles or infinite paths. To see this consider the
sentences system (S, d), where S = {Z,X1

1 , X
2
1 , X

2
2 , X

3
1 , X

3
2 , X

3
3 , . . . } and d(Z) =

∧
i≥1
∧

1≤j≤iX
i
j

and for each Xi
j with 1 ≤ j < i, d(Xi

j) = Xi
j+1. Here Z is Herzberger-groundless since for every

natural number k there is a chain of references of length k to the sentence name Xk
k , so for any

k, Dk(α) is non-empty. But there are no cycles and every path emanating from Z terminates
at some k (see Figure 10).

A more useful and appropriate definition of ungroundedness, however, is close at hand.
Let’s first define a ray, which is an infinite set of vertices connected by an infinite chain of
directed edges.

Definition 19. A ray in a directed graph G is a subgraph with vertex set {vi}i<ω and edge set
{(vi, vi+1)}i<ω.

Definition 20. A directed graph G is ungrounded if it contains a ray or a directed cycle.
Otherwise G is grounded.25

25 An anonymous referee suggests the following equivalent definition of ungrounded: a directed graph G is
ungrounded if G has a subgraph H in which every vertex has positive out-degree.
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v0 v1 v2 v3 v4

Figure 11. A ray.

Intuitively, if G is grounded, then we can obtain an acceptable truth assignment for any
denotation assignment on V (G) by repeatedly substituting the values of constant sentences in
for their names. Since we don’t make any arbitrary choices in this process, the constructed
acceptable truth assignment should be unique. To make performing this operation infinitely
many times precise we will apply Zorn’s lemma. Later we will use a similar proof idea to prove
a more general result.

Zorn’s Lemma. Every partially ordered set, in which every chain (i.e. totally ordered subset)
has an upper bound, contains at least one maximal element.

Definition 21. Let G be a directed graph. We say that A ⊆ V (G) is self-contained in G if
there are no edges in G directed from A to G−A.

Lemma 9. If a directed graph G is grounded, then it is not dangerous and not precarious.

Proof. Assume G is grounded. Let d be a denotation assignment on V (G) such that G = GV (G),d.
We will show that there is a unique acceptable truth assignment on V (G) with respect to d.
Since d was arbitrary, it follows that G is not dangerous and not precarious.

For A ⊆ V (G) which is self-contained in G, let dA be d restricted to A. Then dA is a
denotation assignment on A. If A has a unique acceptable truth assignment with respect to dA,
then we call this truth assignment vA and call the pair (A, vA) solved.

Let X be the collection of all solved pairs. Define a partial order < on X by (A, vA) < (B, vB)
if and only if A ( B and vA is vB restricted to A.

To apply Zorn’s lemma to (X,<), we need to show that X 6= ∅ and that every chain in (X,<)
has an upper bound. Since (∅, v∅) ∈ X we see that X 6= ∅. Now let (A1, vA1) < (A2, vA2) < · · ·
be an arbitrary chain in (X,<). Put U =

⋃
i>0Ai. Plainly, U is self-contained in G. For u ∈ U ,

let h(u) be the smallest i > 0 such that u ∈ Ai. Now, for u ∈ U , let vU (u) = vAh(u)(u). We claim

that (U, vU ) is an upper bound for the chain. By definition Ai ⊆ U and vAi is vU restricted to
Ai for each i > 0. It remains to be shown that vU is the unique acceptable truth assignment
on U with respect to dU . Assume vU is not acceptable and pick u ∈ U with h(u) minimal such
that vU (u) 6= JdU (u)K(vU ). Put B = Ah(u). Then

vB(u) = vU (u) 6= JdU (u)K(vU ) = JdB(u)K(vB) = vB(u).

This is a contradiction. Hence vU is acceptable. To see that vU is unique, assume there is
a different acceptable truth assignment on U with respect to dU , call it vO. Take u ∈ U with
h(u) minimal such that vU (u) 6= vO(u). Again put B = Ah(u). Then vO restricted to B is an
acceptable truth assignment on B with respect to dB which is different from vB. This is a
contradiction. Thus we conclude that (U, vU ) is an upper bound for the chain.

Applying Zorn’s lemma gives us a solved pair (M,vM ) which is maximal in (X,<). We will
show that M = V (G) and hence vM is the desired unique acceptable truth assignment on V (G)
with respect to d. So assume M 6= V (G). Put J = V (G)−M .

First assume that there is some z ∈ J such that T = M ∪ {z} is self-contained. Since T is
self-contained, d(z) involves only elements of M . Thus, letting vT (x) = vM (x) for each x ∈ M
and vT (z) = d(z)[x ⇒ vM (x) | x ∈ M ] makes vT the unique acceptable truth assignment on
T with respect to dT . We conclude that (T, vT ) ∈ X and (M,vM ) < (T, vT ) contradicting the
maximality of (M, vM ).

Thus we may assume that N+(z) ∩ J 6= ∅ for each z ∈ J . Pick z0 ∈ J . For k > 0, let
zk ∈ N+(zk−1) ∩ J . Since G is acyclic, z0z1z2 · · · is a ray in G contradicting the fact that G is
grounded. Whence M = V (G) and the proof is complete.
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Lemma 10. If a directed graph G contains a directed cycle, then it is both dangerous and
precarious.

Proof. By Lemma 2, we can assume that G is a directed cycle. Let V (G) = {v1, . . . , vk}. Let d
be a denotation assignment on V (G) with d(vi) = ¬vi+1 for i < k, d(vk) = ¬v1 if k is odd and
d(vk) = v1 if k is even. Then G = GV (G),d and (V (G), d) is paradoxical. Hence G is dangerous. To
see that G is precarious, just consider the denotation assignment d′ on V (G) with d′(vi) = vi+1

for i < k and d(vk) = v1. Both the truth assignment setting all the vi to 1 and the truth
assiggment setting all the vi to 0 are acceptable.

Theorem 11. A directed graph G is precarious if and only if it is ungrounded.

Proof. Lemma 9 gives the forward implication. For the reverse implication, by Lemma 2 and
Lemma 10 we only need to consider the case of G being a ray with vertex set {vi}i<ω. Let d
be a denotation assignment on V (G) with d(vi) = vi+1. Then G = GV (G),d and (V (G), d) is
hypodoxical because we get two acceptable truth-value assignments by setting all the vi to 1 or
setting all the vi to 0.

Corollary 12. If a directed graph is dangerous then it is precarious.

In the finite case, we get the following complete characterization of danger.

Corollary 13. Let G be a finite directed graph. The following are equivalent:

(a) G is dangerous;

(b) G is precarious;

(c) G contains a directed cycle;

(d) G contains a subdivision of the Liar graph.

The results above exhaust the relations between ungroundedness, cyclicity, precarity and
danger; that is, there are ungrounded graphs that are not dangerous (the ray in Figure 11),
precarious graphs that are not dangerous (again the ray in Figure 11) and dangerous graphs
that contain no cycle (the Yablo graph in Figure 3).

Definition 22. A homomorphism from a directed graph G to a directed graph H is a function
f : V (G) → V (H) such that if xy ∈ E(G), then f(x)f(y) ∈ E(H). If f is a bijection, and
f−1 : V (H) → V (G) is a homomorphism, the we call f an isomorphism. Additionally, we call
the graph with vertex set f(V (G)) and edge set {f(x)f(y) | xy ∈ E(G)} the homomorphic image
of G under f .

In Figure 12 we see an example of a non-isomorphic homomorphic image. Additionally, since
a path of length one is neither precarious nor dangerous, this example shows that taking of a
homomorphic image can introduce precarity and danger. However, precarity cannot be lost by
taking a homomorphic image as the next lemma shows.

x y

(a)

x, y

(b)

Figure 12. The Liar graph is a homomorphic image of the path of length one.

Lemma 14. Let G be a directed graph. Then G is precarious if and only if every homomorphic
image of G is precarious.
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Proof. Since G is a homomorphic image of it self, the reverse implication is trivial. To prove the
forward implication, assume G is precarious. Then, by Theorem 11 G contains a directed cycle
or a ray. Let H be a homomorphic image of G and let f : V (G)→ V (H) be a homomorphism.
If there is a directed path between x, y ∈ V (G), then we cannot have f(x) = f(y), for otherwise
H would contain a directed cycle and hence be precarious. In particular, G cannot contain a
directed cycle. Thus G contains a ray {vi}i<ω. If f(vi) = f(vj) for i 6= j, then H contains a
directed cycle and we are done. Otherwise H contains a ray and we are done.

Conjecture 15. Let G be a directed graph. Then G is dangerous if and only if every homo-
morphic image of G is dangerous.

5. Compactness and dangerous tails

5.1. Locally finite graphs

Using the compactness theorem of first-order logic, we will show that graphs for which N+(v)
is finite for every vertex v are not dangerous.

Gödel Compactness. A set of first-order sentences has a model if and only if every finite
subset of it has a model.

To apply this theorem we need to be careful since a first-order sentence must have finite
length. The following generalization of Lemma 1 gives us the control over the lengths of sentences
that we need.

Definition 23. For v ∈ VS and I ⊆ S, let

vI = {u ∈ VS | ∀α∈S−Iu(α) = v(α)} .

Definition 24. Let g be a function from VS to {0, 1}. We say that g is independent of I ⊆ S
if g is constant on vI for each v ∈ VS.

Note that every such function is independent of the empty set.

Lemma 16. For any function g from VS to {0, 1} and any I ⊆ S of which g is independent,
there exists a sentence ζg,I ∈ S+ with the following properties:

− no sentence name from I appears in ζg,I ;

− ζg,I = g;

− ζg,I has finite length if S− I is finite.

Proof. Let g be a function from VS to {0, 1}. First, if g is a constant function, put ζg,I = > if g
maps everything to 1 and ζg,I = ⊥ if g maps everything to 0.

Otherwise S − I has at least one element and we proceed as follows. Let B = {v ∈ VS |
∀α∈Iv(α) = 0}. Note that g is completely determined by its values on the elements of B.

For v ∈ VS and α ∈ S, let

P (v, α) =

{
α if v(α) = 1

¬α if v(α) = 0
.

Let C = {v ∈ B | g(v) = 1}. For v ∈ C, define
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χv =
∧

α∈S−I
P (v, α).

Note that χv(r) = g(r) if r = v and χv(r) = 0 if r 6= v. Let ζg,I be the sentence∨
v∈C

χv.

Then, for any r ∈ VS, we have

Jζg,IK(r) =

t∨
v∈C

χv

|

(r) =
∨
v∈C

JχvK(r) = JχrK(r) = g(r).

Hence ζg,I = g. Now the length of ζg,I is at most |C||S− I| ≤ |B||S− I| ≤ 2|S−I||S− I|. Thus
ζg,I has finite length if S− I is finite.

Lemma 17. Let G be a directed graph such that |N+
G (v)| is finite for every v ∈ V (G). If G is

dangerous then some finite subraph of G is dangerous.

Proof. Assume that no finite subgraph of G is dangerous and let d be a denotation assignment
on V (G) such that G = GV (G),d. For each v ∈ V (G), put Iv = V (G)−N+

G (v). Construct a first
order language L as follows. The constants of L are the vertices of G together with > and ⊥.
The axioms are the following.

− > 6= ⊥

− x = > ∨ x = ⊥ for each x ∈ V (G),

− x = ζJd(x)K,Ix for each x ∈ V (G).

By Lemma 16 each of the sentences is of finite length. Note that a model of the language is an
acceptable truth assignment on V (G) relative to d. Since no finite subgraph of G is dangerous,
every finite subset of the axioms has a model. Thus, by compactness, the whole language has a
model and hence (V (G), d) is not paradoxical. Since d was arbitrary, we conclude that G is not
dangerous.26

Corollary 18. Any directed acyclic graph G such that |N+
G (v)| is finite for every v ∈ V (G) is

not dangerous.

Proof. Combine Corollary 13 and Lemma 17.

5.2. Topological sorting

Now we show that if G is an acyclic directed graph then its vertices can be ordered left to right
such that edges only go to the right.

Definition 25. Let G be a directed graph. A vertex v ∈ V (G) is called a sink if N+
G (v) is empty

and a source if N−G (v) is empty.

26 The proof technique used here is very similar to the compactness-based proof of the De Bruijn-Erdös coloring
theorem (Bruijn and Erdos [1951]) stating that an infinite graph can be k-colored if and only if each of its finite
subgraphs can be k-colored. Lemma 17 can also be proved (as can the De Bruijn-Erdös theorem) by directly
applying Zorn’s lemma as we need to do in the more complicated results below.
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x

y

Figure 13. A graph with sink x and source y.

Definition 26. Let G be a directed graph. A topological sort on G is a total ordering < of
V (G) such that if (a, b) ∈ E(G), then a < b.

We prove the following easy lemma for completeness.

Lemma 19. If G is a finite directed acyclic graph, then G has a topological sort.

Proof. Assume (to reach a contradiction) that the lemma is false and let G be a counterexample
with the minimum number of vertices. Since G is finite it has a source v. By minimality G− v
has a topological sort {v1, . . . , vr}. But then {v, v1, . . . , vr} is a topological sort of G. This is a
contradiction.

Lemma 20. Let G be an directed acyclic graph. Then G has a topological sort.

Proof. We construct a first order language L and apply the compactness theorem. Let the
elements of V (G) be the constants of L and let R be L’s only relation symbol. Define the
axioms of L as follows.

− ¬(a = b) for all distinct a, b ∈ V (G),

− aRb for all (a, b) ∈ E(G),

− aRb→ ¬(bRa) for all a, b ∈ V (G),

− aRb ∨ bRa ∨ a = b for all a, b ∈ V (G),

− (aRb ∧ bRc)→ aRc for all a, b, c ∈ V (G).

Let A be a finite subset of the axioms. Let C be the set of all constants appearing in some
axiom of A. Create A′ from A by adding in all axioms involving only the elements of C. Then
A′ is still finite and if A′ has a model, so does A. Put H = G[C]. Since H is finite and acyclic it
has a topological sort <. Letting < be the interpretation of R gives a model of A′ and hence A.

Thus, by the compactness theorem, the entire set of axioms has a model. The interpretation
of R in this model is the desired topological sort.

5.3. Dangerous tails

Lemma 21. Let G be a directed graph. If for every induced subgraph H of G there exists
∅ 6= C ⊆ V (H) which is self-contained in H such that G[C] is not dangerous, then G is not
dangerous.

Proof. Assume that for every induced subgraph H of G there exists ∅ 6= C ⊆ V (H) which is
self-contained in H such that G[C] is not dangerous. Let d be a denotation assignment on V (G)
such that G = GV (G),d. We will show that there is an acceptable truth assignment on V (G) with
respect to d. Since d was arbitrary, it follows that G is not dangerous.
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For A ⊆ V (G) which is self-contained in G, let dA be d restricted to A. Then dA is a
denotation assignment on A. If A has an acceptable truth assignment with respect to dA, then
we pick an acceptable truth assignment vA and call the pair (A, vA) solved.

Let X be the collection of all solved pairs. Define a partial order < on X by (A, vA) < (B, vB)
if and only if A ( B and vA is vB restricted to A.

To apply Zorn’s lemma to (X,<), we need to show that X 6= ∅ and that every chain in (X,<)
has an upper bound. Since (∅, v∅) ∈ X we see that X 6= ∅. Now let (A1, vA1) < (A2, vA2) < · · ·
be an arbitrary chain in (X,<). Put U =

⋃
i>0Ai. Plainly, U is self-contained in G. For u ∈ U ,

let h(u) be the smallest i > 0 such that u ∈ Ai. Now, for u ∈ U , let vU (u) = vAh(u)(u). We claim

that (U, vU ) is an upper bound for the chain. By definition Ai ⊆ U and vAi is vU restricted
to Ai for each i > 0. It remains to be shown that vU is an acceptable truth assignment on U
with respect to dU . Assume vU is not acceptable and pick u ∈ U with h(u) minimal such that
vU (u) 6= JdU (u)K(vU ). Put B = Ah(u). Then

vB(u) = vU (u) 6= JdU (u)K(vU ) = JdB(u)K(vB) = vB(u).

This is a contradiction. Hence vU is acceptable. Thus we conclude that (U, vU ) is an upper
bound for the chain.

Applying Zorn’s lemma gives us a solved pair (M, vM ) which is maximal in (X,<). We will
show that M = V (G) and hence vM is the desired acceptable truth assignment on V (G) with
respect to d. So assume M 6= V (G). Put H = G−M . By assumption, we have ∅ 6= C ⊆ V (H)
which is self-contained in H such that G[C] is not dangerous. Put B = M ∪ C. Note that B is
self-contained. Since C is not dangerous, we can extend vM to an acceptable truth assignment
vB on B with respect to dB. But then (B, vB) ∈ X and (B, vB) > (M,vM ) contradicting the
maximality of (M, vM ). Hence M = V (G) and the proof is complete.

A good way to get self-contained sets in an acyclic graph is to topological sort the graph and
take all vertices “to the right” of a given vertex. To make this precise we introduce the concept
of a tail.

Definition 27. Let G be a directed acyclic graph and let < be a topological sort on G. For
z ∈ V (G), the z-tail of G (with respect to <) is the subgraph induced on {x ∈ V (G) | x > z}.
An induced subgraph of G that is a z-tail for some z ∈ V (G) is called a tail of G.

Lemma 22. Let G be a directed acyclic graph and let < be a topological sort on G. If every
induced subgraph of G has a tail which is not dangerous, then G is not dangerous.

Proof. Let H be an arbitrary induced subgraph of G. We need to show that there exists ∅ 6= A ⊆
V (H) which is self-contained in H such that G[A] is not dangerous. Pick z ∈ V (H) such that
the z-tail of H is not dangerous. Let Tz be the z-tail of H. Note that Tz is self-contained. Thus,
if Tz is non-empty, then we are done. Hence we may assume that Tz is empty. But then x ≤ z
for every x ∈ V (H). Hence z is a sink in H and in particular, {z} is a non-empty, self-contained
set which induces a non-dangerous graph. This completes the proof.

Corollary 23. If G is a dangerous directed acyclic graph, then |N+
G (v)| is infinite for infinitely

many v ∈ V (G).

Proof. Let G be a directed acyclic graph G such that |N+
G (v)| is infinite for only finitely many

v ∈ V (G). By Lemma 20 G has a topological sort <. Let H be an arbitrary induced subgraph of
G. Since there are only finitely many v ∈ V (H) with |N+

G (v)| infinite, there is a largest (under
the order <) such vertex zH . Then the zH -tail of H has no vertices with infinite out degree and
hence is not dangerous by Lemma 17. Thus every induced subgraph of G has a non-dangerous
tail. Applying Lemma 22 finishes the proof.
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6. Reciprocity and underlying graphs

Let S = {A1, A2, . . .} and d(Ai) = ¬Ai+1. Then the reference graph of the sentence system
(S, d) is the ray and we know that this is precarious but not dangerous from above. Intuitively,
in the reference graph we have an edge from A1 to A2 because d(A1) is “a function of” of A2.

27

In this case, fixing the value of A2 determines what the value of A1 must be. But it is also
true that fixing the value of A1 determines what the value of A2 must be—so A1 and A2 are
reciprocal. Looking at it this way, we would want to see an edge going in both directions. We
can capture these intuitive ideas by considering necessary and sufficient conditions for danger
on the underlying undirected graph of a directed graph G.

Definition 28. Let G be a directed graph. The underlying undirected graph of G is the graph
U(G) with vertex set V (G) and an edge between x, y ∈ V (G) for each xy ∈ E(G) and yx ∈ E(G).
We also call G an orientation of U(G).28

It turns out that we can completely classify the undirected graphs which have dangerous
orientations—they are precisely the ones containing a cycle.

Theorem 24. A graph has a dangerous orientation if and only if it contains a cycle.

Proof. The reverse direction is easy, since if F is a graph that contains a cycle we may orient the
edges of the cycle clockwise and the other edges arbitrarily and conclude that the orientation
is dangerous using Lemma 10.

For the forward direction, assume G is a directed graph such that U(G) is acyclic. Let d be a
denotation assignment on V (G) such that G = GV (G),d. By Lemma 3 we may assume that there
is no “junk”; that is, for every x ∈ V (G), if d(x) 6∈ {⊥,>}, then there exist truth assignments
v0, v1 on V (G) such that Jd(x)K(v0) = 0 and Jd(x)K(v1) = 1. Also, without loss of generality, we
may assume that U(G) is connected.

For A ⊆ V (G), call x ∈ A interior to A if x has no edges to G−A. The set of interior vertices
of A is the interior of A and is denoted I(A). Let the exterior vertices of A be E(A) = A−I(A).
Call A ⊆ V (G) tame if U(G[A]) is connected and for each x ∈ E(A) we have N+(x) ∩ A = ∅.
Additionally, let dA be d restricted to A. We need to extend the notion of acceptable truth
assignment as follows. A function v from A to {0, 1} is called acceptable on A relative to dA
if for each y ∈ I(A) we have JdA(y)K(v) = v(y). This is well-defined since dA(y) involves only
elements of A by the definition of I(A).

Now, for tame A ⊆ V (G) we call the pair (A, vA) solved if vA is an acceptable truth
assignment (in the extended sense above) on A with respect to dA. Let X be the set of all
solved pairs in G. Define a partial ordering on X by (A, vA) < (B, vB) if and only if A ( B and
vA is vB restricted to A.

To apply Zorn’s lemma to (X,<), we need to show that X 6= ∅ and that every chain in (X,<)
has an upper bound. Since (∅, v∅) ∈ X we see that X 6= ∅. Now let (A1, vA1) < (A2, vA2) < · · ·
be an arbitrary chain in (X,<). Put U =

⋃
i>0Ai. Plainly, Ai ⊆ U for each i ≥ 1.

Now we show that U is tame. Let a, b ∈ U . Then we have ia and ib such that a ∈ Aia and
b ∈ Aib . Let i be the maximum of ia and ib. Then a, b ∈ Ai. Since Ai is tame, U(G[Ai]) is
connected. Hence there is a path between a and b in U(G[U ]). Since a and b were arbitrary
elements of U , we conclude that U(G[U ]) is connected. Since an exterior vertex of U must be
exterior in each Ai that contains it, we see that N+(x) ∩ U = ∅ for each x ∈ E(U). Whence U
is tame.

We claim that if u ∈ I(U), then u ∈ I(Ai) for some i ≥ 1. Pick k such that u ∈ Ak. If
N+(u) ∩ (U −Ak) is empty then we have u ∈ I(Ak). Otherwise we may pick y ∈ N+(u) ∩

27 This intuitive idea of “dependence” can only be taken so far. In Appendix C we show that defining a graph
based on “dependence” turns out to be useless in general.

28 Note that if G contains a cycle of length two through vertices x and y—such as in Jourdain’s paradox—then
U(G) will have two edges between x and y.
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(U −Ak). Since u is in the interior of U , y ∈ Aj for some j > k. But Aj is tame and u ∈ Aj , so
we must have either u ∈ I(Aj) or N+(u) ∩ Aj = ∅. The latter is impossible since uy ∈ G[Aj ].
Hence u ∈ I(Aj). This proves the claim.

Now we construct an acceptable truth assignment vU on U . For u ∈ U , let ku be minimal
such that u ∈ Aku , and let vU (u) = vAku (u). We claim that (U, vU ) is a solved pair. By definition
vAi is vU restricted to Ai for each i ≥ 1. Thus it only remains to show that vU is an acceptable
truth assignment on U . Take y ∈ I(U) and let r ≥ 1 be minimal such that y ∈ I(Ar). Then
JdU (y)K(vU ) = JdAr(y)K(vAr) = vAr(y) = vU (y) since vAr is acceptable on Ar. Hence vU is
acceptable on U and thus (U, vU ) is a solved pair.

Thus every chain in (X,<) has an upper bound and Zorn’s lemma gives us a maximal element
(M,vM ) ∈ X. If M = V (G), then vM is an acceptable truth assignment on V (G) with respect
to d and we are done. Thus assume that M 6= V (G).

First if E(M) 6= ∅ then pick z ∈ E(M). PutM ′ = M∪N+(z). Then z ∈ I(M ′). Since U(G[M ])
is connected and U(G) is acyclic we see that for each x ∈ E(M ′) we have N+(x) ∩M ′ = ∅.
Additionally, it is clear that U(G[M ′]) is connected. Hence M ′ is tame. Since there is no “junk”
we can define an acceptable truth assignment v′ on M ′ by letting v′(x) = vM (x) for x ∈ M
and choosing the values of v′ on N+(z) so that Jd(z)K(v′) = vM (z). But then (M ′, v′) ∈ X and
(M ′, v′) > (M,vM ) contradicting the maximality of (M,vM ).

Hence we may assume that M = I(M). If M 6= ∅, then since U(G) is connected we have
z ∈ V (G)−M and y ∈M such that zy ∈ E(G). If M = ∅, then pick z ∈ V (G) arbitrarily. Put
M ′ = M ∪ {z} ∪N+(z). Since U(G[M ]) is connected and U(G) is acyclic we see that for each
x ∈ E(M ′) we have N+(x) ∩M ′ = ∅. If M = ∅, then U(G[M ′]) is clearly connected, otherwise
since zy ∈ E(G) we see that U(G[M ′]) is connected. Hence M ′ is tame. Extend vM to a truth
assignment v′ on M ′ by letting v′(x) = 0 for each x ∈ N+(z) − {y} and letting v′(z) be the
resulting forced value. But then (M ′, v′) ∈ X, and (M ′, v′) > (M, vM ), which contradicts the
maximality of (M,vM ).

Thus V (G) = M , and vM is an acceptable truth assignment on V (G). Hence G is not
dangerous.

The philosophical implications of this theorem remain to be determined. But it seems that
there is some sense in which cyclic structure is required for paradoxicality.

Appendix

A. The global function

We briefly mention an equivalent formulation of a paradoxical (hypodoxical) pair in terms of
fixed points of functions.

Definition 29. Let S be a set of sentence names. Any function f : VS → VS gives rise to a
denotation assignment df on S as follows. For each α ∈ S, let fα : VS → {0, 1} be given by
fα(v) = f(v)(α). Then put df (α) = ζfα for each α ∈ S.

Going the other direction, for a denotation assignment d on S the global function FS,d :
VS → VS is given by FS,d(v)(α) = Jd(α)K(v). Note that these constructions are inverses of each
other; that is, FS,df = f and dFS,d

= d.

Lemma 25. Let S be a set of sentence names and d a denotation assignment on S. The pair
(S, d) is paradoxical (hypodoxical) if and only if FS,d has zero (more than one) fixed point.

Proof. Just note that v ∈ VS is a fixed point of FS,d if and only if v(α) = FS,d(v)(α) = Jd(α)K(v)
if and only if v is a acceptable truth assignment on S with respect to d.
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This formulation is quite useful for constructing examples. Let S be the natural numbers N.
We can write each point x ∈ [0, 1] as a binary decimal 0.b1b2b3 · · · , and so any function f from
the unit interval to itself gives rise to a denotation assignment df on S.29 Moreover, if f has no
fixed points, then df is paradoxical.

B. Subdivisions of Yablo?

As we saw in Corollary 13, a finite directed graph is dangerous if and only if it contains a
subgraph homeomorphic to the Liar graph. It is tempting to think that a simple topological
characterization might work in the infinite case as well. The obvious candidate to try is the Yablo
graph. However, the following example gives a dangerous graph with no subgraph homeomorphic
to the Liar graph and no subgraph homeormorphic to the Yablo graph.

Consider the following setup. Let S = {A1, A2, A3, . . . B1, B2, B3, . . . } and for each Ai ∈ S,
let d(Ai) = Bi and for each Bi ∈ S, let d(Bi) =

∧
j>i ¬Aj . So each Ai says that Bi is true, while

each Bi says all the Aj are false, for j > i.

d(A1) = B1, d(B1) = ¬A2 ∧ ¬A3 ∧ ¬A4 ∧ . . .
d(A2) = B2, d(B2) = ¬A3 ∧ ¬A4 ∧ ¬A5 ∧ . . .
d(A3) = B3, d(B3) = ¬A4 ∧ ¬A5 ∧ ¬A6 ∧ . . .

...
...

There is no acceptable truth assignment for (S, d), since if v is an acceptable truth assignment,
then

v(Ai) = JBiK(v) = v(Bi)

and

v(Bi) = J
∧
j>i

¬AjK(v) =
∧
j>i

J¬AiK(v) =
∧
j>i

¬JAjK(v) =
∧
j>i

¬v(Aj) =
∧
j>i

¬v(Bj).

In particular, for each i,

v(Bi) = ¬v(Bi+1) ∧
∧

j>i+1

¬v(Bj) = ¬v(Bi+1) ∧ v(Bi+1) = 0.

Thus,

0 = v(B0) =
∧
j>0

¬v(Bj) =
∧
j>0

¬0 = 1.

C. Dependence and reference

Given a denotation assignment d on a set S, we might try to define what it means for α ∈ S
to “depend on” β ∈ S. In the above we took a purely syntactic route with reference. We note
that if α does not reference β, then surely α does not “depend on” β in any direct sense. Can
we get a semantic notion of dependence that gives rise to a meaningful dependence structure?
The following is the natural definition to try.

29 For definiteness, for x ∈ [0, 1) we take the (unique) binary decimal representation with infinitely many zeros
and for x = 1 we take 0.11111.... Since this mapping is not surjective, there are some functions from truth value
assignments to truth value assignments that are not represented as a function from [0, 1] to [0, 1].
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Definition 30. Let d be a denotation assignment on a set S. We say that α ∈ S depends on
β ∈ S if there exist truth assignments v1, v2 on S which differ only on β such that Jd(α)K(v1) 6=
Jd(α)K(v2). The dependence graph of DS,d is the graph with vertex set S and an edge from α ∈ S
to β ∈ S if and only if α depends on β.

It is not difficult to see that the dependence graph and the reference graph coincide for
the F-systems studied by Cook and Yablo (see Appendix D). Also, the dependence graph is
meaningful for finite sentence systems. However, when we move to the infinite, we can get
situations where infinitely many values of v must be changed in order to change Jd(α)K(v) for
a given α. In particular, we can get paradoxes with the Yablo graph as reference graph which
have a dependence graph with no edges at all. In these cases, we cannot tell anything useful
about the possibility of a paradox by looking at the dependence graph. We give two examples
of this phenomenon.

For the first example, consider a countably infinite list of sentences, where each one is true if
and only if infinitely many of the sentences after it are false. We can encode this in a sentence
system as follows. Let S = {A1, A2, . . . } and define a denotation assignment d on S by d(Ak) =
¬
∨
i>k

∧
j≥iAj , for each k. We leave it as an exercise to check that this is indeed a paradox.

The dependence graph has no edges because for any truth assignment, toggling the value of a
single sentence will not affect the truth-value of any other sentence.

The second example is based on the fact that flipping only finitely many bits in the binary
representation of a real number cannot change it from being rational to irrational or vice-versa.
Let [0, 1] ⊆ R denote the unit interval. The function f : [0, 1] → [0, 1] given by f(x) = 0
if x is irrational and f(x) =

√
2/2 if x is rational has no fixed point since 0 is rational and√

2/2 is irrational. Using the results about the global function in Appendix A this gives rise
to a paradox. However, the paradox is not very interesting since it contains cycles. But we can
easily remove the cycles and get a paradox with the same irrational flavor. To this end, let
S = {Sk}k<ω be a set of sentence names. For each k < ω define a function hk : VS → [0, 1] by
letting hk(v) be the binary decimal 0.v(Sk+1)v(Sk+2)v(Sk+3) . . .. Now for each k < ω define a
function gk : VS → {0, 1} as follows. For v ∈ VS, let

gk(s) =

{
1 if hk(s) ∈ Q and the k-th digit of the binary decimal form of

√
2
2 is 1,

0 otherwise.

Now by Lemma 16, for each k < ω we have γk ∈ S+ involving no element of {S0, S1, . . . , Sk}
such that γk(v) = gk(v) for each v ∈ VS. Let d be a denotation assignment on S such that
d(Sk) = γk.

We claim that (S, d) is paradoxical. Assume (to reach a contradiction) that we have a truth-
value assignment v ∈ VS which is acceptable on S with respect to d. Let y = 0.v(S0)v(S1)v(S2) . . ..
Note that if y ∈ Q, then hk(v) ∈ Q for all k and if y 6∈ Q, then hk(v) 6∈ Q. Now, v is acceptable,
so v(Sk) = d(Sk)(v) = γk(v) = gk(v). Hence y = 0.g0(v)g1(v)g2(v) . . .. If y ∈ Q, then gk(v) = 1

if and only if the k-th digit of the reduced binary form of
√
2
2 is 1. Thus y =

√
2
2 6∈ Q. This is a

contradiction. Thus we must have y 6∈ Q. But then gk(v) = 0 for all k, so y = 0 ∈ Q. Again this
is a contradiction.

D. F-systems

It is instructive to apply our terminology to the type of sentence systems that have been
investigated most in the literature—we call these F-systems.30 Intuitively, F-systems are sen-
tence systems which are restricted in such a way that all the sentences can only say that

30 We should note that we started this project in 2006 completely oblivious to the fact that there was any
literature relating graph theory to the reference relations involved in paradox—except for the brief discussion in

27



other sentences in the system are false. For Cook [2004] the language LP and his denotation
function δ give rise to an F-system, since the only well-formed sentences of LP are (possibly
infinite) conjunctions of negations.31 The motivation for theorists to restrict their attention to
the reference structures inherent in F-systems, we take it, is because both the Liar paradox and
Yablo’s paradox can be represented by F-systems.32 But there are many paradoxical systems
such as Jourdain’s and Curry’s, which are not F-systems—and many hypodoxical systems such
as the Truth-teller, which are not F-systems. For these reasons we have focused on the more
inclusive language LS and the general class of sentence systems. F-systems, however, are a subset
of the general class of sentence systems discussed throughout this essay, defined as follows.

Definition 31. Let G be a sink-free directed graph. The pair FG = (V (G), d) where d(x) =∧
y∈N+(x) ¬y for each x ∈ V (G) is called the F-system on G. Note that by construction GV (G),d =

G.

It turns out that F-system paradoxicality and hypodoxicality can be characterized in graph-
theoretic terms.

Definition 32. Let G be a directed graph. We call A ⊆ V (G) independent if G[A] is edgeless.

Definition 33. Let G be a directed graph. A kernel in G is an independent set of vertices
K ⊆ V (G) such that each vertex in V (G)−K has an edge into K.

Definition 34. Let X be a set. For any A ⊆ X, we call the function 1A : X → {0, 1} given by

1A(x) =

{
1 if x ∈ A
0 if x 6∈ A

the characteristic function of A on X.

Lemma 26 (Cook). Let G be a sink-free directed graph. Then there is a bijection h between the
kernels of G and the acceptable truth assignments on FG given by h(K) = 1K .

Proof. We first need to show that h maps kernels to acceptable truth assignments. So, let K be
a kernel and let v = h(K). Then for any x ∈ V (G) we have

Jd(x)K(v) = J
∧

y∈N+(x)

¬yK(v) =
∧

y∈N+(x)

¬v(y).

Since K is independent, if x ∈ K, then N+(x) ⊆ V (G)−K and hence we have Jd(x)K(v) =
1 = v(x). Since each vertex in V (G) − K has an edge into K, if x ∈ V (G) − K we have
Jd(x)K(v) = 0 = v(x). Thus v is acceptable on V (G).

Next we check that h is injective. So, let K1,K2 be kernels in G such that h(K1) = h(K2).
Then 1K1 = 1K2 and hence K1 = K2. Thus h is injective.

It remains to check that h is surjective. So, let v be an acceptable truth assignment on FG.
Put K = {x ∈ V (G) | v(x) = 1}. Since v is acceptable, we see that K must be independent.

Yablo [2006]. That paper in conjunction with the issue raised in Yablo [1993] was the impetus for this project.
We faintly recall being informed of Cook [2004] in 2008 by Andy McGonigal (during a late night conversation at
the Phoenix). We have since adopted some of Cook’s terminology (e.g. “denotation assignment” and “sentence
name”) and the overall presentation has benefited by comparing and contrasting his presentation with our own.
We include this appendix to make note of the relations between that paper and this one.

31 Note that LP is not functionally complete in the way our LS is (see subsection 1.3). LP has conjunction,
a class of sentence names S = {αi}i∈I , a falsity predicate F and the only well-formed sentences in S+ are
(unrestricted) conjunctions of the form

∧
i∈I F (αi). So, clearly, there is a function g from VS to {0, 1} such that

there is no sentence ζg ∈ S+ such that JζgK = g.
32 As pointed out by the anonymous referee, another nicety of the F-system setup is that a graph is either

paradoxical, determinate, or indeterminate (in Cook’s terminology); whereas in our setup any dangerous graph
is precarious as well.
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Now, pick x ∈ V (G)−K. Since v(x) = 0 and G is sink-free, for some y ∈ N+(x) we must have
v(y) = 1 and hence y ∈ K. Thus K is a kernel in G. By definition we have h(K) = v. Hence h
is surjective.

Lemma 26 immediately implies Cook’s graph theoretical characterization of F-system para-
dox.

Theorem 27 (Cook). Let G be a sink-free directed graph. Then FG is paradoxical if and only
if G has no kernel.

Additionally, we get a graph theoretical characterization of F-system hypodox.

Theorem 28 (Cook). Let G be a sink-free directed graph. Then FG is hypodoxical if and only
if G has more than one kernel.

Since a directed graph G is dangerous (precarious) if FG is a paradox (hypodox) we get the
following corollaries.

Corollary 29. If G is a sink-free directed graph with no kernel, then G is dangerous.

Corollary 30. If G is a sink-free directed graph with more than one kernel, then G is precarious.

Yablo [2006] gave some sufficient conditions for an F-system to be paradoxical. In light of
Cook’s theorem above we can view these as sufficient conditions for a sink-free directed graph
to have no kernel. Here we give a generalization of Yablo’s conditions.

Definition 35. Let A be an infinite set. We say that B ⊆ A is cofinite in A if A−B is a finite
set.

Lemma 31. Fix n ≥ 1. Let G be an acyclic sink-free directed graph such that for any n different
vertices x1, x2, . . . , xn ∈ V (G) the set

⋃
1≤i≤nN

+(xi) is cofinite in V (G). Then G contains no

kernel.33

Proof. Assume the lemma is false and let K be a kernel in G. Since G is acyclic and sink-free,
it must be infinite. Also, since G is acyclic, Lemma 20 gives us a topological sort < on V (G).

First assume K is finite. Then we have z ∈ V (G) such that for each x ≥ z, x 6∈ K. But then
since z 6∈ K, we must have y ∈ K such that zy ∈ E(G) and hence y > z. This is a contradiction.

Hence K is infinite. Thus we may choose different x1, x2, . . . , xn ∈ K. By hypothesis, D =⋃
1≤i≤nN

+(xi) is cofinite in V (G). But since K is independent, K ⊆ V (G) −D and hence K
is finite. This final contradiction completes the proof.

The case n = 1 gives Yablo’s condition.

Corollary 32 (Yablo). Let G be an acyclic sink-free directed graph such that for every x ∈ A
the set N+(x) is cofinite in V (G), then G contains no kernel.

Lemma 31 is more powerful than Yablo’s condition which can be seen by considering the
following example. Let pi denote the i-th prime number, so p0 = 2, p1 = 3, p2 = 5, etc. Let
G be the directed graph with vertex set N and an edge from a to b if and only if a < b and
b 6= pna for any n ∈ N. That is, a has an edge to every natural that is not a power of the a-th
prime number. Since there are infinitely many powers of each prime number, no vertex in G
has cofinite out degree. Hence Yablo’s condition does not apply. But for any a, b ∈ N with a 6= b
and m,n ≥ 1 we have pna 6= pmb and hence N+(a) ∪ N+(b) is cofinite in V (G). Thus we may
apply Lemma 31 to conclude that G has no kernel and hence FG is paradoxical.

We can also use our general necessary conditions for a graph to be dangerous to conclude
that certain directed graphs must contain kernels.

33 It is actually enough to assume there there is some A ⊆ V (G) which is cofinite in V (G) such that for any n
different vertices x1, x2, . . . , xn ∈ A the set

⋃
1≤i≤nN

+(xi) is cofinite in V (G).
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Corollary 33. Let G be a sink-free directed graph. Each of the following is a sufficient condition
for G to contain a kernel.

− The underlying undirected graph of G is acyclic.

− G is acyclic and only finitely many vertices have infinite out degree.
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